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ABSTRACT

Broncho alveolar lavage is the most commonly used diagnostic tool for confirming alveolar hemorrhage.
Golde has introduced a ranking score, based on the hemosiderin content of macrophages which enables ranking
cells from 0 to 4 based on the degree of Prussian blue stain. We propose a complete image analysis scheme to
automatically perform both the extraction of the cellular objects and the ranking of each cell according to the
Golde score. The image analysis techniques used mainly involve clustering and mathematical morphology.
A 2D histogram is clustered to extract the main cellular components, a color watershed is used to determine
and refine the regions. Finally, the cellular components of interest are firstly classified according to their hue
and secondly according to their staining repartition. The proposed image analysis technique is very fast and
produces reliable and accurate results.
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INTRODUCTION

Pathologists today need a high degree of precision
and reproducibility in their analysis results. The key
to this is objectivity and standardization in their
laboratory practice. Static laboratory imaging is now
well established since the first attempts to incorporate
digital imaging in pathology. Many industrial
companies provide such imaging workstations whose
investigation fields are not reduced to pathology but
more generally to biology. In particular, broncho
alveolar lavage (BAL) is a simple investigation method
carried out during a bronchial endoscopy by injection
of sterile physiological salt solution (250 ml) in
a pulmonary segment. This is followed by a soft
aspiration recovery. BAL is the most commonly used
diagnostic tool for confirming alveolar hemorrhage
(AH). The diagnosis of alveolar hemorrhage is
made by progressively bloodier BAL returns when
hemorrhage is recent or by an increased number of
hemosiderin-laden macrophages using Prussian blue
staining (Lassence et al., 1995). To establish the
diagnosis of alveolar hemorrhage in cells recovered
by broncho alveolar Lavage, Golde and colleagues
created a score (Golden et al., 1975) based on the
hemosiderin content of alveolar macrophages stained
with Prussian blue. Each cell is graded for hemosiderin
content on a scale of 0 to 4 (0 = no stain, 4 = dense
staining). The ranking for hemosiderin content uses
the following scale: 0, no stain; 1, faint blue in one
portion of the cytoplasm; 2, deep blue in a minor

portion of the cell; 3, deep blue in most areas of
the cytoplasm; and 4, deep blue throughout the cell.
The total score for an average of 200 cells is divided
by two to obtain the Golde score (GS) (Moumouni
et al., 1993). As reported by Kahn et al. (1987), AH
is defined by a Golde score greater than or equal to
20 and is considered mild and severe when the Golde
score is 20 to 100 and higher than 100, respectively.
To automate the computation of the Golde score on
microscopical color images, we propose a complete
image analysis scheme to automatically perform
both the extraction of the cellular objects and the
ranking of each cell according to the Golde score.
The section “Materials and Methods” describes the
imaging system and its calibration. The section “Image
Analysis Scheme” presents the proposed segmentation
and classification scheme. The section “Results and
Discussion” presents experimental results. The last
section presents conclusions.

MATERIALS AND METHODS

The imaging workstation we worked with consists
in an Olympus BX 50 microscope with a Märzhäuser
motorized scanning and a 3CCD JVC KY-F75 camera
connected to a computer by IEEE 1394. Before
attempting to acquire images, the system needs to
be allowed sufficient time to warm up. To determine
this thermal equilibrium, a flat field image of a
slide has been acquired every 5 minutes during three
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hours. By computing the difference image between
two successive flat field images and taking the mean
gray value of the whole difference image, we can plot
the time course of color values after the system has
been switched on. The data indicates that the thermal
stabilization of the system has been located after
90 minutes (only 0.1 mean gray level of difference).
The 90 min warming-up period was therefore used in
our experiments. The lighting level of the microscope
can be modified by the user, but we have fixed
it to a constant voltage of 9 V which correspond
to a color temperature of 5500 K (D55 illuminant)
representing the recommended one for microscopy.
Once the lighting level has been fixed, the user can
adjust the microscope condenser aperture which levels
the amount of light passing through the optical lens.
To determine the best suited aperture level of the
condenser, a calibration slide with a set of neutral
density filters with known transmissions (5, 10, 30, 50
and 80%) was used. Theoretically, photodiodes have a
linear response with respect to incident light intensity
(Puech and Giroud, 1999). We used this assumption
to determine the correct aperture. However, some
aperture levels of the condenser are not appropriated
because too much light passing through the lens
results in a saturation of the 3CCD camera sensors.
Therefore, we first plot the mean luminance of a flat
field image according to the condenser aperture for
several neutral density filters and this allows us to
reduce the range of the aperture to [0.2–0.5]. For
the evaluation of linearity, the mean luminance of
a flat field image has been determined according
to the transmission of neutral density filters for
several condenser apertures within its allowed range.
According to medical standards, the coefficient of
determination of the regression line plotted over a set
of measurements with different neutral density filters
should be close to 0.99 (Puech and Giroud, 1999).
We have then chosen the regression line having the
closest determination factor which corresponds to an
aperture of 0.25. This aperture is appropriated only for
a given objective lens (20× magnification) and has to
be determined for each objective (corresponds to 0.5
for 40× magnification). Once the microscope settings
are fixed, images can be acquired in a reproducible
way. Fig. 1 presents an example of a typical Prussian
blue stained color image digitized by our capture
system. All the digitized images are color images of
size 752×576 at a 20× magnification.

Fig. 1. A sample color image stained by Prussian blue.

IMAGE ANALYSIS SCHEME

To segment images stained by Prussian blue, we
consider the following scheme (resumed in Fig. 2):

A) Clustering, which extracts the main components of
the image according to their color,

B) Spatial refinement, which refines the boundaries of
objects obtained from the clustering,

C) Cell separation, which disaggregates touching or
clustered cells,

D) Cell classification, which classifies cells according
to their hue and staining repartition.

In the sequel, we present each steps of the proposed
segmentation and classification scheme.

Fig. 2. The proposed image analysis scheme.

2D HISTOGRAM CLUSTERING

To perform the clustering of a color image, several
strategies can be used. They generally differ on the
dimension of the data used to cluster the image
but they share the same assumptions: homogeneous
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regions in the image plane give rise to explicit
clusters in the colorimetric projection representation.
A colorimetric projection representation can range
from 1D to 3D (or higher) dimensions. Usually, the
spatial repartition of the colors in a color space is
used to cluster an image assuming that the colors
of the objects (describing homogeneous regions in
the image plane) are grouped around dominant color
clusters in a colorimetric projection (the center of the
colorimetric projection classes). A cluster therefore
corresponds to a class of pixels which have similar
color properties. Clusters are peaks for the 1D case
(1D histogram projections) and clouds of colors for
the 3D case (3D histogram projection). In the 1D case,
the histograms of each band are considered separately
(marginal approach) and the method is reduced to
finding thresholds dissecting the band histograms
(Celenk, 1990; Lezoray and Cardot, 2002; Busin et al.,
2004). Since one has one 1D histogram per color
band, several clusterings are obtained. The resulting
clustering can be combined with different methods,
such as intersection, majority vote, Demspter-Shafer
or Bayesian theory. This method is known as multi
thresholding (Kurugollu et al., 2001). In the 3D case,
the vectorial aspect of color is taken into account
(vectorial approach) and the clustering is considered
as the classification of multi spectral data (Postaire
et al., 1993; Soille, 1996; Park et al., 1998; Géraud
et al., 2001). One has to note that a clustering is
not itself a segmentation. A clustering produces a
clustering map where to each pixel is associated a
class. Since a color cluster in a color space is not
necessarily associated to connected colored pixels in
the image plane, the clustering can assign the same
class to pixels that are not connected. It is therefore
necessary to perform a labeling of the clustering
map to obtain a real segmentation. The 1D clustering
method suffers from the fact that a color cluster is
not always present in each band and the combination
of the different segmentations cannot always catch
this spatial property of the colors. The 3D clustering
method is handicapped with data sparseness on the one
hand and with the complexity of the search algorithm
on the other hand.

An interesting alternative to 1D and 3D clustering
methods relies on the use of pairwise projections and
especially bivariate histograms (2D histograms) which

(a) RGB (b) RG

(c) RB (d) GB

Fig. 3. 3D RGB color space projection and
corresponding projections on band-pair planes (2D
histograms) for the image of Fig. 1.

use two color bands together (pairwise associations)
namely RG, RB and GB in the RGB color space.
This can bring several advantages (Matas, 1995;
Kurugollu et al., 2001; Xue et al., 2003; Lezoray and
Cardot, 2003; Lezoray, 2004). The paucity of the data
encountered in the 3D case is partially overcame and
the search complexity is drastically reduced. Moreover
it partially uses the spatial repartition of colors and
offers an intermediate method to the 1D and 3D ones.
Another advantage to be considered is the fact that
a 2D histogram is nothing more than a gray-level
image, therefore classical and fast gray-level image
processing algorithms can be used to cluster a 2D
histogram. A 2D histogram is the projection of a 3D
histogram onto band-pair planes. Fig. 3 presents the
3D histogram (Fig. 3a) in the RGB color space and the
three 2D histograms (Figs. 3b–d) obtained by band-
pair projections for the image of Fig. 1. One can see
that most of the information is present in a single
2D projection. The RG projection has a distribution
which is sufficient to encode the color content of the
image and we will further consider only this band-pair
projection. We choose this projection not only because
this projection seems accurate but because it is the one
which provides the better clusterings. One has to note
that Figs. 3b–d, which represents the projections, are in
color for understanding purposes but a 2D histogram is

113



LEZORAY O ET AL: Automatic segmentation and classification of cells from broncho alveolar lavage

a gray-level image of reduced size (256×256). Fig. 4a
shows such an image which has been down sampled
by a factor 4 for speed computation reasons (the
histogram has therefore a size of 64×64). This down-
sampling has few influence on the final clustering and
simplifies it. To cluster this 2D histogram, we assume
that the different objects of the image are present in the
histogram around the dominant clusters (homogeneous
regions in this gray-level image). Obviously these
clusters also correspond to clusters in the 3D case. The
main clusters of a 2D histogram (the main connected
regions) are considered as the cluster centroids. The
clustering of a 2D histogram H proceeds in several
steps. Since the histograms are generally noisy (this
is mainly due to the sparseness of the colors in the
images), the latter is smoothed by mean curvature non
linear diffusion named ϕ . Fig. 4b presents the result
of this smoothing. The result ϕ(H ) is reconstructed
(by a morphological reconstruction process ψ) in the
original histogram image H to obtain a noiseless
and regularized version of the histogram H (2) =
ψ(ϕ(H ),H ). Fig. 4c presents the result of this
reconstruction. From this regularized histogram image
we seek the main clusters with a k-means clustering.
k = 3 since we want to extract three classes of pixels
the color of which corresponds to background, mucus
elements and cells. To ensure reproducibility, cluster
centers are not initialized at random but spreaded
out over the luminance axis in the band-pair plane
projection. Fig. 4d presents the result of the clustering.

(a) RG 2D histogram. (b) Smoothed 2D
histogram.

(c) Reconstructed 2D
histogram.

(d) Clustered 2D
histogram.

Fig. 4. Illustration of the steps of the 2D clustering of
the RG histogram of Fig. 1.

From the clustered 2D histogram (which has
to be up sampled to to its original resolution by
replication of the labels), a clustering map is obtained.
Indeed, each region in the clustered histogram image
corresponds to a set of colors in the original image:
to each (RGB) vector in the image plane is associated
the corresponding label in the clustered 2D histogram.
Fig. 5a present the clustering map obtained after
establishing the class to which each pixel belongs.
A clustering map not being a segmentation since
unconnected pixels in the image plane can have the
same label, this clustering map is labeled to obtain a
segmentation map (a partition of the original image in
regions) and not only a clustering.

SPATIAL REFINEMENT

The above clustering method provides relatively
coarse segmentations since the only information that
is used to construct the segmentation comes from the
way colors do organize in the color space. This is a
strong limitation since colors close one to each other
in the color feature space do not always correspond
to adjacent pixels in the image plane. The spatial
information in the image has therefore to be taken
into account to refine the segmentation. To do this we
use a mathematical morphology way of proceeding. A
label erosion is performed: in the segmentation map
(Fig. 5b), if, for a pixel of label j, any of its neighbors
has a label k 6= j, then the pixel is set to unassigned (see
Fig. 6a). This corresponds to impose the boundaries of
the regions to be unassigned. Unassigned regions are
extended in the image by performing a morphological
erosion with a square structuring element of size
5 × 5 (see Fig. 6b). The effect one attends with this
processing is to remove small objects and to keep
only the core part of each object to further refine
its boundaries. The remaining connected components
are then considered as seeds and a color watershed
algorithm (Lezoray, 2003) is used to fill the unassigned
areas (see Fig. 6c).

However, when spatially refining the
segmentation, one looses the initial clustering
information which was assigned to each pixel in the
clustering map assessing whether a pixel belongs to the
following classes: background, mucus elements and
cells. We can recover this information by assigning
to each spatially refined region its mean class in
terms of number of pixels: to each region is assigned
its majority class according to the initial clustering
map. Performing this, one obtains a spatially refined
clustering map (Fig. 6d). With this information, we
can once again simplify the segmentation map by
giving the same label to all regions which belong to
the background class (see Fig. 6e).
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(a) Clustering map.

(b) Segmentation map.

Fig. 5. Clustering map of the clustered RG histogram
of Fig. 4d, and the associated segmentation map after
labelling connected regions.

CELL SEPARATION

In order to enable individual analysis of each cell,
cells that are clustered together must be separated

one from each other. The separation of clustered
or overlapping objects has been extensively studied
(Cong and Parvin, 2000), but no method has proved
to be superior in all situations. We choose to use
a classical but very efficient morphological process
to separate clustered elements. First, the Euclidean
distance to the objects boundaries is computed, its
ultimate erode set is extracted which provides a seed
for each individual cellular component to be extracted.
A watershed is then applied on the inverse of the
distance to obtain a correct segmentation map where
clustered cells have been separated. Fig. 7 illustrates
all the steps of the cell separation.

CELL CLASSIFICATION

Once an accurate segmentation is obtained, we
perform a classification of the cellular objects. Cellular
objects are regions of the segmentation map which
correspond to the class of cells in the refined clustering
map. The number of cells to be classified is therefore
lower than the whole number of regions in the image
since the regions which correspond to background and
mucus are not considered. The classification proceeds
in two steps. Since Prussian Blue staining colors iron
in blue, the first thing to take into account to classify
a cell is the presence of blue pixels within its area. To
this aim, each region is analyzed and classified among
three classes according to their mean hue (Fig. 8). If
the mean hue is close to red (h ∈ [0;π/3]∪ [5π/3;2π],

(a) Boundaries imposition. (b) Boundaries erosion. (c) Color Watershed.

(d) Spatially refined clustering
map.

(e) Simplified segmentation map.

Fig. 6. Spatial refinement of the clustering and segmentation maps.

115



LEZORAY O ET AL: Automatic segmentation and classification of cells from broncho alveolar lavage

(a) Cell boundaries. (b) Distance to the boundaries.

(c) Ultimate erode set. (d) Unclustered segmentation map.

Fig. 7. Separation of clustered cells.

i.e.,, from magenta to yellow) then the cell belongs to
the first class (Golde score of 0: no blue pixels). If
the mean hue is close to blue (h ∈ [π;3× π/2], i.e.,,
from cyan to deep blue), the cell belongs to the third
class (Golde score higher than 1: substantial presence
of blue pixels).

Fig. 8. Hue Wheel.

If the mean hue does not correspond to one of the
two precedent configurations, i.e.,, the hue is between
magenta and deep blue, the cell belongs to the second
class (Golde score of 1: very few blue pixels). For this
first classification based on hue, we assume that the
hue of any pixel in an image colored by Prussian blue
never belongs to [π/3;π] which is coherent with the
staining process.

(a) Superimposed cell boundaries.

(b) Mean Hue classification.

(c) Score LUT of Fig. 9(b).

Fig. 9. First classif ication based on mean hue of cells.

Fig. 9b presents the corresponding classification
on the cells depicted in Fig. 9a, where the label LUT
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is provided by Fig. 9c. Cells having a score higher
than one have to be distributed among the possible
scores ranging from one to four. The main information
that can be used to quantify the score of cells, which
increases with the degree of staining, are color and
staining intensity. Therefore, for all the candidate cells,
their colors and staining intensity are analyzed. In
terms of color two attributes are considered:

– The mean hue of the cell h

– The standard deviation of the hue of the cell σh,

In terms of staining intensity (which is close to
extracting the texture), the pixels of each cell are
classified among three classes: Intense staining (I ),
Middle staining (M ), Low staining (L ) using the
rules defined by Wolf et al. (1995) to partition the
texture of cells in three classes. Fig. 10a presents the
extraction of the different classes of staining intensity
for cells of interest (the ones for which the Golde score
is assumed to be higher than one, see Fig. 9b). In
Fig. 10a, gray level corresponds to a class of staining
intensity: I in dark gray, M in white and L in light
gray. For a cell, three staining degree indicators are
considered, one by class of cell pixels. For all the
pixels of a cell belonging to a given staining class C
among the three above mentioned, we consider the
following quantity:

TC =

∑
St(p)=C

(

1
8 ∑

St(q)=St(p)
|h(q)s(q)−h(p)s(p)|

)

nC
,

(1)
where p denotes a pixel in a cell, St(p) the staining
class of a pixel (St(p) ∈ {I ,M ,L }), h(p) the hue of
the pixel p, s(p) the saturation of the pixel p, q is a 8-
neighbor of p and nC the number of pixels of class C in
the cell. To a cell are therefore attached three staining
degree indicators, one by staining class of pixels.
TC quantifies, for a given class of pixels, the mean
color dispersion (considered as the product of hue and
saturation) around the pixels of this class. Hue is an
information the relevance of which is variable (Carron
and Lambert, 1994). When color is highly saturated
(chromatic pixels), hue is very relevant, and when
saturation is low (achromatic pixels), hue is irrelevant.
Therefore we blend hue and saturation together for a
better accuracy of color dispersion measure.

All the cells are then classified among the
remaining four possible Golde scores (from 1 to 4)
with a k-means classifier. Each cell is described by a
vector of five features (h,σh,TI ,TM ,TL ). Fig. 10b
presents the final classification (Golde scores) of
the cells of Fig. 9b the Golde score of which was

established as higher than one, the final label LUT is
provided by Fig. 10c.

(a) Staining intensity extraction

(b) K-means classification

(c) Score LUT of Fig. 10(b)

Fig. 10. Second classif ication based on color and
staining intensity of cells.

RESULTS AND DISCUSSION

We have applied the proposed segmentation and
classification scheme on 50 images of BAL stained
by Prussian blue. These images were taken at random
for a given slide sample. Once the whole scheme
is performed, 5 sets of cells are obtained which
corresponds to the different scores cells can have.
Figs. 11–15 present these sets on the pool of tested
images. For Cells of scores 0 and 1, only subsets of
the whole set of cells are provided. Table 1 resumes
the proportions of cellular objects extracted from the
images.

Table 1. Number of cells in each class.

Class Number of cells
0 557
1 131
2 20
3 26
4 51

Total: 785
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A visual evaluation of the different categories
of cells enables us to see that they effectively
correspond to an increasing hemosiderin content (the
blue coloration becomes more intense and distributed
in cells). At the end of the whole segmentation and
classification scheme we propose, the computation
of the Golde score is however still not possible.
Indeed, the Golde score has to be computed on
macrophages and the cellular component that have
been extracted and classified by our scheme are
not necessarily macrophages: one can for instance
encounter lymphocytes. This will be done in future
works. However, since each extracted cell has to
be qualified as macrophage or non macrophage,
a reference database of macrophages and non
macrophages has to be constructed. The problem of
designing a cell as a macrophage then becomes a
supervised machine learning problem as opposed to all
the classification techniques used in our scheme which
are unsupervised. Therefore, to enable to compute the
Golde score, we are currently working to the building
of a learned model of macrophages.

Fig. 11. Cells of score 0.

Fig. 12. Cells of score 1.

Fig. 13. Cells of score 2.

Fig. 14. Cells of score 3.

Fig. 15. Cells of score 4.

CONCLUSION

An automated robust approach for the
segmentation and classification of cells from broncho
alveolar Lavage stained by Prussian blue has been
presented. Segmentation is based on an hybrid
combination of bivariate histogram clustering which
is spatially refined by a watershed. Classification is
based on a priori information on cells to classify. A
first coarse classification uses mean hue to extract
initial classes of cells. For cells having a blue
hue, the staining intensity is analyzed according to
its repartition in the cell. The whole segmentation
and classification scheme is unsupervised since
no parameter is used in the segmentation and
unsupervised classifiers are used in the classification.
The preliminary experimental results allow us to
conclude that the algorithms perform well for
the images acquired by our imaging system. But
anyway, the system must be extensively tested on
a more important number of images. On the other
hand, some ways of improvement are currently
under investigation. The first one we are currently
investigating is to categorize extracted cells as
macrophages or non macrophages in order to be able
to compute the Golde score.
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