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ABSTRACT

A downsampling method for binary images is presented, which aims at preserving the topology of the image.
It uses a general reference sampling structure. The reference image is computed through the analysis of the
connected components of the neighbourhood of each pixel. The resulting downsampling operator is auto-
dual, which ensures that white and black structures are treated in the same way. Experiments show, by visual
inspection on the displayed images, that the image topology is indeed preserved satisfactorily.

Keywords: binary downsampling, digital topology, reference downsampling.

INTRODUCTION

In this era of expanding mobile multimedia
devices, small screens will soon be in every pocket.
Their relatively small resolutions (the screen of a
Personal Digital Assistant (PDA) is typically 320 by
320 pixels) pose display problems, worsened by the
fact that visual digital documents are often thought for
high resolution displays. For example, how can a faxed
document, or a tourist brochure, scanned with a 200
dpi resolution, be conveniently displayed on a PDA
screen?

As it can be seen, we are confronted with
a severe downsampling problem. Moreover, these
images often are binary or nearly so, like faxes,
diagrams, maps, etc. In these particular cases, classical
downsampling methods work very badly, because they
aim at removing from the image those structures which
cannot be represented at a lower resolution level.
For example, depict a thin black line on a white
background. If downsampled with a classical linear
method (i.e., high frequencies are filtered out before
downsampling), this line will be smoothed away. If
we require that the resulting image is binary, thin
structures might be simply erased. In many application
domains this is a normal, and welcome, feature.
However, when displaying graphical data on small
displays, the opposite might be more interesting, that
is, preserving small structures when there is enough
place in the image. In the case of binary images, this
constraint can be expressed in mathematical terms as a
homotopy preservation property.

This application was the initial motivation for our
work, which explains some of the choices made during
the study. However, very similar problems can be

found in other application domains. The following
ones can be cited:

– multi-resolution representation of binary shapes
for pattern recognition, a problem which has been
studied by Borgefors et al. (1996; 1999; 2001);

– multi-resolution display of labelled images.

After this introduction, we will define the
framework, and review the existing methods. Then, in
section “Reference downsampling”, we will introduce
a general adaptive downsampling scheme which will
be used as basis in the following section for a binary
downsampling method which aims at preserving
homotopy. In the next section the results are presented
and commented. Finally, conclusions are drawn.

Note that a first, shorter version of this paper
was presented in the International Symposium for
Mathematical Morphology (Decencière and Bilodeau,
2005).

FRAMEWORK AND OBJECTIVES

Only binary 2D images will be considered in this
paper. They typically correspond to text, diagrams,
graphics, or maps.

Thin and small structures in binary images are
often semantically very important. Therefore, we want
to preserve them through the downsampling procedure
as long as possible. Borrowing vocabulary from the
image compression world, we could say that we want
to achieve graceful degradation of the information.
Here, information will be of topological nature.
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Of course, the detection of what is important is not
trivial, nor it is easy to know how long it is possible
to preserve data which is considered meaningful
along several downsampling steps. We have made the
hypothesis that the image topology is closely related to
the correct perception of the binary image. Therefore,
our goal is to produce a downsampling operator that
preserves the image topology, when possible. Indeed,
it is evident that in many cases, when resolution
decreases, the resulting downsampled image cannot
be homotopic to the original image. For example, a
checkerboard image, where each pixel corresponds to
one square, cannot be downsampled homotopically.
However, in many other cases we believe that a
topological approach might give interesting results.

When analysing binary images from a topological
point of view, to avoid problems that will be seen latter,
in practice one often treats differently the “object”
pixels and the “background” pixels. In our framework,
we do not know beforehand if the important structures
of a binary image are black or white. Therefore, we
will treat them in the same way. In other words, the
downsampling method should be auto-dual. Another
reason for the adoption of this hypothesis is our
wish to extend these results to gray scale images,
where making a difference between “objects” and
“background” is often impossible.

STATE OF THE ART

The classical linear downsampling approach is
based on the removal from the original image of those
frequencies which are too high to be represented at
a lower resolution level. They can be adapted to our
framework by applying a convenient threshold after
downsampling, in order to recover a binary image. The
resulting downsampling operator can be auto-dual,
however, preserving topological properties this way
is not straightforward, as it will be shown in section
“Results”.

Morphological downsampling methods are also
based on the same idea (Haralick et al., 1989;
Heijmans and Toet, 1991; Florêncio and Schafer,
1994): first, they remove those structures which are
considered too small to be represented at a lower
resolution level, and then a point downsampling is
applied. Clearly, this kind of approach is not adapted
to our application.

In a series of articles, Borgefors et al. (1996; 1999;
2001) propose a multiscale representation of binary
images. Their aim is to preserve the shape of the
objects. Even if these methods tend to preserve the
topology of the image, this is not their main objective.

Furthermore, the proposed downsampling methods are
not auto-dual, an essential property in our framework.

Adaptive downsampling methods analyse the
image contents before downsampling in order to
preserve meaningful details when possible. A method
based on the morphological tophat transformation has
been proposed for downsampling grey level and binary
images (Decencière et al., 2000; 2001). It takes into
account the size of the structures, by comparison with
a structuring element (i.e., a reference set), in order
to favour those pixels which are considered more
interesting. In this paper, we will adapt this approach
to the case of binary images but, instead of geometric
information, topological information will be used.

REFERENCE DOWNSAMPLING

A general reference downsampling method has
been introduced by Decencière et al. (2000; 2001). We
present below a version adapted to binary images.

A binary image I is a binary function of Z
2:

I : Z
2 −→ {0,1}

(x,y) 7−→ I(x,y) .

The set of binary images is denoted I . In the
following, an image will mean a binary image. We will
often identify an image I to the set {p∈Z

2 | I(p) = 1}.

For instance, when we say that a point m of Z
2

belongs to I, we mean: m ∈ {p ∈ Z
2 | I(p) = 1}. The

inverse image of I is Ī = 1− I. A point of Z
2 is also

called a pixel. We will use the letters p, q, m or their
coordinates (x,y) to denote them. We will adopt the
usual convention to represent binary images: pixels
where the image is equal to 1 will be represented in
black, whereas the others will be represented in white.

Let us partition Z
2 into 2× 2 blocks. For all (x,y)

in Z
2:

B(x,y) = {(2x,2y),(2x+1,2y),
(2x,2y+1),(2x+1,2y+1)} . (1)

This partition is the base for the construction of the
downsampling operator.

Definition 1 (Binary downsampling operator) A
binary downsampling operator ∆ is a function from
I into I such that, for every I ∈ I and (x,y) ∈ Z

2:

(∆(I))(x,y) ∈ {I(2x,2y), I(2x+1,2y),
I(2x,2y+1), I(2x+1,2y+1)}

∈ I(B(x,y)) .
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Therefore, the main question when defining a
binary downsampling operator will be how to choose
the value of (∆(I))(x,y) among the set I(B(x,y)).

A grey level image R is a function of Z
2 into

{0, . . . ,255}:

R : Z
2 −→ {0, . . . ,255}

(x,y) 7−→ R(x,y) .

We define index_max(R,B(x,y)) as the element
of B(x,y) where R takes its maximal value. If there
were two or more elements of B(x,y) where R took its
maximal value, then the first of these in video scanning
order would be taken.

Definition 2 (Reference downsampling operator)
Let R be a grey level image. The binary downsampling
operator ∆R with reference R is defined as:

∆R : I −→ I

I 7−→ ∆R(I) = I(index_max(R,B(.)) .

The simplest binary downsampling method, called
point sampling, which consists in taking the first pixel
of each B(x,y), is equivalent to applying a reference
downsampling operator with a constant reference
image. Needless to say, this method gives very poor
results.

The choice of R is essential to build interesting
sampling operators. The objective of this approach is
to build R from I, in such a way that the value of R(x,y)
corresponds to the importance we want to give to pixel
(x,y) in image I.

Fig. 1a shows an image to illustrate our purpose.
First of all, note that point sampling would produce
a completely white image. Methods which favour
“black” pixels (pixels belonging to the image) would
produce image in Fig. 1b. This would be the case for
instance if we used the same initial image as reference
image in the binary downsampling operator. The result
is considerably better than the result obtained with
point sampling, but there has been a topological
modification of the image (it will be seen in the
next section what is exactly meant by this). Such
modifications are often annoying when dealing with
binary data. For example, in this case, image (a) would
be interpreted as a letter “C”, whereas image (b) would
be misunderstood as a letter “O”. We would like to
compute a reference image that would give the result
shown by image (c) through reference downsampling.
To achieve this, pixel c in the first image should be
considered more important than pixels a and b, which
means that the corresponding value in the reference

image should be larger than the values associated to
the other two pixels.

In the next section we will propose a method to
build a reference image wich takes into account the
image topology.

BUILDING A REFERENCE IMAGE

DIGITAL TOPOLOGY: A DUAL
FRAMEWORK

We recall the main digital topology notions that
will be used in the following. For a complete
introduction to digital topology, the reader may consult
the article by Kong and Rosenfeld (1989).

Let N be a neighbourhood relation on Z
2, i.e., a

binary relation on Z
2 which is symmetric. When points

p and m of Z
2 are in relation through N , we say that

they are neighbours and we write pN m. Moreover, we
adopt the following convention: we take N such that
a point p is never in relation with itself through N .
We will denote N (p) the set of neighbours of p. As
pN p is always false, p never belongs to N (p).

Two subsets A and B of Z
2 will be said to be N -

neighbours if they are disjoint and there are two pixels
m and p respectively belonging to A and B such that
pN m.

Once equipped with a neighbourhood relation, the
points of an image can be aggregated into larger
structures.

A sequence (q0, . . . ,qK) of points of Z
2, where

K is a strictly positive integer, is a N -path if and
only if any two consecutive points of the sequence are
N -neighbours. The pixels q0 and qK are called the
extremities of the path.

Two different points m and p belonging to an
image I are said to be N -connected in I if there is
a path included in I whose extremities are m and q.

“To be connected in I” is an equivalence
relation. Its equivalence classes are the N -connected
components of I. The number, possibly infinite, of N -
connected components of a subset of Z

2 or an image I
will be denoted CCN (I).

We now introduce the notions of interior and
isolated point, in a general form adapted to our
framework. A point p of Z

2 is said to be a N -interior
point of I if and only if each of its N -neighbours has
the same value as itself . A point p of Z

2 is said to
be a N -isolated point of I if and only if none of its
N -neighbours have the same value as itself.
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Fig. 1. (a) Example of binary image. (b) Downsampled image when favoring black pixels. (c) Aimed result.

Typical neighbour relations used in image
processing are the 4-, 6- and 8- neighbourhoods,
respectively denoted N4, N8 and N6. Among these,
N6 has the best topological properties, as it is the
only one that fulfills the digital Jordan curve theorem.
But when the image has been digitized following a
square grid, 6-neighbourhood causes some unwelcome
phenomena. The Khalimsky neighbourhood relation,
denoted NK , should also be mentioned. It shows very
nice topological characteristics, but it is not translation
invariant: if both coordinates of a pixel p are even or
uneven, then NK(p) = N8(p). For all other pixels, we
have NK(p) = N4(p).

In order to palliate the defects of 4- and
8- neighbourhoods, neighbourhood relations which
depend on the image have been proposed, and widely
used. For example, the (8,4)- neighbourhood relation
N I

8,4 is defined as:

pN
I

8,4m ⇔

{

pN8m if I(p) = 1 and I(m) = 1
pN4m otherwise.

(2)

The (4,8)- neighbourhood relation, N I
4,8, is defined

analogously. We make explicit the dependance of
the neighbourhood on the image by puting I
as a superscript on N . These image-dependent
neighbourhoods fulfill the digital Jordan curve
theorem (see Kong and Rosenfeld, 1989, for references
to the various demonstrations).

The N -homotopy graph of an image can now
be introduced. Note that very similar notions are
called “adjacency tree” in Kong and Rosenfeld (1989),
“homotopy tree” in Serra (1982) and “adjacency
graph” in Kong and Roscoe (1985).

Definition 3 (N -homotopy graph) Let I be an
image and N a neighbourhood relation. The N -
homotopy graph of I is the non-directed graph whose

vertices are the N -connected components of I and
Ī, and whose edges link N -neighbouring connected
components. If V is the set of its vertices, and E the
set of its edges, then the graph will be simply denoted
(V,E).

When the neighbourhood relation N is in fact
N I

8,4 or N I
4,8, the homotopy graph is a tree (see Kong

and Rosenfeld, 1989, and references within).

Note that this definition is slightly different from
the ones given in Kong and Rosenfeld (1989) and
Serra (1982). Indeed, no supposition is made about
the color of the background. This allows “black” and
“white”pixels to play symmetric roles. In fact, if N is
inversion invariant, then I and Ī will have isomorphic
graphs, and therefore will be considered homotopic in
this framework.

Definition 4 (N -homotopic images) Let N be
a neighbourhood relation. Two images are N -
homotopic if and only if their corresponding N -
homotopy graphs (V1,E1) and (V2,E2) are isomorphic,
i.e., if and only if there is a bijection f between V1 and
V2 such that (A,A′) ∈ E1 if and only if ( f (A), f (A′)) ∈
E2.

“To be N -homotopic” is an equivalence relation.
Its equivalence classes are the N -homotopy classes of
I .

The comparison of the homotopy graphs can be
used to evaluate the quality of an operator which
aims at preserving homotopy. We have manually
done this in section “Results” in order to check,
for simple configurations, if the proposed adaptive
downsampling operator produces a result homotopic to
the original image. More generally, a distance between
graphs could be used to automatically evaluate the
performance from a homotopy point of view.
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Let us consider an image I and a pixel p. Let J
be the image equal to I on all pixels of Z

2 except on
p. When p belongs to I, the construction of J is the
essential basic step to compute a thinning operator.
For the thinning to be interesting, J and I must be
homotopic. If this is true, then p is said to be a simple
point. More generally, in our dual framework:

Definition 5 (N -simple point) A point of Z
2 is N -

simple with respect to a given image if and only if the
inversion of its value does not modify the N -homotopy
class of the image.

As in image thinning, simple points will play
an important role in image downsampling. Indeed,
it is important to note that, if the modification of a
single simple point does not modify the topology of
the considered image, the simultaneous modification
of two simple points might do so. This problem,
found in image thinning, will appear in our study:
the simultaneous disappearance of two simple points
through the downsampling procedure might introduce
topological modifications.

In 2D, simple points can be simply characterized
by the study of their neighbourhood.

ADAPTIVE CROSSING NUMBERS
The study of the number of connected components

of N (p) ∩ I has lead to several notions, namely
the Rutovitz crossing number (Rutovitz, 1966), the
Hilditch crossing number (Hilditch, 1969), and the
Yokoi connectivity number (Yokoi et al., 1973).

However, these crossing numbers are only defined
for pixels belonging to the image. We will now
introduce an image inversion invariant crossing
number.

In order to define adaptive crossing numbers,
we first have to classify the pixels of the image as
object pixels or background pixels. Note that we will
call object pixels those pixels that are considered
important because they belong to the minority in their
neighbourhood; they might be black or white. We will
then consider an 8-neighbourhood for object pixels,
and a 4- neighbourhood for the other pixels.

Consider a pixel p and a binary image I. In order to
answer the question “does p belong to the object”, we
compute the number nI(p) of 8-neighbours of p where
I takes the same value as on p. This is given by:

nI(p) = Card({q ∈ N8(p) | I(q) = I(p)}) , (3)

whose values are included between 0 (N8-isolated
point) and 8 (N8-interior point). If this value is equal or

greater than 4, then we will consider p as a background
pixel, otherwise, as an object point.

Proposition 6 The operator nI is invariant with
respect to image inversion:

∀I ∈ I ,∀p ∈ Z
2
,nI(p) = nĪ(p). (4)

Demonstration

nI(p) = Card({q ∈ N8(p) | I(q) = I(p)})

= Card({q ∈ N8(p) | Ī(q) = Ī(p)}) = nĪ(p)

¤

An immediate consequence of this proposition is
that the notion of object pixel is inversion invariant.

Let us consider a pixel p. It is either an object pixel
of I, or a background pixel of I.

If p is an object pixel of I (i.e., nI(p) < 4), then
we consider its 8-neighbours (see Fig. 2a). On some
of these neighbours, I takes a different value from p;
we call the number of N4-connected components of
this subset the adaptive crossing number of the object
pixel p.

Similarly, if p is a background pixel of I (i.e.,
nI(p) ≥ 4), then we consider its 4-neighbours (see
Fig. 2b). On some of these neighbours, I takes a
different value from p; we call the number of N8-
connected components of this subset the adaptive
crossing number of the background pixel p.

For example, in Fig. 2a, the number of 4-connected
components of the set {m ∈N8(a) | I(m) 6= I(a)} is 1,
and in Fig. 2b, the number of 8-connected components
of the set {m ∈ N4(c) | I(m) 6= I(c)} is 2.

More formally:

Definition 7 (Adaptive crossing number) The
adaptive crossing number of a pixel p in an image I,
denoted X I(p), is:

X I(p) =











CCN4({m ∈ N8(p) | I(m) 6= I(p)},
if nI(p) < 4 ,

CCN8({m ∈ N4(p) | I(m) 6= I(p)},
if nI(p) ≥ 4 ,

(5)
where CCN (I) is the number of N -connected
components of a subset of Z

2 or an image I.

The adaptive crossing number has the property we
were looking for:

77



DECENCIÈRE E ET AL: Adaptive crossing numbers

a

c

2

13

2

2

2 2 2

1

111

1

1 1

2 21

0 c
a

1
2

1
b

(a) (b) (c)

Fig. 2. (a) Pixels around pixel a considered to compute its adaptive crossing number. Neighbourhood relation on
them, used to compute X I(a), indicated by segments. (b) Pixels around pixel c considered to compute its adaptive
crossing number. Neighbourhood relation on them, used to compute X I(c), indicated by segments. (c) Test image
with some values of the adaptive crossing number. Notice that the value associated to pixel c is higher than those
given to a and b.

Proposition 8 X I is invariant with respect to image
inversion:

∀I ∈ I ,∀p ∈ Z
2
, X I(p) = X Ī(p) . (6)

Demonstration Simply rewrite equation 5 using
proposition 6. ¤

Note that an adaptive neighbourhood relation
could be defined in exactly the same way: 8-
neighbourhood would be considered between object
pixels, and 4-neighbourhood otherwise. However, this
neighbourhood relation does not fulfill the Jordan
curve theorem.

As a consequence, the reference image RI
n built

from X I is also invariant with respect to image
inversion:

RI
n(p) =

{

X I(p) if X I(p) > 0 ,

5 otherwise .
(7)

The particular case for X I(p) = 0, i.e., for isolated
points, is necessary if we want these pixels to be
preserved. The value 5 is arbitrary; it has to be higher
than the other values of X I(p).

Finally, we obtain the following downsampling
operator, that we call adaptive downsampling
operator:

∆n(I) = ∆RI
n
(I) , (8)

which has the property we were seeking for:

Theorem 9 The adaptive downsampling operator ∆n
is auto-dual:

∀I ∈ I , ∆n(I) = ∆n(Ī) . (9)

Demonstration We have ∆n(Ī) = ∆RĪ
n
(Ī) and RI

n =

RĪ
n, therefore, for all (x,y) in Z

2:

(∆n(Ī))(x,y) = Ī(index_max(RI
n,B(x,y))

= 1− I(index_max(RI
n,B(x,y))

= ∆RI
n
(I)

= ∆n(I) .

¤

RESULTS

First of all, in Fig. 2c we give the values of X I(p)
for some pixels of the test image. Notice that the value
associated to pixel c is now higher than the values of
its neighbours a and b. Thanks to this, the resulting
downsampled image with the reference image Rn we
have just defined is the one given by Fig. 1c.

Fig. 3 shows some more examples of simple
configurations whose topology we would like to
preserve.

Fig. 4 gives the result of the adaptive
downsampling of the test configurations given in
Fig. 3. As it can be seen, in the first case (Fig. 4a),
the result is satisfactory. The images before and
after downsampling are N -homotopic for all usual
neighbourhood relations N (including 4, 6, and
8 neighbourhoods, as well as (4,8) and (8,4)
neighbourhoods). This example also illustrates the
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Fig. 3. Test images containing simple configurations.

(a) (b) (c)

Fig. 4. Adaptive downsampling of test configurations.

auto-dual nature of the adaptive downsampling
operator.

The second case (Fig. 4b) is slightly
less satisfactory. The images before and after
downsampling are for instance (8,4)-homotopic, but
not (4,8)-homotopic.

However, the third case (Fig. 4c) has not been
conveniently downsampled. It is possible to build a
reference image that would have preserved topology,
but our method did not allow it. This problem is
analogous to the problem of simple points during
thinning operations. Indeed, pixels marked a and b
in Fig. 3c have an adaptive crossing number of 1.
But, taken together, they are important to preserve
the image topology. Their corresponding value in the
adaptive reference image should be higher than the
corresponding values of the neighbouring black pixels.

Fig. 5 shows a more complex test image,
containing geometric structures and text. Its size is
512× 512. Fig. 6 shows the result of the application
of the adaptive downsampling procedure.

Notice that adaptive downsampling has done a
nice work in preserving some important structures.
For example, in many cases topological downsampling

has avoided the fusion between letters. However, the
proposed downsampling operator has not preserved
some geometric details that are also important (look
for instance at letters “t”, “j” or “r”). This is not
surprising, given that the proposed downsampling
operator only aims at preserving topology.

Fig. 5. Test image (512 x 512).
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In some other cases (see for example letter “V” in
Fig.6b) the topology of some structures has not been
preserved. The main reason for this behavior is the lack
of space (pixels per letter) in the resulting image. In
some other cases, the local analysis does not correctly
evaluate the value of some pixels (letters “h” or “y” in
Fig.6b).

Finally, it should be noted that given that
thin structures tend to be preserved along the
downsampling process, their relative size will increase
with respect to the larger structures.

In order to compare with state of the art
downsampling methods, we have computed a gaussian
pyramid from the initial image, see Witkin (1983).

(a) (b)

Fig. 6. (a) Adaptive downsampling. (b) Adaptive downsampling, iterated.

(a) (b)

Fig. 7. (a) Linear downsampling, before thresholding. (b) Previous image, thresholded: linear-based binary
downsampling.
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The original image is first filtered using à 5 ×
5 support gaussian, and then point-sampled; the
procedure is iterated to obtain the desired number
of resolution levels. The resulting images are grey-
level (values range between 0 and 255). In order to
binarize them, we have used a threshold value of 127.5,
which gives a binary downsamplig operator which is
also auto-dual. Fig. 7 shows the first downsampling
step obtained this way. On top (a), the downsampled
filtered image is shown, before thresholding. Note
that it is a grey-level image, and that it is visually
pleasing. However, the threshold (b) produces a much
less pleasing result if compared with Fig. 6a. Thin
structures have been erased.

CONCLUSION AND FUTURE
DEVELOPMENTS

As far as we know, the binary downsampling
method we have presented is the first that uses purely
topological criteria in the process.

It does a good job of preserving structures from
a topology point of view, but, in some cases, the
removal of two neighbouring simple points introduces
topological modifications which could have been
avoided. Therefore, a more subtle analysis is needed to
compute a better reference image. For example, second
neighbours could be considered in the analysis.

Moreover, it appears that a topology preservation
criterion is not enough to preserve meaningful details.
Some geometric information should be added to the
reference image, as curvature or information about
extremities. The reference downsampling approach
allows to combine different sorts of information.

It should be noted that the operations involved
in the computation of the reference image are not
computationally greedy. The implementation of this
method on mobile processors should not be a problem.

The next step in this work will be to extend this
downsampling approach to grey level images.
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