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ABSTRACT 

The percolation threshold ρc of Boolean models of cylinders with their axis parallel to a given direction is 
studied by means of simulations. An efficient method of construction of percolating connected components 
was developed, and is applied to one or two scales Boolean model, in order to simulate the presence of aggregates. 
The invariance of the percolation threshold with respect to affine transformations in the common direction of 
the axis of cylinders is approximately satisfied on simulations. The prediction of the model (ρc close to 0.16) 
is consistent with experimental measurements on plasma spray coatings, which motivated this study. 

Keywords: Boolean model, cylinders, multi-scale, percolation, plasma spray coating, simulation. 

INTRODUCTION 

In many applications in material sciences, thin 
layers are deposited by means of a plasma spray 
(Beauvais et al., 2004; Kang, 2005; Sharma et al., 
2006). This coating is used to give specific properties to 
a part, like hardness, thermal or electrical conductivity. 
When the layer is made of a mixture of various 
components with a high contrast of properties (like a 
binary mixture with an insulating and a conductive 
phase), its physical properties are connected to the 
possibility for one of the components to percolate 
through or along the layer. Therefore it is important 
to know the percolation threshold of the layer in 
various directions, as a function of the microstructure. 
In the present work, the toroidal geometry of droplets 
generating the layer (Beauvais et al., 2004) is 
simplified by considering cylinders with their axis 
orthognal to the layer. A fast and efficient numerical 
method of simulation to generate multiscale 3D 
complex aggregates is presented, following the 
approach developed for sphere aggregates (Jeulin and 
Moreaud, 2005) and for sphero-cylinders (Jeulin and 
Moreaud, 2006a,b). This method enables us to 
estimate the percolation threshold of the random 
microstructure. It is applied to multi-scale random 
models of cylinders, for which the percolation 
thresholds of the cylinders and of their complementary 
sets are estimated. 

METHODS 

NUMERICAL SIMULATION OF MULTI-
SCALE RANDOM AGGREGATES 

Plasma spray coatings are generated by droplets 
falling on a substrate. A good representation of the 
layer is given by a realization of a Boolean model 
involving random primary grains located on points of 
a Poisson point process (Matheron, 1967). The initial 
spherical droplets are spread out on the substrate, and 
their shape can be approximated by flat cylinders with 
their axis orthogonal to the layer. In what follows we 
consider the case of a single primary grain (cylinder 
with diameter D, height H, and shape factor D/H). 
The germs are located on the points of a Poisson 
point process with a constant intensity, or restricted to 
a random set (multi-scale model) ; in the second case, 
we obtain a Boolean model based on a Cox point 
process (Jeulin, 1996).  

Our method of simulation can be applied to any 
kind of aggregates made of objects with a bounded 
diameter (that can be embedded inside a cube with side 
T, as shown on Fig. 1), with a random implantation on a 
multi-scale Poisson process (Jeulin, 2004; Moreaud, 
2006). 
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Fig. 1. Left, cylinder (T = max(diameter, height)); right, 
any shape (T = maximum caliper diameter of the 
shape). 

SIMULATION OF A ONE-SCALE 
MODEL 
Let us consider an implantation of centres of 

objects with a maximal diameter T, according to a 
Poisson point process with intensity θ. Every volume 
V contains a random number of objects N following a 
Poisson distribution with mean θV. Two properties of 
the Poisson point process are used: the number of 
points N1 and N2 contained in disjoint volumes V1 and 
V2 are independent variables. Conditionally to Ni , the 
points falling in Vi are uniformly distributed in Vi. 

The aggregates are obtained by overlapping 
objects. For the simulation, the following information 
concerning each object is stored: coordinates of the 
centre, shape parameters (like heigth and radius for a 
cylinder), and an aggregate label. To get a fast method 
of construction, it is useful to limit the  

number of tests of intersection between objects. This 
is made by a subdivision of the complete volume into 
cubes of size T, corresponding to the maximal diameter 
of the objects (for parallel cylinders, cubes could be 
replaced by englobing parallelepipeds for a faster 
simulation). The cubes are explored in a given order 
(Fig. 2). In each cube, the random number of centres 
of objects to locate is simulated by a Poisson point 
process with intensity θ. For each new centre of object 
to locate is generated: 

• a uniform location of the centre of the object in 
the current cube. 

• a determination of the 13 adjacent cubes of the 
current cube (according to the exploration order) 
(Fig. 2). 

• For all objects already contained in these volumes 
is performed an intersection test, detailed later. 

The next step (creation and fusion of aggregates) 
is explained in the “fusion of aggregates”section. 

SIMULATION OF A TWO SCALES 
MODEL 
We now consider a two-scale model built according 

to a Cox point process (Jeulin, 1996), where the 
centres of objects O1 with maximal diameter T1 are 
randomly located outside exclusion objects O2 with 
maximal diameter T2. Objects of the small scale O1 
are stored only if their centres are outside large size 
objects O2 (Fig. 3, left).  

 
 
 
 
 

 
Fig. 2. Left, division of a volume into eight parts ordered along x, y and z. Middle: the 13 adjacent volumes 
(light grey) to the current volume (dark grey). Right: the 26 adjacent volumes (bright grey) to the volume V2 
(dark grey). 
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Fig. 3. Examples of two scales simulations. Left: the 
cylinders corresponding to the small scale objects are 
kept if their centers are outside of exclusion cylinders 
corresponding to large size objects. Right: the 
cylinders, corresponding to the small scale objects, 
are kept if their centers are inside inclusion cylinders 
corresponding to large size objects. 

The simulation is built in two steps: 

• In a first step, a one-scale simulation is performed 
for the large exclusion objects O2, without inter-
section test. To generate this simulation, the full 
volume is subdivided into cubes V2 with side T2.  

• In a second step, a one-scale simulation is generated 
for the small size objects O1, with addition of a 
new condition. For every new object O1i to be 
implanted, the cube V2 containing its center and 
its 26 adjacent cubes are extracted (Fig. 2). Then 
is performed a test of exclusion of the centre of 
O1i into each large size object O2 included in these 
volumes. 

FUSION OF AGGREGATES 
The fusion of aggregates is a critical point 

concerning the computation time processing. To get a 
fast fusion process, the aggregate labels of objects are 
updated at the end of the simulation by means of a 
labeling algorithm (Moreaud, 2006). This method 
avoids multiple browses of the objects during the 
simulation, which can take a very long time when 
several millions of objects are implanted. 

An intermediate table “AggregateList” is used to 
link aggregate labels of objects during the simulation 
with aggregate labels of objects at the end of the 
simulation. Each object Oi owns an aggregate label 
Oi.ag. After intersection tests between a new object On 
to locate and previously located objects Oi, we have 
to consider several cases: 

• If On does not intersect objects, a new aggregate 
is created: 
On.ag = NewLabel and AggregateList[On.ag] = 
NewLabel.  

• If On intersects an object Oi, and if 
AggregateList[Oi.ag] ≠ AggregateList[On.ag], 
then the two aggregates have to be merged. 
We update Oi.ag = On.ag = AggregateList[Oi.ag] = 
AggregateList[On.ag] = min (AggregateList[Oi.ag], 
AggregateList[On.ag]). 
When the full volume is simulated, we reflect the 

updates of aggregate labels only in the AggregateList, 
and then we update aggregate labels of the objects.  

METHOD OF ESTIMATION OF THE 
PERCOLATION THRESHOLD 
A simulation percolates when an aggregate of 

objects connects two opposite faces of the simulation. 
To test if a simulation percolates, the highest label N 
of objects belonging to the cubes of the first plane z is 
determined, and is compared to the label numbers of 
objects belonging to the cubes of the last plane z. If 
all the labels are larger than N, the simulation cannot 
percolate. If we only look for the percolation 
threshold, this test, performed for each plane along z, 
enables us to quickly stop the simulation when it does 
not percolate. With our method of construction, 
several realizations of 3D simulations are processed 
and the presence of at least an aggregate connecting 
two opposite faces of a field is tested. The percolation 
threshold ρc is obtained when 50% of the realizations 
percolate for a given volume fraction of objects, and 
is given by this volume fraction.  

For two-scale simulations, it is interesting to 
estimate the percolation threshold of the smaller scale 
objects, keeping constant the volume fraction of the 
other objects (exclusion in the present case). A 
research by dichotomy is used to estimate ρc. 

TIME PROCESSING 
The time processing for a one scale simulation is 

depending of the number of tests of intersections to 
process. With a rough algorithm, the number S1 of 
tests of intersections is given by: 
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objects. By using our method which divides the 
volume of simulation, the number S2 of tests of 
intersections can be approximated by: 
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objects, T the diameter of the objects and V the 
volume of the simulation. For instance, if we process 
a simulation on a volume V = v3 = 20003 with  
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5000000 objects with diameter T = 10, we obtain 
S1 = 12.5×1012 tests of intersections of objects and 
S2 = 43.75×106. 

SIMULATION OF RANDOM 
AGGREGATES OF CYLINDERS AND 
PERCOLATION THRESHOLD 
For the study of coatings, we use our method with 

cylinders with a fixed orientation. By means of large 
size 3D simulations (typically 5000000 objects by 
simulation, and 20 realisations by shape factor), the 
clusters connected to the boundaries of the field are 
easily extracted thanks to the labelisation of the 
aggregates, in order to accurately estimate the perco-
lation threshold (Moreaud, 2006).  

SIMULATIONS WITH CYLINDERS 
A Boolean model of cylinders (BMC) is used for 

a one scale structure (cf. Fig. 4a). We also use a two 
scales model (cf. Fig. 4b):  

• an exclusion scale modelled by a Boolean model 
of large cylinders, corresponding to a domain 
containing no small size cylinders.  

• a scale of aggregates made of small size cylinders. 
The two scales model can be used to simulate 
random aggregates, or to estimate the percolation 
threshold of the complementary set of the BMC. 

To implement our method, we have to detail the 
tests of intersection and of exclusion between two 
cylinders C1 and C2 (with radii R1 and R2, centers 
M1(x1,y1,z1) and M2(x2,y2,z2), heights h1 and h2:  

• Test of intersection: the two cylinders overlap if 
the two following inequalities are satisfied:  
(x1 - x2)2 + (y1 - y2)2 < (R1 + R2)2 and 4(z1 - z2)2 < 
(h1 + h2)2 

• Test of exclusion: the center of the cylinder C1 is 
outside of the cylinder C2 if the following 
condition is fulfilled: (x1 - x2)2 + (y1 - y2)2 >R2

2 or 
4(z1 - z2)2 > h2

2 

ESTIMATION OF THE PERCOLATION 
THRESHOLD OF THE BOOLEAN 
MODEL OF PARALLEL CYLINDERS 
The percolation threshold of the Boolean model 

with various grains (spheres, sphero-cylinders...) can 
be estimated by different methods (Rintoul and 
Torquato, 1987; Mecke and Stoyan, 2005; Jeulin and 
Moreaud, 2005; 2006a,b). We used our method of 
simulation for a Boolean model of parallel cylinders 

with the same size (a single scale) for different shape 
factors (ratio diameter/height), and using 20 realizations 
for each case. The structure being anisotropic, we 
considered the percolation threshold for propagation 
along the axis of cylinders (axis 1) and orthogonally 
to their axis (axis 2) (cf. Fig. 5). The simulations are 
periodic on the faces of the domain parallel to the 
direction of propagation. The results are given in 
table 1. The percolation threshold is slightly larger along 
axis 1 (close to 0.17), as compared to a propagation 
along axis 2 (close to 0.15). It is practically invariant 
with the shape factor, as could be expected: as we 
already indicated in (Charollais et al., 1997), the 
connectivity properties of the Boolean model are 
invariant by affine transformations, which changes 
the shapes and the sizes, but does not introduce any 
new connection (this property was used to estimate 
the 3D connectivity number of a Boolean model of 
ellipsoids). In the case of parallel cylinders, changing 
the shape factor is equivalent to performing an 
affinity of the microstructure in the direction parallel 
to the axis of cylinders. During this transformation, 
we keep a Boolean model (the Poisson point process of 
germs being still a Poisson process) and its connectivity, 
and therefore its percolation threshold.  

It is possible that for very large fields of 
simulations the percolation thresholds in the two 
directions would converge to the same values, as 
observed for sphero-cylinders parallel to the same 
plane in (Jeulin and Moreaud, 2006a), but this point 
should be checked with very large simulations. The 
percolation threshold of parallel cylinders is smaller 
than for spheres (close to 0.29) and higher than for an 
isotropic distribution of sphero-cylinders (between 
0.01 and 0.0003 for aspect ratios h/r in the range 10-
3000). It is very close to the percolation threshold of 
sphero cylinders with their axis parallel to the same 
plane (up to ± 5 degrees of disorientation): in (Jeulin 
and Moreaud, 2006a), for 2r/h = 0.2 the percolation 
thresholds along axis 1 and 2 were 0.1294 and 
0.16125 respectively. More interestingly, recent 
experimental data on the in-plane conductivity of air 
plasma sprayed molybdenum coatings allowed an 
empirical estimation of the percolation threshold 
close to 0.16 (Sharma et al., 2006), in an excellent 
agreement with our predictions with simulations.  

Other estimates of the percolation threshold are 
available: the excluded volume (Balberg et al., 1984), 
and the zeros of the connectivity number (Bretheau 
and Jeulin, 1989; Mecke and Stoyan, 2005), being 
only valid for isotropic Boolean models.  
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(a) 

 
(b) 

Fig. 4. (a) BMC and the complementary set of the BMC (one scale); (b) two scale Boolean model;an exclusion 
scale is used to simulate the complementary set of the BMC. 

 
Tab. 1. Percolation threshold for the Boolean model 
of parallel cylinders for different shape factors. Axis 
1 is parallel to the axis of cylinders. Axis 2 is orthogonal 
to axis 1. 

Shape Factor 
(2r/h) vol. size ρc axis 1 ρc axis 2 

100 4000 0.1763 0.1540 
50 2000 0.1739 0.1522 
10 400 0.1672 0.1497 
2 200 0.1544 0.1537 
1 200 0.1524 0.1543 
1 100 0.1518 0.1562 
1 40 0.1508 0.1531 

0.1 40 0.1250 0.1596 
 

ESTIMATION OF THE PERCOLATION 
THRESHOLD OF THE 
COMPLEMENTARY SET OF A 
BOOLEAN MODEL OF PARALLEL 
CYLINDERS 
Our method of simulation of multi-scale random 

aggregates can be used to estimate the percolation  
 

threshold of the complementary set of a Boolean 
model of parallel cylinders (cf. Fig. 4). In that case, 
we need to use two scales simulations (cylinders for 
aggregates and for exclusion zones) and to use the 
method of estimation of the threshold explained in a 
previous section with a slight change: we estimate by 
dichotomy the limit volume fraction of exclusion 
cylinders allowing a percolation of small size aggregate 
cylinders for 50% of realizations (the small size 
cylinders are used here to find paths in the comple-
mentary set of large cylinders). We get by this way an 
estimation of the percolation threshold of the comple-
mentary set of the Boolean model of parallel cylinders. 
The results are given in Table 2. The cylinders for 
aggregates have a diameter and a height equal to 0.1, 
the cylinders for exclusion zones have a diameter 
equals to 1 or 2 and a height equal to 1. We can 
notice that the percolation threshold along axis 1 is 
higher than for the grains of the Boolean model 
(compare to Tab. 1), while it is much lower for axis 
2: it is much easier to find paths out of cylinders 
along their faces, than along their axis. To our 
knowledge, such results are not available in the 
literature. 
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Fig. 5. Illustration of the two axis for the estimation 
of the percolation thresholds.  

 

Tab. 2. Percolation threshold for the complementary 
set of a Boolean model of parallel cylinders for 
different shape factors. Axis 1 is parallel to the axis 
of cylinders. Axis 2 is orthogonal to axis 1. 

Shape Factor 
(2r/h) vol. size ρc axis 1 ρc axis 2 

1 10 0.2167 0.0406 
2 20 0.2320 0.0177 

 
 

ESTIMATION OF THE PERCOLATION 
THRESHOLD OF A TWO SCALE 
BOOLEAN MODEL OF PARALLEL 
CYLINDERS 
Two scales simulations were performed as 

described earlier, using large cylinders for inclusion 
zones, and small size cylinders for the generation of 
aggregates (cf. Fig. 3, right). The results of simulations 
are given in Tab.3. As expected, a much lower 
threshold is obtained, as compared to the one-scale 
model. The two directions give close results. They 
should be compared to the lower bound of the 
percolation threshold, asymptotically expected for a 
very large ratio between the two scales ρc

(2) = (ρc 
(1))2. 

In the present case, we have ρc
(2) = 0.0256. It turns out 

that the lower bound is not reached since the ratio of 
scales is limited to 10 in our simulations. 

 

Tab. 3. Percolation threshold for two scales simula-
tions. Axis 1 is parallel to the axis of cylinders. Axis 2 
is orthogonal to axis 1. 

cyl. agr 
(2r - h) 

cyl. inc 
(2r - h) 

vol. 
size ρc axis 1 ρc axis 2

1 1 10 10 400 0.0367 0.0382 
2 1 20 10 400 0.0377 0.0362 

 
Fig. 6. Example of a two scales simulation (volume: 
3003, cylinders for aggregates (r = 2, h=1, Vv=0.2), 
cylinders for inclusion zones (r = 20, h = 10, Vv = 0.1)). 

CONCLUSION 

We presented an original method of simulation of 
multi scale random aggregates of parallel cylinders 
based on the Boolean model. This kind of model is 
well suited to the simulation of coatings deposited by 
means of a plasma spray. By subdividing the studied 
volume and using the properties of the Poisson point 
process, the computation time is significantly reduced 
to obtain aggregates connected to a boundary of the 
simulated domain, from which is numerically estimated 
the percolation threshold. We could check from 
simulations that the percolation threshold is practically 
invariant by affinity along an axis with the same 
orientation as the axis of cylinders, as expected from the 
invariance of the connectivity by affinity. Furthermore, 
the predicted percolation threshold is in agreement with 
experimental data obtained on plasma spray coatings. 
Using two-scale depositions would significantly lower 
the percolation threshold of the layer.  
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