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ABSTRACT

This paper deals with the estimation of the specific connectivity of a stationary random set in IRd . It turns out
that the “natural” estimator is only asymptotically unbiased. The example of a boolean model of hypercubes
illustrates the amplitude of the bias produced when the measurement field is relatively small with respect to
the range of the random set. For that reason unbiased estimators are desired. Such an estimator can be found
in the literature in the case where the measurement field is a right parallelotope. In this paper, this estimator
is extended to apply to measurement fields of various shapes, and to possess a smaller variance. Finally an
example from quantitative metallography (specific connectivity of a population of sintered bronze particles) is
given.

Keywords: Boolean model, edge effects, Euler-Poincaré characteristic, specific connectivity, unbiased
estimation.

INTRODUCTION

A few years ago, one of us was reviewing a
paper in which an asymptotically unbiased estimator
was used exactly as an unbiased one. As we made
reservations about the way of handling this type of
estimator, the authors reply “This estimator is UFAPP
(unbiased for all practical purposes)”. Although
humorous and witty, this reply should not hide the
difficulty of using asymptotically unbiased estimators
and interpreting the results they produce.

This paper is mainly devoted to the estimation
of the specific connectivity of a stationary random
set. It turns out that the “natural” estimator is only
asymptotically unbiased. The example of the boolean
model illustrates the importance of the bias produced
when the measurement field is relatively small with
respect to the range of the random set. In the case
where this measurement field is a right parallelotope,
literature shows that this natural estimator can be made
unbiased by adding a correcting term, e.g.,, Mecke
et al. (1990) or Prasad et al. (1990). The unbiased
estimator thus obtained can actually be generalized to
apply to measurement fields of various shapes, and
to possess a smaller variance. This generalisation is
presented here only in two dimensions, but there is no
doubt that it extends to spaces of any dimension.

It should be pointed out that the bias studied in this
paper originates from a support problem (limited size
of the measurement field), not a discretisation one. The
reader interested in the latter problem can consult Serra
(1982) or Ohser et al. (2003).

A UNIDIMENSIONAL EXAMPLE

Let X be a stationary, unidimensional boolean
model of segments. It is shown in Appendix 1 that the
mean connectivity of X on [0,a] can be written as

E
{

N(X ∩ [0,a])
}

= θae−θm +1− e−θm, (1)

where θ is the Poisson intensity and m is the mean
segment length. Starting from Eq. 1, the specific
connectivity of X is obtained first by dividing by a and
then letting a tend to infinity

NL = lim
a−→∞

E
{

N(X ∩ [0,a])
}

a
= θe−θm . (2)

Eqs. 1 and 2 show that N(X ∩ [0,a])/a is a biased
estimator of NL, although an asymptotically unbiased
one. In order to quantify the importance of the bias, it
is natural to consider the difference

E
{

N(X ∩ [0,a])
}

a
−NL =

1− e−θm

a
.

Up to the factor a, the right hand side member is
nothing but the probability that a point belongs to the
boolean model (Matheron, 1975), or equivalently, the
expected connectivity of X at one point. Accordingly

N̂L(0) =
1
a

[N(X ∩ [0,a])−N(X ∩{0})] ,

N̂L(a) =
1
a

[N(X ∩ [0,a])−N(X ∩{a})] ,
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are unbiased estimators of NL. It is actually better to
consider their average,

N̂L =
1
a

[
N(X ∩ [0,a])−

1
2

N(X ∩{0})−
1
2

N(X ∩{a})

]
,

(3)
which is also unbiased and has a smaller variance than
each of them. Indeed, for x = 0 or x = a, we have

Var{N̂L(x)}−Var{N̂L} =
1

4a2 Var{10∈X −1a∈X} ≥ 0 .

SPACE OF ARBITRARY
DIMENSION

Let X be a stationary, ergodic random set in IRd .
Suppose that a realization of X is available in a domain
Z. Exactly as in one dimension, the natural estimator
that is obtained by taking the connectivity of X ∩ Z
divided by the volume |Z| of Z is only asymptotically
unbiased. In order to illustrate the importance of the
bias incurred when the domain Z is too small, we have
considered a d-dimensional stationary boolean model
with intensity θ and unit hypercubic objects. In the
case where Z is a hypercube with edges parallel to
those of the objects, the expected value of this natural
estimator, or reduced mean connectivity (RMC), is
equal to

E{N(X ∩Z)}

|Z|
=

1
ad − e−θ

d

∑
i=0

(
d
i

)
ai−d

i

∑
j=0

S(i, j)(−θ) j .

(4)

In this expression, a is the edge length of the
hypercubic field, and the S(i, j)’s are the Stirling
numbers of the second kind (cf. Appendix 2). This
gives

1
a
− e−θ

(
1
a
−θ

)

1
a2 − e−θ

[
1
a2 −θ

(
2
a

+1

)
+θ 2

]

1
a3 − e−θ

[
1
a3 −θ

(
3
a2 +

3
a

+1

)
+θ 2

(
3
a

+3

)
−θ 3

]

in one, two and three dimensions respectively. Fig. 1
shows this expected value as a function of the
proportion of space (p(θ) = 1 − e−θ ) occupied by
the objects, for various field sizes ranging from 1 to
∞. The two-dimensional case is considered here in
order to understand the shape of the curves produced.
For small p, the objects are isolated and the RMC
is nothing but the mean number of objects per unit
area. As p increases, objects start to overlap and the

RMC keeps on growing, but not so fast. Letting p
growing again, the objects become numerous enough
to create holes and the RMC starts decreasing. These
holes contribute effectively to the RMC insofar as they
are totally included within the field, which explains
why their influence is more notable for large fields than
for small ones. When p becomes close to 1, the holes
become gradually filled by the arrival of new objects
and the RMC starts again growing. Finally, when p = 1,
the whole field is covered with objects, in which case
the RMC is equal to 1/ad .
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Fig. 1. Plotting the expected value of the “natural
estimator” versus the proportion of space occupied
by the objects in one, two and three dimensions,
and for various f ield sizes. The specif ic connectivity
curves are obtained for an inf inite size f ield. They are
represented in black.
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Let us come back to our general problem.
Unbiased estimators of the specific connectivity of X
can be found in the literature when a realization of X is
available in a right parallelotope Z, e.g.,, Mecke et al.
(1990). They derive from the expression

NV =
1
|Z|

[E{N(X ∩Z)}−E{N (X ∩∪F3vF)}] , (5)

where the union is taken over all faces of Z (vertices,
edges. . . ) containing the vertex v. In this equation, the
mean connectivity of X in Z is amended by a term
referred to as the “shell correction” in Prasad et al.
(1990). Of course, Eq. 5 is valid whatever the vertex
v. By averaging Eq. 5 over all vertices of Z, we obtain
a new expression that can be written as

NV =
1
|Z| ∑

F∈F

(−2)dimF−dE{N(X ∩F)} , (6)

where F is the family of all faces of Z, including Z
itself which is conventionally considered as a face of
dimension d (cf. Appendix 3).

From the estimation standpoint, Eqs. 5 and 6 yield
the unbiased estimators

N̂V (v) =
1
|Z|

[N(X ∩Z)−N (X ∩ (∪F3vF))] , (7)

N̂V =
1
|Z| ∑

F∈F

(−2)dimF−dN(X ∩F) . (8)

By construction, N̂V and the N̂V (v)’s are related by
the expression

N̂V =
1
2d ∑

v
N̂V (v) ,

and if the N̂V (v)’s are identically distributed, then the
distribution of N̂V is less dispersed than that of the
N̂V (v)’s (cf. Appendix 4).

More generally, Eq. 6 can be written as

NV =
1
|Z| ∑

F∈F

(−1)d−dimF αFE{N(X ∩F)} , (9)

with αF = 2dimF−d . It turns out that this type of
equation is valid for a wide range of polytopes. In what
follows, we are going to make precise the role played
by the coefficients αF in two dimensions, in order to
facilitate their assessment.

BIDIMENSIONAL SPACE

Right triangle

Suppose at first that Z = Tabc is a right triangle
with vertices a,b and c, as in Fig. 2. Let Tbcd the
triangle deduced from Tabc by symmetry with respect
to the midpoint of [b,c]. The union of both triangles
R = Tabc ∪Tabd is a rectangle on which Eq. 6 applies.

a b

c d

T

T

abc

bcd

Fig. 2. Case of a right triangle.

In order to get more concise expressions, we put

χF = E{N(X ∩F)}

from now onwards. Because χab = χcd , χac = χbd as
well as χa = χb = χc = χd , we can write

NA =
1
|R|

[χR −χab −χac + χa] .

But we also have χR = χTabc + χTbcd − χbc.
Moreover χTabc = χTbcd if the distribution of X
is symmetric w.r.t. the origin. Under this latter
assumption, we obtain

NA =
1

|Tabc|

[
χTabc −

1
2

(χab + χac + χbc)+
1
2

χa

]
.

(10)

Scalene triangle

More generally, let us take for Z a scalene triangle
Tabc. Let d be the projection of a onto the line that
supports b and c. Eq. 10 applies on both right triangles
Tabd and Tacd :

2|Tabd |NA = 2χabd −χab −χad −χbd + χa , (11)

2|Tacd |NA = 2χacd −χac −χad −χcd + χa . (12)

At this stage, two cases must be distinguished,
depending on whether d lies inside or outside [b,c] (cf.
Fig. 3):

b cd

a a

db c

Fig. 3. Case of a scalene triangle.

– if d ∈ [b,c], then Tabc is the union of Tabd and
Tacd . By adding Eqs. 11 and 12, and owing to
χabd + χacd = χabc + χad as well as χbd + χcd =
χbc + χa, we arrive at Eq. 10.
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– if d 6∈ [b,c], then Tabc is the set difference between
Tabd and Tacd . By subtracting Eqs. 11 and 12,
and owing to χabd − χacd = χabc − χac as well as
χbd −χcd = χbc−χa, we end up again with Eq. 10.

It should be pointed out that formula (Eq. 10) is not
fully satisfactory because it does not assign the same
role to the vertices a, b and c. Yet, we can resort to the
fact that the angles of a triangle add up to π and write

1
2

χa = αaχa +αbχb +αcχc ,

where αv denotes the internal angle of vertex v in the
triangle divided by 2π .

This interpretation is interesting because it is
applicable to all faces of the triangle and to the triangle
itself. The factor 1/2 associated with an edge can be
written as π/(2π), and π is precisely the internal angle
at any inner point of that edge (cf. Fig. 4). Similarly, the
coefficient 1 associated with the triangle can be written
as (2π)/(2π), and 2π is precisely the internal angle at
any inner point of the triangle.

a

cb

Fig. 4. Internal angles in a triangle.

The function α can be therefore defined on all
faces of Tabc including Tabc itself. αF is called the
internal angular proportion of face F . Using this
function, formula (Eq. 9) is valid for triangles.

Polygon

Let Z be a simple polygon (polygon limited by
a simple Jordan curve). How to estimate NA starting
from measurements in Z?

Let (Ti, i ∈ I) be a triangulation of Z. This means
that the Ti’s have disjoint interiors and that their union
is exactly Z (cf. Fig. 5).

Fig. 5. Triangulation of a polygon.

Resorting to a triangulation is advantageous
because formula (Eq. 9) can be applied to each element
of the triangulation. The results obtained can then be

combined via the inclusion-exclusion formula. This
finally gives

NA =
1
|Z| ∑

F∈F

(−1)dimF αF χF , (13)

which once again involves the internal angular
proportion of all faces of Z (cf. Fig. 6). Details of the
proof are reported in Appendix 5.

Fig. 6. Internal angles in a polygon.

It should be pointed out that this approach is
applicable whenever the field Z can be triangulated.
Accordingly, formula (Eq. 13) is valid not only for
simple polygons, but also for polygonal domains that
will be examined below.

There is another way of writing formula (Eq. 13).
Let e1, ...,en be the edges of Z, and let v be an arbitrary
point (vertex or not). As each edge has an internal
angular proportion of 1/2, and because the internal
angular proportions of each vertex add up to (n −
2)π/2π = (n−2)/2, this formula becomes

NA =
1
|Z|

(
χZ −

1
2

n

∑
i=1

χei +
(n−2)

2
χv

)
.

Note also that the inclusion-exclusion formula relates
the sum of all edge contributions to the mean
connectivity associated with the boundary ∂Z of Z

n

∑
i=1

χei = χ∂Z +nχv .

Replacing the edge contributions by their expression,
a second formula is obtained for NA

NA =
1
|Z|

(
χZ −

1
2

χ∂Z −χv

)
. (14)

Finite union of pairwise disjoint polygons

Here Z is the union of a finite family (Zi, i ∈ I) of
pairwise disjoint polygons. Formula (Eq. 14) applies
to each polygon

|Zi|NA = χZi −
1
2

χ∂Zi
−χv , i ∈ I .

But ∑i χZi = χZ and ∑i χ∂Zi
= χ∂Z . By summation over

all polygons and division by |Z|, one obtains

NA =
1
|Z|

(
χZ −

1
2

χ∂Z −|I|χv

)
. (15)
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Polygonal domain

Here Z is a domain limited by a union of simple
polygonal curves. Suppose that Z has |I| connected
components and |J| holes. Note that χZ and χ∂Z are
not affected by a shift of the connected components of
Z as long as they remain mutually pairwise disjoint.
Accordingly, it can be assumed without loss of
generality that Z has no connected component located
within one of its holes, as in Fig. 7. Let H be the
closure of the union of the holes. In what follows, H is
supposed to be contained within the interior of Z ∪H.

H

Z

Z
H

Fig. 7. Example of polygonal domain.

Let us apply formula (Eq. 15) to Z ∪H and to H

|Z ∪H|NA = χZ∪H −
1
2

χ∂ (Z∪H)−|I|χv ,

|H|NA = χH −
1
2

χ∂H −|J|χv .

By difference, this gives

|Z|NA = χZ∪H −χH −
1
2

(
χ∂ (Z∪H)−χ∂H

)
−
(
|I|−|J|

)
χv .

(16)
Now we have

χZ∪H = χZ + χH −χ∂H ,

because Z∩H = ∂H. On the other hand, the boundary
of Z can be split into its “inner” boundary (produced
by the holes of Z) and its “outer” boundary (obtained
by filling the holes of Z). Accordingly, we have ∂Z =
∂H ∪∂ (Z ∪H), from which we immediately derive

χ∂ (Z∪H) = χ∂Z −χ∂H .

Replacing χZ∪H and χ∂ (Z∪H) by their expression
in Eq. 16, we obtain

|Z|NA = χZ −
1
2

χ∂Z −
(
|I|− |J|

)
χv ,

and it remains to observe that |I| − |J| is nothing but
the Euler-Poincaré N(Z) of Z to conclude

NA =
1
|Z|

(
χZ −

1
2

χ∂Z −N(Z)χv

)
. (17)

AN EXAMPLE

Classical stereological relationships are often used
to characterise microstructures in many scientific
fields (biology, geology, materials sciences etc...). The
practical application of these relationships rests on
the measurement of the specific connectivity. In order
to show the difference between its natural estimates
and its unbiased ones, as provided by Eqs. 6 and
13, measurements have been carried out on polished
sections through a sintered material (Jernot, 1982). The
microstructures presented in Fig. 8 correspond to a
60 µm bronze powder, sintered under argon at 730 ◦C,
750 ◦C and 770 ◦C during 2 hrs. The volume fraction
of the solid phase is respectively equal to 0.657, 0.716
and 0.790.

Fig. 8. Three polished sections of bronze particles
sintered during 2 hrs at three dif ferent temperatures.
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The beginning of the sintering is associated to the
growth of the necks between the particles and followed
by a progressive closing of the porous network due
to the densification of the material. This coalescence
of particles is reflected in the microstructure by a
simultaneous modification of the area and curvature
of the solid/pore interface and, consequently, of its
specific connectivity. A quick examination of the
results obtained from these images shows that the
discrepancies between the natural and the unbiased
estimates are far from negligible at every stage of
sintering. This is particularly manifest on the two-
dimensional results.

730 ◦C 750 ◦C 770 ◦C
1D nat. (mm−1) 15.17 11.92 9.35
1D unb. (mm−1) 13.88 10.37 7.97
2D nat. (mm−2) 74.31 −83.60 −46.44
2D unb. (mm−2) 11.61 −125.40 −84.76

CONCLUSION

The connectivity of a stationary random set X in a
field of measurement, divided by the d-volume of the
field, is only an asymptotically unbiased estimator of
the specific connectivity of X . Explicit calculations on
the boolean model show that the bias can be important
when the field is relatively small with respect to the
size of the objects. In two dimensions, two unbiased
estimators have been proposed when the distribution
of X is symmetric w.r.t. the origin, and when the
field of measurement is a polygonal domain. The first
one (Eq. 13) requires the connectivity of X in the
whole field, along each edge and at each vertex. It
involves the internal angular proportion of each face.
The second one (Eq. 17) requires the connectivity of X
in the whole field, along its boundary and at a point. It
involves the Euler-Poincaré characteristic of the field.
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APPENDICES

APPENDIX 1: PROOF OF EQ. 1

Let X be a unidimensional, stationary boolean
model of segments with Poisson intensity θ and length
cumulative distribution function F . Let also a ≥ 0.
The aim of this appendix is to calculate the mean
connectivity E

{
N(X ∩ [0,a])

}
of X over [0,a].

Let us assume here that F has a probability
density function f as well as a finite mean m.
Following Lantuéjoul (2002), X ∩ [0,a] is a boolean
model, but its parameters are not those of X . More
precisely, X ∩ [0,a] is distributed as the union in
[0,a] of a Poisson number K of independent “typical”
segments. The mean of K is ϑ = θ(a + m). By
typical segments, we mean segments [Xk,Xk +Lk] with
respective probability density functions

Xk ∼ h(x) =
1−F(−x∧0)

a+m
1x≤a ,

Lk | Xk = x ∼ fx(t) =
f (t)

1−F(−x∧0)
1t≥(−x)∨0 ,

(∨ and ∧ respectively stand for the maximum and the
minimum operators). Let Ak = [Xk,Xk + Lk] ∩ [0,a].
Then we can write

E
{

N(X ∩ [0,a])
}

=
∞

∑
k=1

e−ϑ ϑ k

k!
E
{

N
(
∪n≤kAn

)}
.

Now the inclusion-exclusion formula gives

E
{

N
(
∪n≤kAn

)}
=

k

∑
n=1

(−1)n−1
(

k
n

)
E
{

N
(
∩i≤nAi

)}
.

Combining both formulae, we obtain

E
{

N(X ∩ [0,a])
}

=
∞

∑
n=1

(−1)n−1 ϑ n

n!
E
{

N
(
∩i≤nAi

)}
.

(18)
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It therefore remains to calculate pn =
E
{

N
(
∩i≤nAi

)}
for each n > 0. To do so, observe first

that
pn = E

{
N
(
∩i≤n[Xi,Xi +Li]

)}
.

Now, ∩i≤n[Xi,Xi + Li] 6= /0 if and only if Xm =
∨i≤nXi ≤ ∧i≤n(Xi +Li). Moreover

P{xm ≤ xi +Li} =
∫

xm−xi

fxi(t)dt

=
1−Fxi

(
(xm − xi)∨ (−xi)

)

1−F(−xi ∧0)
.

Accordingly, we can write pn = I1 + I2 with

I1 =
∫

xm<0

n

∏
i=1

1−F(−xi)

a+m
dx1 · · ·dxn ,

I2 =
∫

xm≥0

n

∏
i=1

1−F(xm − xi)

a+m
dx1 · · ·dxn ,

The calculation of I1 is straightforward. We obtain

I1 =

(
m

a+m

)n

. (19)

To calculate I2, we write

I2 = n!
∫ n

∏
i=1

1−F(xn − xi)

a+m
dx1 · · ·dxn ,

the integration domain being x1 < x2 < · · · < xn and
0 ≤ xn ≤ a. Using the change of variables yi = xn − xi
for i = 1, ...,n−1 and yn = xn, the n integrals separate
and we get

I2 = n

(
m

a+m

)n−1 a
a+m

. (20)

Combining Eqs. 19 and 20, we get

pn =
mn−1

(a+m)n (m+na) . (21)

It remains to plug the expression of pn into Eq. 18.
This finally gives

E
{

N(X ∩ [0,a])
}

=
∞

∑
n=1

(−1)n−1 ϑ n

n!
mn−1

(a+m)n (m+na) ,

that is

E
{

N(X ∩ [0,a])
}

= θae−θm +1− e−θm ,

after summation.

APPENDIX 2: PROOF OF EQ. 4

Actually, we are going to prove a little more
by considering a boolean model whose objects are
right parallelotopes with independent and identically

distributed edge lengths (common mean m < ∞). The
field Z is a hypercube with edge length a. Exactly as
in Appendix 1, X ∩ Z can be seen as the union of a
Poisson number (mean value ϑ = θ(a+m)d) of typical
objects. The same reasoning leads to

E
{

N(X ∩Z)
}

=
∞

∑
n=1

(−1)n−1 ϑ n

n!
P
{
∩n

i=1Ai 6= /0
}

, (22)

with
P
{
∩n

i=1Ai 6= /0
}

=

(
imi−1a+mi

a+m

)d

,

or equivalently

P
{
∩n

i=1Ai 6= /0
}

=

(
λ

λ +1

)id (λ + i
λ

)d

,

by putting λ = m/a. Plugging this expression into
Eq. 22, we obtain after some calculations

E
{

N(X ∩Z)
}

=
∞

∑
n=1

(−1)n−1

n!
(θmd)n

d

∑
i=0

(
d
i

)
niλ−i . (23)

To go further, it is convenient to introduce the
Stirling numbers of the second kind. They can be
defined by their generating function (Aigner, 1997)

ni =
i

∑
j=0

S(i, j)(n) j , (24)

with the usual convention (n) j = n(n−1) · · ·(n− j+1)
if j > 0 and (n)0 = 1. The following table gives the first
Stirling numbers

j = 0 j = 1 j = 2 j = 3
i = 0 1
i = 1 0 1
i = 2 0 1 1
i = 3 0 1 3 1

We now replace ni by its generating function in
Eq. 23, and because

∞

∑
n=1

(−1)n−1

n!
(θmd)n(n) j = (−1) j+1(θmd) je−θmd

,

when j > 0, whereas
∞

∑
n=1

(−1)n−1

n!
(θmd)n(n)0 = 1− e−θmd

,

it follows

E
{

N(X ∩Z)
}

= 1− e−θmd
d

∑
i=0

(
d
i

)
λ−i

i

∑
j=0

S(i, j)(−θmd) j ,

which gives Eq. 4 after dividing by |Z| = ad . Note that
one gets the specific connectivity by letting a tend to
∞:

NV = −e−θmd 1
md

d

∑
j=0

S(d, j)(−θmd) j .
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APPENDIX 3: PROOF OF EQ. 6

Here we put

M(v) = N (X ∩ (∪F3vX ∩F)) .

Let {Fi, i ∈ I(v)} the set of all faces of Z that
contain v. Because ∪F3vF = ∪i∈I(v)Fi, and owing to
the distributivity of the intersection over the union, we
have

M(v) = N
(
∪i∈I(v)X ∩Fi

)
.

By the inclusion-exclusion formula, this becomes

M(v) = ∑
/06=J⊂I(v)

(−1)|J|−1N
(
X ∩FJ

)
,

where FJ = ∩ j∈JFj and |J| is the number of elements
of J. Now it can be noticed that for each face F of Z
that contains v there exists one J and only one such that
F = FJ . Moreover |J| = d −dimF . Accordingly

M(v) = ∑
F3v

(−1)d−1−dimF N
(
X ∩F

)
.

We now take the mean over all vertices of Z and
use the fact that each face of Z has 2dimF vertices. Then
we arrive at

1
2d ∑

v
M(v) =

1
2d ∑

F
2dimF(−1)d−1−dimF N

(
X ∩F

)

= −∑
F

(−2)dimF−dN
(
X ∩F

)
.

It remains to take the expectation and plug this
equality into Eq. 5 that has been averaged over all
vertices of Z to get Eq. 6 as desired.

APPENDIX 4: STATISTICAL COMPARISON
OF VARIOUS ESTIMATORS

Suppose that all N̂V (v)’s are identically distributed.

Let v̇ be a vertex selected at random. Then N̂V (v̇)
shares the same distribution. Moreover

E{N̂V (v̇) | N̂V} =
1
2d ∑

v
E{N̂V (v) | N̂V}

= E{N̂V | N̂V}

= N̂V .

Using Jensen inequality, this implies that we have

ϕ(N̂V ) = ϕ
(
E{N̂V (v̇) | N̂V}

)
≤ E{ϕ(N̂V (v̇)) | N̂V}) ,

for each convex function ϕ . Then taking expectations,
we obtain

E{ϕ(N̂V )} ≤ E{E{ϕ(N̂V (v̇) | N̂V}}

= E{ϕ(N̂V (v̇)}

= E{ϕ(N̂V (v)} .

Various inequalities can be obtained depending on
the choice of ϕ . For instance, ϕ(t) = t gives E{N̂V} ≤

E{N̂V (v)}. Similarly, ϕ(t) = −t gives −E{N̂V} ≤

−E{N̂V (v)}. Therefore N̂V and N̂V (v) have the same

mean. If we also take ϕ(t) = t2, we obtain E{N̂V
2
} ≤

E{N̂V (v)
2
}. In combination with the equality of the

means, this gives Var{N̂V} ≤Var{N̂V (v)}.

APPENDIX 5: PROOF OF EQ. 13

It is always possible to choose the triangulation
(Ti, i ∈ I) in such a way that the vertices of its triangles
are vertices of Z.

The standard inclusion-exclusion formula gives

χZ = E{N(X ∩∪i∈ITi)} = ∑
/06=J⊂I

(−1)|J|−1χTJ ,

with TJ = ∩ j∈JTj. The TJ are either triangles (for all J
with |J| = 1), or internal edges (edges of the triangles
that are not edges of Z, for certain J’s with |J| = 2),
or even vertices of Z (for all others J such that |J| =
2 and all J satisfying |J| ≥ 3). It turns out that the
contribution of each vertex v of Z vanishes. Indeed,
assume that v belongs to n triangles. Then v is incident
to n−1 internal edges. Its contribution is therefore

(−1)2−1
[(

n
2

)
− (n−1)

]
+

n

∑
k=3

(−1)k−1
(

n
k

)
= 0 .

Accordingly, the inclusion-exclusion formula
reduces to a summation over the triangles and the
internal edges

χZ = ∑
i∈I

χTi − ∑
i, j∈I

χTi∩Tj 1dim(Ti∩Tj)=1 . (25)

Now, let us apply Eq. 9 to all triangles

χTi = |Ti|NA− ∑
F∈Fi\{Ti}

(−1)dimFαF(Ti)χF , i∈ I ,

and plug them into Eq. 25. The contribution of

– each external edge F ⊂ Ti is αF(Ti) = 1
2 . This is the

internal angular proportion of F in Z

– each internal edge F = Ti∩Tj is αF(Ti)+αF(Tj)−

1 = 1
2 + 1

2 −1 = 0

– each vertex v is ∑i∈I αv(Ti)1v∈Ti . This is exactly the
internal angular proportion of v in Z

As a consequence, Eq. 25 becomes

χZ = |Z|NA − ∑
F∈F\{Z}

(−1)dimFαF χF ,

which is nothing but Eq. 13.
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