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ABSTRACT

Temporal segmentation of video data for partitioning the sequence into shots is a prerequisite in many
applications: automatic video indexing and editing, old film restoration, perceptual coding, etc. The detection
of abrupt transitions or cuts has been thoroughly studied in previous works. In this paper we present a scheme
to identify the most common gradual transitions, i.e., dissolves and wipes, which relies on mathematical
morphology operators. The approach is restricted to fast techniques which require low computation (without
motion estimation and adapted to compressed sequences) and are able to cope with random brightness
variations (often occurring in old films). The present study illustrates how the morphological operators can
be used to analyze temporal series for detecting particular events, either working directly on the 1D signal or
building an intermediate 2D image from the 1D signals to take advantage of the spatial operators.

Keywords: 1D morphological filtering, dissolve detection, geodesic reconstruction opening/closing, video
shot segmentation, wipe detection.

INTRODUCTION

Temporal segmentation of video data for
partitioning the sequence into shots is a prerequisite
in many applications: automatic video indexing and
editing, old film restoration, perceptual coding, etc.
The detection of abrupt transitions or cuts has been
widely studied in many previous works (cf. Brunelli et
al., 1999; Cotsaces et al., 2006 a comparative survey).
We have also implemented a new method for cut
detection, presented in Albiol et al. (2000), which is
based on differences between consecutive frames and a
morphological set of filters. But the cut detection must
be accompanied by specific algorithms for detecting
gradual effects such as dissolves (one scene gradually
disappearing while another gradually appears) and
wipes (one scene gradually entering across the view
while another gradually leaves). This paper is only
focused on the detection of gradual transitions.
Different approaches have been proposed to extract
the shots defined by gradual transitions, using different
algorithms and models for these phenomena (Meng et
al., 1995; Yeo and Liu, 1995; Demarty and Beucher,
1999; Fernando et al., 1999; Lu et al., 1999; Truong et
al., 2000; Joyce and Liu, 2006). However, the results
are not completely satisfactory even for very complex
techniques.

Previous works have already illustrated the
usefulness of mathematical morphology to process

temporal signals (video sequences, Pardas et al., 1992;
Naranjo et al., 2004). In particular, morphological
operators have also used temporal segmentation
metrics to filter out the video, mainly to detect
cuts (Demarty and Beucher, 1999; Llach and
Salembier, 1999; Albiol et al., 2000). In particular,
the algorithms proposed by Demarty and Beucher
(1999); Demarty (2000) dealt with different kind of
transition (cuts, dissolves and geometric transitions
such as wipes) and were based on the morphological
filtering of a metric for dissolves and on the study of
the geometry of a local difference image mask between
successive frames for wipes.

In this paper we present a scheme to identify the
most common gradual transitions, i.e., dissolves and
wipes, which also relies on mathematical morphology
operators. The algorithm for dissolves is based
on the computation of a simple metric between
frames, which is morphologically filtered to detect
the dissolve effects, in combination with the variance
of the frames (the method of variance detection
was proposed in Meng et al., 1995) and improved
in other contributions such as Yoo et al. (2006).
The combination of morphological analysis of the
evolution a metric with the modeling of variance
makes our method more robust than other previous
approaches based on a single parameter. The technique
for wipes is totally original and uses the orthogonal
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projections of the frames, filtered by reconstruction
in order to define a “strip image”, where the wipe
transitions are identified again by morphological
filtering.

The approach is restricted to fast techniques which
require low computation (without motion estimation),
are adapted to compressed sequences (in fact the
algorithms are applied to the dc image, Meng et al.,
1995; Yeo and Liu, 1995) and are able to cope with
random brightness variations (often in old films). The
algorithms can be used for sequences composed of
grey level or color image frames. If the image is color
we can use the luminance or the sum of the RGB
components to define the metrics of the algorithms.
Previous works (Gargi et al., 1995) have evaluated the
influence of the chosen color space in the detection
of cuts, and the representation luminance, saturation
and hue seems to give the best performance. We have
tested our algorithms using only the luminance or the
luminance together with the hue and the saturation but
no improvement is obtained.

The organization of the rest of the paper is
as follows. Section “Methods” is decomposed into
several parts: first, it is introduced the notation and
a brief reminder on morphological operators for
temporal series; second, the method for dissolve
detection is introduced; then, the approach for wipe
detection is presented. The description and the analysis
of the experimental results using our transition detector
are discussed in section “Results”, where we will
present not only the results of our detectors of gradual
transitions, described in this paper, but also the results
of the detector of cuts proposed in Albiol et al. (2000).
Finally, in section “Discussion”, some conclusions and
perspectives are given.

METHODS

MORPHOLOGICAL OPERATORS FOR
TEMPORAL SERIES

Image and signal lattices

Let { ft(x,y)}N
t=1 be a video sequence of N frames,

where the frame t is a grey level or color image ft(x,y).
Assume that s(t) is an equidistant time series (1D
signal). We work in this paper on images and time
series, therefore we need to precise some notations.
Let us consider two complete lattices: Limage and
Lsignal . An image is a function f (x,y) : E → Limage

where the spatial domain is a discrete set E ⊂ Z2,
1 ≤ x ≤ X ,1 ≤ y ≤ Y (X and Y are the number of
image columns and rows respectively) and the image

lattice is an ordered set of grey levels Limage ⊂ Z (or
⊂ Z3 for color images). A temporal signal is a function
s(t) : T → Lsignal where T ⊂ Z is the discrete time
index, i.e., T = {1 ≤ t ≤ N}) with real values into the
signal lattice Lsignal = R.

We also consider that for each morphological
operator Ψ (Serra, 1982; 1988; Soille, 1999) we may
associate the image mapping ΨE

B : Limage → Limage
(where B is the size/shape of flat structuring element)
or the signal mapping ΨT

∆t : Lsignal → Lsignal (where
∆t is the size or length of the temporal structuring
element). We remind in the rest of this section the main
morphological operators ΨT

∆t for temporal series.

Temporal erosion and dilation

The basic morphological operators for temporal
series are

– Erosion: εT
∆t(s(t)) = {s(y) : s(y) = ∧[s(z)],z ∈ ∆t},

– Dilation: δ T
∆t(s(t)) = {s(y) : s(y) =∨[s(z)],z∈∆t},

where ∆t is the temporal structuring element, which is
typically an odd symmetric centered time window, i.e.,
[t0 − ∆t/2, t0 − ∆t/2 + 1, · · · , t0 − 1, t0, t0 + 1, · · · , t0 +
∆t/2−1, t0 +∆t/2].

The erosion and the dilation are increasing
operators, i.e., s1(t) ≤ s2(t) ⇒ εT

∆t(s1(t)) ≤ εT
∆t(s2(t)),

∀t. Moreover, the erosion is anti-extensive, i.e.,
εT

∆t(s(t)) ≤ s(t) ; and the dilation is extensive
s(t) ≤ δ T

∆t(s(t)). In practice, the erosion shrinks the
positive structures; “peaks of signal” shorter than the
structuring element disappear by taking the value
of remaining neighboring signal structures. Dilation
produces the dual effects, enlarging the positive
peaks of signal. Fig. 1b shows two examples of
erosion/dilation of sizes 3 and 7 for the same time
series.

Temporal opening and closing,
and derived operators

The two elementary operations of erosion and
dilation can be composed together to yield a new set of
operators having desirable feature extractor properties
which are given by

– Opening: γT
∆t(s(t)) = δ T

∆t [ε
T
∆t(s)],

– Closing: ϕT
∆t(s(t)) = εT

∆t [δ
T
∆t(s)],

The morphological openings (closings) filter out
positive (negative) peaks (1D structures) from the
signals according to the predefined length of the
temporal structuring element, see the examples given
in Fig. 1c using again two sizes of operators. The
opening (closing) is an anti-extensive (extensive)
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operator and both are increasing and idempotent
operators.

The top-hat transformation is a powerful operator
which permits the detection of contrasted structures or
relevant peaks on non-uniform backgrounds. There are
two versions,

– White top-hat: The residue of the initial series
s and an opening γT

∆t(s); i.e., ρT,+
∆t (s) = s(t) −

γT
∆t(s(t)), extracts positive peaks.

– Black top-hat: The residue of a closing ϕT
∆t(s) and

the initial series s; i.e., ρT,−
∆t (s) = ϕT

∆t(s(t))− s(t),
extracts negative peaks.

Usually, the top-hat is accompanied by a thesholding
operation, in order to binarize the extracted peaks. In
addition, the main operator used for the top-hat of
size ∆t1 can be preceded by the dual operator of size
∆t2, such as the effect of both operators is taken into
account. In Fig. 1d is given a typical example. This
temporal operator specially useful for temporal series
is applied in the algorithms of the present paper.

A granulometry is the study of the size structure
distribution of a time series. Formally, a granulometry
can be defined as a family of openings Γ = (γT

∆tn)∆tn≥0

such that ∀∆tn ≥ 0, ∀∆tm ≥ 0, γT
∆tnγT

∆tm = γT
∆tmγT

∆tn =

γT
∆tmax(n,m)

. Moreover, granulometries by closings (or
anti-granulometry) can also be defined as families
of increasing closings Φ = (ϕT

∆tn)∆tn≥0. Performing
the granulometric analysis of a series s(t) with Γ is
equivalent to mapping each opening of size ∆tn with
a measure M (γT

∆tn(s)) of the opened series; where
M (s) is the Lebesgue measure of the time series s(t),
i.e., M (s) = ∑N

t=1 s(t). The size distribution or pattern
spectrum of s(t) with respect to Γ, denoted PSΓ(s,∆tn)
or PS(s,∆tn) is defined as the following (normalized)
mapping

PS(s,∆tn) =
M (γT

∆tn(s))−M (γT
∆tn+1

(s))

M (s)
,∆tn ≥ 0.

The pattern spectrum PS(s,∆tn) maps each size ∆tn
to some measure of the positive variations with this
size (loss of positive peaks between two successive
openings). The pattern spectrum PS(s,∆tn) is a
probability density function: a large impulse in the
pattern spectrum at a given time scale indicates the
presence of many peaks at that time scale. It is
also possible to use standard probabilistic definitions
to compute the moments of PS(s,∆tn). An example
of PS(s(t),∆tn) useful to analyze the frequencies of
positive peaks is given in Fig. 1e.

Temporal reconstruction

A morphological tool that complements
the opening and closing operators for feature
extraction (extract the marked particles) is the
morphological reconstruction, implemented using
the geodesic dilation, operator based on restricting
the iterative dilation of a function marker sm(t)
by the unitary temporal structuring element ∆t1
to a function reference sr(t), i.e., δ T

sr,(n)(sm) =

δ T
sr,(1)δ

T
sr,(n−1)(sm), where δ T

sr,(1)(sm) = δ T
∆t1

(sm(t)) ∧
sr(t). The reconstruction by dilation or opening by
reconstruction is then defined as

γT−rec(sm,sr) = δ T
sr,(i)(sm) ,

such that δ T
sr,(i)

(sm) = δ T
sr,(i+1)(sm) (idempotence).

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Application of temporal morphological
operators to the time series “Airline” from Falk
et al. (2006): (a) original time series s(t); (b)
erosions/dilations, εT

∆t(s(t)) and δ T
∆t(s(t)), ∆t = 3, 7 ;

(c) openings/closings γT
∆t(s(t)) and ϕT

∆t(s(t)), ∆t = 3, 7
; (d) modified white top-hat, s(t)−γT

∆t2
ϕT

∆t1
(s(t)), ∆t1 =

5, ∆t2 = 20 ; (e) pattern spectrum, PS(s(t),∆t), 1 ≤
∆t ≤ 31; (f) dynamic-based opening by reconstruction,
γT−rec(s(t)−H,s(t)), H = 75.
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Whereas the adjunction opening γT
∆t(s) (from an

erosion/dilation) modifies the structures of the series,
the associated opening by reconstruction γT−rec(sm,s)
(where the marker sm = εT

∆t(s) or sm = γT
∆t(s)) is aimed

at efficiently and precisely reconstructing the “shape”
of the structural peaks which are not totally removed
by the marker filtering process (peaks of length ∆t).
Other useful markers for extracting peaks according to
their dynamics correspond to series of type sm = s−H
such as γT−rec(sm,s) will remove the peak of contrast
lower than H, see the example of Fig. 1f.

DISSOLVE DETECTION

Dissolves are the most usual gradual transition
between two shots (see Fig. 2 for an example). The
blend between the two sequences is usually linear and
involves several frames.

Fig. 2. An example of dissolve (from the film
“Torbellino”).

Linear intensity metrics, sρ(t)

Our method is based on the assumption of the
following simple hypothesis: “The intensity of the
pixels in the frames of a dissolve follows a monotonous
variation”. We must then define a new metrics, sρ(t),
to quantify the monotony of consecutive frames in
order to detect dissolves.

Consider the three successive frames ft−1(x,y),
ft(x,y) and ft+1(x,y) of the video sequence
{ ft(x,y)}N

t=1. We define the following two differences:

d−
t (x,y) = ( ft(x,y)− ft−1(x,y))

and
d+

t (x,y) = ( ft+1(x,y)− ft(x,y)),

for each pixel (x,y). The coefficient of monotonous
linearity is given by

ρt(x,y)=























1 If (|d−
t (x,y)| > th and |d+

t (x,y)| > th)

and sign(d−
t (x,y)) = sign(d+

t (x,y))
−1 If (|d−

t (x,y)| > th and |d+
t (x,y)| > th)

and sign(d−
t (x,y)) 6= sign(d+

t (x,y))
0 otherwise

,

where th is a threshold to avoid the random variations
due to noise (typically th = 2 yields satisfactory
results). Using this pixel parameter, we can define a
metrics for each frame t by computing

sρ(t) =
∑X

x=1 ∑Y
y=1 ρt(x,y)
X Y

.

If the difference between the pixel (x,y) in the
frame ft and the same pixel in the frame ft−1 has
the same sign than the difference between the same
pixels in frames ft and ft+1, the luminance of this pixel
varies monotonously and we can suppose that this
point-to-point evolution is linear. When this situation
occurs in most of the pixels of a frame, we obtain
high values for sρ , which indicates a linear luminance
variation in the whole image. Consequently, during
a dissolve all its frames present high values for sρ .
Fig. 3 shows the result of sρ(t) calculation using a
sequence from the film Torbellino. In order to simplify
the detection of peaks in sρ(t) we propose to carry out
a 1D morphological filtering.
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Fig. 3. Dissolve metrics and corresponding
morphological filtering (temporal closing of size
24 and temporal top-hat of size 12) using a sequence
from the film “Torbellino”.

Initially a temporal closing of size ∆t1 removes the
negative peaks of temporal length less than ∆t1:

sclos
ρ (t) = ϕT

∆t1(sρ(t)).
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In fact, the value of ∆t1 allows us to fix the minimal
duration between two dissolves, e.g., ∆t1 = 24 involves
a minimal distance equal to 1 second (frame rate = 24
frames/second). Then, using a top-hat of size ∆t2 the
positive peaks are extracted:

stophat
ρ (t) = sclos

ρ (t)− γT
∆t2(s

clos
ρ (t)) .

In this case the value of ∆t2 defines the
maximum duration of a dissolve, e.g., taking ∆t2 = 12
corresponds to 0.5 second (typical value).

In the stophat
ρ (t) of Fig. 3, we can observe a

peak produced by the dissolve placed in the interval
522–525. Applying a threshold value uρ = 0.15, the
dissolve is detected. However, a false alarm will also
be detected in frames 626–628. These false alarms are
produced by high motion objects (objects in motion
which take up many pixels in the frame). In order to
reduce these false alarms, our method combines the
information achieved using sρ(t) and the information
of the parabolic variance evolution in a dissolve.

Detection of a parabolic variance
Let f 1

t (x,y) and f 2
t (x,y) two uncorrelated

sequences whose intensity variance are σ 2
1 y σ 2

2 ,
respectively. In a dissolve, the frames are obtained
by the weighted average of f 1

t (x,y) and f 2
t (x,y) during

the transition interval, in the following way:

f dissolve
t (x,y) = f 1

t (x,y)[1−α(t)]+ f 2
t (x,y)α(t),

where t1 ≤ t ≤ t2 is the dissolve interval.

The weight is given by

α(t) =







0 t < t1
(t − t1)/(t2 − t1) t1 ≤ t ≤ t2

1 t > t2
,

The variance of the dissolve sequence ft(x,y) is a
parabolic curve, such as for each frame t in the dissolve
σ 2(t) = (σ 2

1 +σ 2
2 )α2(t)−2σ 2

1 α(t)+σ 2
1 .
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Fig. 4. (a) Curve of variance for an ideal dissolve. (b)
Variance of the sequence from the film “Torbellino”
(sσ2(t)), where we can observe the dissolve placed
between the vertical lines. Below, a zoom of the
dissolve variance is shown.

Ideally, in the frames belonging to a shot, the
variance remains constant while the variance of the
dissolve frames has a parabolic shape (Fig. 4a). In real
sequences, the variance signal sσ2(t) in the dissolve
region is approximately a parabola, but in a shot the
variance could not remain constant and even presents
a parabolic curve. This last effect is due to the motion
in the scene. Fig. 4b shows the variance of a sequence
from the film Torbellino. The variance of the dissolve
was zoomed in order to observe its shape. We can
observe other regions where the variance is also a
parabola.

The algorithm

In summary, the steps of the proposed algorithm to
detect the dissolves are:

(1) Calculate the signals sρ(t) and sσ2(t) for each
frame t of the sequence.

(2) Fix ∆t1 and ∆t2 and filter out sρ(t) to obtain the
signal stophat

ρ (t). Then, apply a threshold uρ . All
transitions with a value at stophat

ρ (t) higher than the
threshold will be candidates for a dissolve.

(3) If the difference between the ideal variance model
σ 2(t) and the obtained variance for the candidate
frames sσ2(t) is less than a threshold uσ2 , the
candidate transition is detected as a dissolve.

The values selected for the thresholds have been
uρ = 0.15 and uσ2 = 350. To obtain these values
we have achieved a deep study (Angulo, 1999) on
a selection of sequences to estimate the probability
density functions of the signals sρ(t) and sσ (t)
for transition and non-transition situations. Fig. 5
shows the probability density functions of sρ(t).
The threshold is selected as the intersection point
between the two curves (pdf for transition and pdf for
non-transition), i.e., the hypothesis selected is which
originates with higher probability sρ(t). Note that this
is equivalent to use the maximum likelihood test:

P(H1/x) ≷
H1
H0

P(H0/x) ,

where x = sρ(t), H0 is the hypothesis that a transition
doesn’t occur and H1 is the hypothesis that a transition
occurs.

The same study has been carried out for the
variance signal, obtaining the intersection between the
two curves at the point s2

σ (t) = 350, so, this value is
selected as threshold u2

σ .

55



NARANJO V ET AL: Video gradual transition detection using morphological operators

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sρ(t)

pd
f

 

 
transition 
no transition

Fig. 5. Probability density function of signal sρ(t) for
transitions and non-transitions.

WIPE DETECTION
A wipe is a gradual transition between two shots

where one image belonging to a sequence f 1
t (x,y) is

linearly shifted by another f 2
t (x,y), and this effect lasts

several frames. In each frame of a wipe, the second
image superimposes W pixels on the first image, from
left to right (or from right to left) if the wipe is vertical,
and from top to bottom (or from bottom to top) if the
wipe is horizontal. An example of a vertical wipe is
given in Fig. 6.

Fig. 6. An example of a vertical wipe where the second
image replaces the first image from left to right (from
the film “Torbellino”).

Fig. 7 shows us the difference d̂(x,y) = | ft(x,y)−
ft+1(x,y)| between two consecutive frames t and t +1
belonging to the vertical wipe. This image difference
has a width area of W pixels, where the intensity of the
pixels is brighter than in all the height of the image.

Orthogonal projections and reconstruction
The first phase of our method consists of

determining the position of that area within the width
of the image. Using the image difference d̂(x,y), we
have to calculate the normalized vertical projection
signal by applying the following equation:

svp(x)t = 1
Y ∑Y

y=1 d̂t(x,y) 0 ≤ x ≤ X ,

where X and Y are the number of image columns and
rows, respectively.

ft(x,y) ft+1(x,y) | ft(x,y)− ft+1(x,y) |

Fig. 7. Two consecutive frames from the film
“Torbellino” and the difference image between both
frames.

The result of the vertical projection, calculated
using the difference image of Fig. 7, is the 1D signal
shown in Fig. 8. The maximum of this signal belongs
to the zone W of the wipe. In order to eliminate the
other regional maxima (not associated with the region
W ), we apply a geodesic reconstruction (Vincent,
1993) using the vertical projection as reference image
svp and a delta signal in the maximum position as a
marker smax

vp , i.e., srec
vp (x) = γT,rec(svp,smax

vp ) (see Fig. 8).
The amplitude of the maximum obtained for images
that do not belong to a vertical wipe is smaller than the
amplitude of the maximum obtained when the wipe is
present, because the wipe causes a bright area which
takes up all the column, yielding a greater maximum.
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Fig. 8. Vertical projection of the difference image
between two consecutive frames and the opening by
reconstruction (the marker is the maximum). Last plot,
three consecutive reconstructed vertical projections.

The position of the maximum in srec
vp (x) (1≤ x≤X)

indicates the spatial position of the wipe. As the wipe
passes from frame t to frame t + 1, the maximum will
also move, see Fig. 8. These moving maxima can be
used to detect the position of the wipe.
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“Strip image” creation

For a sequence of N frames and X ×Y pixels per
frame, we propose to create a grey image f strip(x,y)
to visualise the consecutive projection signals srec

vp (x)t
for each frame t. The vertical projection image has a
size of (N − 1)×X pixels (or (N − 1)×Y pixels for
horizontal projections). More precisely, each column
x = i (corresponding to the frame i) of the image f strip

is the normalised srec
vp (x)i between 0 and 255. The

sequences to be processed have a thousand frames, so
the appearance of the projection image is similar to a
dark strip of the same length as the sequence (“strip
image”). An example of a “strip image” is given in
Fig. 9a.

“Strip image” processing

In the “strip image” we can identify several event
components:

– Wipes correspond to oblique lines whose slopes
indicate the temporal length of the effect. These
lines arise from the spatial displacement of the
maximums of the projections, and they consist of
small vertical lines with a size equal to the number
of pixels that the wipe advances in consecutive
frames (W pixels).

– Abrupt transitions or cuts correspond to vertical
lines, because all the pixels of the difference image
in a cut have high intensity levels.

– Areas with large motion produce irregular shaped
areas. As the motion increases, the area produced
becomes brighter.

The purpose behind the processing of the “strip
image” is to eliminate all those event components
which do not correspond to a wipe. To achieve
this objective some morphological operators are used
according to the following algorithm.

(1) In order to eliminate the vertical lines produced
by cuts, a vertical top-hat is used, i.e., f strip =
f strip − γl1( f strip), where the structuring element
is a vertical line of size l1, which must be greater
than the small vertical line of the oblique line
caused by the wipe (typically l1 = 20), see the
result in Fig. 9b. Although this patterns could be
used in order to detect the cuts, we would not
obtain very good results due to the false alarms
produced by the flicker, an artifact which appears
frequently in old films. As we will see in section
“Results”, we have designed and implemented a
robust cut detector which was presented in Albiol
et al. (2000).

(2) Wipes, as we explained above, produce oblique
lines which go from the first row to the last.
To obtain these lines, eliminating irregular areas,
we can compute the opening by reconstruction
using f strip as reference and placing a marker
f strip
mrk1 in the top image border (all pixels to

0 except the two first rows to 255). So, only
those areas which touch the top border will
be reconstructed. Then, a second reconstruction
using the lower image border as marker f strip

mrk2 ,

i.e., f̃ strip = γrec( f strip
mrk2,γ

rec( f strip
mrk1, f strip)). After

these two geodesic reconstructions, we achieve the
image f̃ strip where only those areas which touch
both borders are presented (Fig. 9c).

(3) A threshold is applied to the image f̃ strip in order
to obtain only the oblique lines. Finally, the binary
image is segmented for labelling each connected
line as an independent object (Fig. 9d). In this
case, the only connected line which appears is the
vertical wipe which exists in this sequence.
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t
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Fig. 9. Vertical wipe detection: (a) “Strip image”
f strip, (b) residue of the vertical opening of size 20,
(c) final processed “strip image”, (d) segmentation by
thresholding.
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Limitations

The process presented above can also be applied in
order to detect horizontal wipes using the horizontal
projections. For detecting a wipe in a different
direction, the projection must be calculated in the
corresponding direction. Obviously, the detection is
limited to wipe patterns which change in the same
direction. However, the main application of our
methods is the old film restoration and, in this case,
wipes in a different direction from horizontal or
vertical, rarely appear.

Again, this methodology has been applied to
our database of video sequences and the detection
is satisfactory even for degraded sequences (in our
main application), as can be observed in the results
presented in section “Results”. In spite of these results,
some false positives can be produced if the contents
of the sequence have the same characteristics than
the frames belonging to a wipe. Fig. 10 shows a
subsequence which produces a false positive in the
vertical wipe detection. The problem arises from a
dark vertical object (the door), inserted in a clear
background, which moves W pixels per frame in the
horizontal direction. The “Strip Image” obtained after
processing the sequence which contains the false wipe
is presented in Fig. 11.

Fig. 10. Example of a sequence which produces a false
positive in the vertical wipe detection.
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Fig. 11. Vertical wipe detection of sequence which
includes the subsequence shown in Fig. 10: (a) “Strip
image” f strip, (b) final processed “strip image” where
the false detection is shown.

RESULTS

The global detector, which we have designed and
implemented, consists of the following process:

(1) Abrupt transition or cut detector. It is based
on a metric called correlation of modified sign
(CMS) which measures if there is a match in the
modified sign between two consecutive frames.
The equation of the CMS is:

CMS(t) =
1

X Y

X

∑
x=1

Y

∑
y=1

MS( ft(x,y))−MS( ft−1(x,y)) ,

(1)
where X and Y are the frame dimensions, and
MS( ft(x,y)) corresponds to the modified sign for
frame ft , which is defined in Eq. 2 and represents
the situation of a pixel with respect to the image
mean.

MS( ft(x,y)) =







1 ft(x,y) > µt + th
−1 ft(x,y) < µt − th

0 otherwise,
(2)

The signal CMS(t) is in the range −1 ≤CMS(t) ≤
1. A cut occurs when the CMS(t) is near to -1,
which means that a high number of pixels has
a different behavior with respect to the mean in
frame ft and ft−1. The cut detector is improved
applying a set of morphological filters to the CMS
signal, resulting a detector highly robust to the
false alarms due to flicker. The whole process is
presented in Albiol et al. (2000).

(2) Gradual transition detector which consists of the
dissolve and wipe detectors presented in sections
“Dissolve Detection” and “Wipe Detection”,
respectively.

PERFORMANCE EVALUATION

In order to evaluate the performance of our
detectors, the recall and the precision will be obtained
using the following expressions:

Recall =
Detections

Detections+MD’s
,

and
Precision =

Detections
Detections+FA’s

,

where “Detections” is the number of detected effects,
“MD’s” the number of missed detections and “FA’s”
that of false alarms.

Three different categories of video sequences have
been used in order to test the detectors:
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– Synthetic sequence: Is the linking, using dissolves
of different lengths and wipes of different lengths
and directions, of the QCIF sequences: Bridge
close view, Bridge far view, Carphone, Claire,
Container Ship, Foreman, Grandma, Highway
drive, Mother and Daughter, Salesman and Silent,
all of which are free available in
http://trace.eas.asu.edu/yuv/qcif.html.
This sequence has 10563 frames and is available in
an AVI file
http://personales.upv.es/∼vnaranjo/effectfilm.zip

– Real new sequences: Is a set of color sequences
of high quality from current television movies and
news:
· Sport sequences:

∗ cycling: a fragment from the cycle race
around Spain with 1997 frames and 3
dissolves and 0 cuts.

∗ football: a fragment of 7060 frames of
a football match with 14 cuts and 13
dissolves.

∗ basket: 6750 frames of a basket match with
15 cuts and 20 dissolves.

· News sequences:

∗ news a: a piece of a news report (from
TVE: Spanish Television) with 1907
frames and several transition effects: some
cuts, 3 dissolves and 1 vertical wipe and
also several sophisticated edition effects.

∗ news b: similar sequence to the previous
one with 1499 frames and only 1 dissolve.

∗ news NBC: similar to the previous
sequences with 13727 frames, 35 cuts, 19
dissolves and 16 wipes.

· Film sequences:

∗ movie: a fragment, 3010 frames, of the
film La sombra del ciprés es alargada with
many cuts but no transition effects.

∗ drama: a fragment, 3012 frames, of the
Spanish TV series Pepa y Pepe also with
many cuts but no transition effects.

∗ zorro: sequence from the film ”The mask
of Zorro”, 5075 frames, 35 cuts and no
gradual transition.

· Other sequences:

∗ cartoon: fragment of a cartoon TV series
called Don Quijote de la Mancha, 8778
frames, 55 cuts and 29 dissolves.

∗ culture: a documentary about villages from
Spain, 14896 frames, 75 cuts and 19
dissolves.

– Real old sequences: Is a set of degraded black and
white sequences from several old films:

· malva: a fragment of 1789 frames from the
Spanish film Malvaloca (1942).

· torbe: 2214 frames from the Spanish film
Torbellino (1940)

We have analyzed all these sequences, near 70000
frames in all, obtaining the results shown in Tables 1–
3, for the detection of cuts, dissolves and wipes
respectively. In spite of the high number of processed
frames, the number of gradual transition effects
evaluated is not very high, due to the rare appearance
of this kind of effects in real sequences, in comparison
with the appearance of cuts.

Table 1. Results of cut detection.

Sequence Detections MD’s FA’s
Synthetic 4 0 0
Cycling 0 0 0
Basket 23 7 0
Football 21 6 0
news a 16 0 0
news b 4 0 1
news NBC 37 1 2
movie 14 0 0
drama 11 0 0
Zorro 87 5 1
Cartoon 52 3 2
Culture 75 0 0
malva 5 0 0
torbe 3 0 1
Total 352 22 7

Table 2. Results of dissolve detection.

Sequence Detections MD’s FA’s
Synthetic 4 1 0
Cycling 3 0 0
Basket 20 3 2
Football 14 2 5
news a 1 0 0
news b 2 0 1
news NBC 19 1 1 1
movie 0 0 0
drama 0 0 0
Zorro 0 0 0
Cartoon 26 3 5
Culture 19 2 2
malva 1 0 0
torbe 5 0 2
Total 96 12 18

59



NARANJO V ET AL: Video gradual transition detection using morphological operators

Table 3. Results of wipe detection.

Sequence Detections MD’s FA’s
Synthetic 3 0 0
Cycling 0 0 0
Basket 0 0 0
Football 0 0 0
news a 2 1 1
news b 0 0 0
news NBC 24 0 5
movie 0 0 0
drama 0 0 0
Zorro 0 0 0
Cartoon 0 0 0
malva 1 0 0
torbe 3 0 1
Total 33 1 7

With the detector results presented in Tables 1
(for cut detection), 2 (for dissolve detection) and 3
(for wipe detection), the values of precision and recall
are 93.2% and 93.7% respectively. Even in the case
of old films, the detector does not obtain a high
number of false alarms and misdetections. However,
in old very degraded sequences a high number of
false positives appears, which are associated to strong
intensity degradation throughout several frames. A
flicker correction step can be considered in order
to improve the results (Naranjo and Albiol, 2000),
achieving, after this flicker correction, similar values
of recall and precision.

DISCUSSION

We have presented in this paper morphological
techniques for detecting dissolves and wipes in video
sequences. It is a necessary step, which combined
with the detection of cuts, allows the temporal
segmentation of sequences into shots. Experimental
results have shown the satisfactory performance of our
methodology with degraded sequences and still better
on sequences in good condition. The developed low
complexity algorithms yield to fast implementations
and therefore can be adapted for (quasi) real-time
applications.

From a methodological viewpoint, the present
study illustrates how the morphological operators can
be used to analyze time series for detecting particular
non periodic events, either working directly on the 1D
signal or building an intermediate 2D image from the
1D signals to take advantage of the spatial operators.

Regarding this subject, we can consider other
applications of the “strip images”, for instance, in

video surveillance algorithms, to identify pedestrians
(Fig. 10) or other events. As well as the orthogonal
projections, we can use other “image parameters”
for the non temporal axis of the “strip images”, for
instance, the luminance histogram to detect abrupt
illumination variations, or color images combined
with the saturation histogram to detect highlights and
shadows, or skin color-centered hue histogram to
detect people, etc.
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