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ABSTRACT

This paper proposes a new method for local evaluation the geometry of complex 3D porous networks such as
bone micro-architecture. The method described here allows local quantification of the geometry of the entire
volume. It is well adapted to high resolution images where the voxel size is smaller than the structure thickness.
The classification of each point on the medial axis is based on a local topological analysis of a neighbourhood,
the size of which is adapted locally to the studied point. This property makes this classification more robust
to the small irregularities that may appear in a real biological data set. After classification, new quantitative
parameters of bone micro-architecture characterizing plate and rod structures are independently defined. The
method is quantitatively evaluated on numerical phantoms presenting shape irregularities. Application to
experimental 3D bone microtomographic images shows that the method provides visually correct results, even
on complex natural trabecular structures. The additional geometrical parameters provided by this method
allow discrimination of volumes whose porosity and mean thickness are similar.
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INTRODUCTION

Three-dimensional analysis of complex porous
networks of various materials has been generating
increasing interest. One of the reasons for this
is the growing accessibility of imaging systems
providing 3D images of such materials. In particular
microtomography systems are now commercially
available and allow the examination of the bulk of
materials.

The availability of 3D images instead of 2D
slices opens new possibilities for the quantification
of material properties. Powerful stereological methods
can reliably relate 2D observations to 3D statistical
information such as the volume, area and length
per unit volume of selected features. However, some
characteristics cannot be inferred from observations
of sections. Unbiased estimation of connectivity, and
more generally, realistic estimation of topological
properties, require three-dimensional measurements.

We shall particularly focus on the quantification
of complex porous networks such as bone micro-
architecture. Bone micro-architecture is generally
described as an interconnected network of trabeculae
elements, which can be rod-like or plate-like (Parfitt,

1992). However, this plate-rod organization is subject
to large variations according to the anatomical site
and may evolve with bone loss. Thus, the actual
structure is generally intermediate between these two
ideal types. In conventional 2D histomorphometry,
the calculation of morphometric parameters such as
trabecular thickness typically assumes a parallel plate
model (Parfitt et al., 1987). This may be a source of
error in the interpretation of the results if the model
is not well adapted. The parallel plate assumption
can be avoided when 3D images are available by
measuring a “direct” trabecular thickness (Hildebrand
and Rüegsegger, 1997a). The structure model index
(SMI) was also introduced in order to estimate if the
bone structure is rod-like or plate-like (Hildebrand and
Rüegsegger, 1997b). However, this method, only gives
an estimation of the global shape of the structure.

In this paper, we propose a new method of local
evaluation of the geometry of complex structures.
The method is based on medial axis representation
followed by topological analysis. Different topology-
based analysis methods have already been proposed
(Saha et al., 1996; 2000; Pothuaud et al., 2000).
The use of a line-skeleton estimation to estimate
topological features does not allow preserving the
information about plate structures (Pothuaud et al.,
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2000). A complete topological analysis of bone
networks allowing characterization of different types
of points from their skeleton has also been proposed
(Saha et al., 1996; 2000). The method consists in
analyzing the topology of the 3× 3× 3 neighborhood
of each skeleton voxel. However, these different
methods were applied to MRI images with a spatial
resolution of the same order as the trabecular
thickness. When dealing with images at higher spatial
resolution, the noise sensitivity of skeletons is a
concern. Conversely to both approaches where only
skeleton points were characterized, the proposed
method will allow analysis of all object points.

BACKGROUND

Topological analysis

Let X be a digital object in Z3. The Euler
Number χ(X) and Betti numbers βi(X) for i=0,1,2
are conventionally used as topological characteristics
of X . These quantities are related by the following
relationship (Odgaard, 1997):

χ(X) = β0(X)−β1(X)+β2(X) . (1)

β0(X) and β2(X) respectively correspond to the
number of connected components and of isolated
cavities in X . β1(X) may be interpreted as the
connectivity of the structure, corresponding to the
maximum number of connections that one can remove
without separating a part of the structure into two
connected sub-structures. The practical calculation of
these topological characteristics on a discrete object
requires choosing complementary adjacency systems
for the object and background (typically 26-6). The
Euler number χ(X) can be practically computed from
the discrete object X as:

χ(X) = n0(X)−n1(X)+n2(X)−n3(X) , (2)

where n0(X), n1(X), n2(X) and n3(X) are respectively
the number of voxels, faces, edges, and corners.

Instead of performing a global topological analysis
on X , we shall carry out a local analysis on a selected
neighbourhood around each point on the medial axis.

Medial axis

The medial axis (MA) or skeletons provide
simplified  representations of objects. In 3D space, MA
are not restricted to curves, but may be composed
of curves and surfaces. They are mathematically
defined as the set of the centres of maximal balls,
i.e., balls that are not completely covered by any

other single ball in the object. Different classes of
methods allow computation of skeletons: “prairie fire”
models (Blum, 1967), homotopic thinning (Lam et
al., 1992) or distance transform (Di Baja and Thiel,
1994). In practice, skeletons should satisfy a number
of desirable properties, such as reversibility, thinness
(i.e., be one-voxel thick), and homotopy (i.e., preserve
the topology of the original object). However, none of
the different methods allows satisfying these properties
simultaneously, so one has to relax some property
when choosing a method.

In our application, we privileged the reversibility
property and chose a distance map approach. The MA
is then defined as the ridges of the distance transform
(DT) of X . The major interest of this approach in our
context is that the object can be exactly recovered from
its skeleton. In addition, the method is computationally
efficient.

Instead of the usual discrete distances d6, d18 or
d26, we used chamfer distances or “weighted” discrete
distances since they were shown to provide better
approximations to the Euclidean distance (Borgefors,
1984). We used the chamfer distance defined by the
mask (3,4,5) representing the integer weights assigned
to neighbours of the current voxel.

The computation of the distance map was
implemented by using a sequential method in which
the image is scanned in forward and backward
directions with a half 3× 3× 3 mask. The calculation
of the MA from chamfer distance has been previously
described (Remy and Thiel, 2002). It consists in
finding the local maxima of the distance transform
after lowering some labels.

Note that thanks to the reversibility property, the
object may be exactly recovered from its medial axis
by taking the union of the spheres centred on its points
with a radius given by the distance map, which may be
formalized as:

X = ∪ {B(x,DT (x))/x ∈ MA(X)} , (3)

where B(x,r) denotes the ball centred at x with
radius r.

PROPOSED METHOD

GENERAL FRAMEWORK

Some of the authors of the present paper previously
described the basic principle of our method for locally
analyzing the geometry in a 3D image (Bonnassie et
al., 2003). The method is based on 3D topological
analysis of a local region of interest around each
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point on the medial axis. The analysis process led
us to introduce 4 classes of points: Boundary (B,
Label 1), Branching (N , Label 2), Regular (P , Label
3, corresponding to plates), and Arc (R, Label 4,
corresponding to rods).

The proposed method involves several steps which
are described in the next subsections:

1. Calculation of transforms: distance map, thickness
map and medial axis

2. Classification of MA points by local topological
analysis

3. Classification of all object points and elimination
of boundary points

4. Quantification: extraction of new quantitative
geometrical parameters

CALCULATION OF TRANSFORMS

The distance transform and MA were computed as
described above. We introduce a local thickness map
TM defined on each point x of X as:

T M(x) = 2 max {r/r ∈ B(y,r),y ∈ X} . (4)

This definition is the transposition in discrete
space of that proposed by Hildebrand and Rüegsegger
(1997b) in continuous space. It associates to each point
of the object its local thickness, defined as the size of
the maximal ball including the given point.

Note that DT and TM coincide on the medial axis
points. According to Eq. 3, the thickness map may be
built by overlapping the balls centred on the medial
axis sorted by increasing radius, which may be written
as:

T M(x)= 2 max {DT (y)/x∈B(y,DT (y)),y∈MA(X)} .
(5)

CLASSIFICATION OF MA

Classification is based on the topological analysis
of a region of interest (ROI) centred at each voxel
of MA(X). The intersection between the surface of
the object and a maximal ball enables distinguishing
different types of points (regular, arc, multiple points).
Because of noise sensitivity of skeletons, we do not
analyze the maximal ball around the point, but a ball
with an augmented diameter, constructed as follows.

Let B(x) be the maximal ball centred at x.
According to the definition of TM, the diameter of
B(x) is T M(x). We introduce Bε(x), the ball centred
at x with diameter T M(x)+ 2ε , where ε is a constant

which will govern the tolerance of the method. We then
define a ROI Vε(x) as the complement of the connected
component Cε(x) containing x inside Bε(x):

Vε(x) = Cε(x) with Cε(x) ⊂ Bε(x) . (6)

The ROI Vε(x) is then used for topological
analysis. The Betti numbers β0(Vε(x)), β2(Vε(x)) and
the Euler number χ(Vε(x)) are calculated, as referred
to in the first section, using a 26 connectivity. We
assume that the object contains no void spaces, i.e.,
that β0(Vε(x)) is always zero, then β1(Vε(x)) is derived
by using relation (1). The label L(x) is deduced from
the two values β0(Vε(x)), and β2(Vε(x)) following the
rules given in (Bonnassie et al., 2003).

CLASSIFICATION OF X

Next, the classification is propagated to the whole
volume by using a process similar to the reconstruction
of the object from its medial axis. The label L(x) at
any point x in X is obtained from the labeling of the
skeleton points by:

L(x) = max {L(y)/x ∈ B(y,DT (y)),y ∈ MA(X)} .
(7)

Using this method, boundary points are not limited
to the surface of the object and are thus overestimated.
They do not provide useful information in the scope
of the present analysis, and thus they are subsequently
eliminated by reassigning their label to one of the 3
other classes. For this purpose, we use an iterative
process where each boundary label is replaced by the
most frequent label in its 26-neighbourhood.

QUANTIFICATION: NEW
QUANTITATIVE GEOMETRICAL
PARAMETERS

The entire classification procedure provides a
partition of the 3D image into 3 classes N , P and
R, being respectively the set of branching, plate and
rod points such that:

X = N ∪P ∪R . (8)

After classification, each shape may be quantified
independently from each other. We compute the
number of voxels in each class, N , P and R,
respectively denoted as NV , PV and RV , and use their
ratio to the bone volume BV or total volume TV .
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The trabecular thickness, conventionally denoted
Tb.Th∗ (in µm), may be defined as the mean value of
TM calculated on the entire object X as:

Tb.Th∗ =

∫
x∈X T M(x)dx

∫
x∈X dx

. (9)

Using similar nomenclature, we introduce the
mean thickness of each class, N , P and R,
respectively denoted as N.T h∗, P.T h∗, and R.T h∗.
These are obtained by limiting the calculation of the
mean to N , P and R respectively, so they do not
require additional computation of any thickness maps.

RESULTS

SIMULATED IMAGES

The method was evaluated on different simulated
images containing plate and rod structures with various
known thicknesses. As an illustration, we show results
obtained on a mixed (128)3 phantom composed of
the following structures: three plates (thicknesses=6,
8, 10, height and width=120), one cylinder (left-side,
diameter=10, height=120), and one elliptical cylinder
(right-side, half axes=10 and 14, height=120) (sizes are
given in voxels).

The proposed new geometrical analysis method
was applied (ε was set to 4). The different steps of the
classification method are displayed in Fig. 1 using a
color code. From a qualitative point of view, it may be
seen that the classification is in good agreement with
the definition of the phantom. An important point is
that the method is robust with respect to the elliptical
cylinder, which is seen as a rod, as expected in practice.

Quantitative evaluation was also performed.
Table 1 reports the relative percentages of each class
in the original and 3-class classified image, as well as
the thickness of each structure (expressed in voxels).
For simulated images made only of cylinders or
planes, the percentages were exact. When structures
are interconnected, there are slight errors, which
mainly come from the fact that branching points are
by construction underestimated, since the algorithm
privileges plates and rods. The respective thicknesses
of the plates and rods are close to the theoretical
values, with an error of less than one pixel. The
difference in thickness between rods and plates is well
estimated.

(a)

(b)

(c)

Fig. 1. Analysis of a mixed phantom: a): classification
of MA, b) 4-class classification of the entire volume,
c) 3-class classification of the entire volume. The color
code is the following (yellow: boundary, red: branch,
green: plate and magenta: rod).
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Table 1. Quantitative parameters extracted from the classified mixed phantom: 1st line: theoretical values, 2nd
line: estimated values from the analysis method, 3rd line: deviation between theoretical and estimated parameters.
The ratios NV/BV, PV/BV and RV/BV are expressed in percentages and the thicknesses Tb.Th∗, P.Th∗, and R.Th∗

in voxels.

Phantom NVBV PVBV RVBV Tb.Th* P.Th* R.Th*
Theor. 5.65 % 87.67 % 6.68 % 9.2 9.0 12.0
Analysis 1.69 % 91.87 % 6.44 % 8.9 8.7 11.4
Error −3.97 % 4.20 % −0.24 % −0.3 −0.3 −0.6

BONE MICRO-CT IMAGES

The proposed method was also applied to images
of human bone samples acquired using synchrotron
radiation microtomography (micro-CT) at the ESRF
(European Synchrotron Radiation Facility) (Salome et
al., 1999; Nuzzo et al., 2002). For each sample, 900
2D radiographs under different angles of view were
acquired on a (1024)2 CCD-based 2D detector. The
optic was set to get a pixel size on the detector of
10.13 µm. X-ray beam energy was set to 20 KeV.
The 3D images were reconstructed using a 3D version
of the standard filtered backprojection algorithm. A
central volume of interest of (600)3 voxels was
selected in each image (voxel size: 10.13 µm).

The bone phase was easily selected by a simple
thresholding method due to the high signal-to-
noise ratio and high contrast of the 3D images.
The conventional bone micro-architecture parameters
(Parfitt et al., 1987; Hildebrand and Rüegsegger,
1997a) were evaluated: Bone Volume/Total Volume
(BV/TV), Trabecular thickness Tb.Th∗, Bone
Surface/Bone Volume (BS/BV), and Trabecular
number (Tb.N). The proposed local geometrical
analysis was then performed.

Fig. 2 illustrates 3D displays of bone surfaces for
three images corresponding to samples with similar
mean thickness (T b.T h∗ 134 µm). Fig. 3a) shows a
porous sample with a low BV/TV (5.6%), while the
two others images correspond to samples with similar
BV/TV (12.6% and 12.9%). The last two images
demonstrate that although BV/TV and Tb.Th∗ are
different characteristics calculated independently from
each other, they are not sufficient to discriminate the
samples.

The result of the analysis of our new geometrical
method is displayed in Fig. 3 using the same color
code as before (red: branch, green and magenta:
rod). To facilitate the visualization, only a sub-volume
in each analyzed volume is displayed. Observation
of Fig. 3 reveals that structures were labeled as
expected. The ratio RV/PV of the Rod Volume to

Plate Volume obtained for the three volumes were
respectively: 1.82, 1.14 and 0.56. These values are in
agreement with the appearance of the volume, which is
respectively seen as rod-like, intermediate and plate-
like. Note that this additional geometrical parameter
allows discrimination of the last two volumes.

CONCLUSION

We have described a new method for local
characterization of the geometry in 3D images of
porous network. The initial method providing a 4-
class classification of the MA was improved to get
a complete classification of the entire volume and
eliminate border points which were overestimated.
The application to simulated and experimental images
shows that the method provides visually correct
results, even on complex natural trabecular structures.
In addition, the accuracy of the classification was
tested on geometrical phantoms, establishing reduced
errors.

The main advantage of our method is that
it is robust to surface irregularities: a structure
will be recognized as a rod even if it is not
purely cylindrical, conversely to other approaches.
Simulations performed on elliptical cylinders confirm
that the proposed method provides a large tolerance to
this problem. This property is important in coping with
the biological variability of trabeculae. The results
effectively obtained on experimental micro-CT bone
images demonstrate that rod trabeculae are properly
recognized, although not ideally shaped.

The proposed geometrical analysis allows
characterization of the percentages of rods and plates
in each sample, as well as separate quantification
of the thicknesses of rods and plates. This new
set of parameters is assumed to bring additional
characteristics to the geometry of trabecular structures.
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(a) BV/TV=5,2%, Tb.Th∗ =136 µm

(b) BV/TV=12,6%, Tb.Th∗ =133 µm

(c) BV/TV=12,9%, Tb.Th∗ =134 µm

Fig. 2. 3D displays of the original synchrotron micro-
CT images of femoral bone samples with different
characteristics.

(a) RV/PV = 1.82

(b) RV/PV=1.14

(c) RV/PV=0.56

Fig. 3. Results of classification illustrated on sub-
volumes extracted from each images of Fig. 2. The
color code is the following: red: branch, green
and magenta: rod. The new quantitative geometrical
parameter RV/PV is given.
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The systematic use of this local method in
the characterization of trabecular bone samples
may provide new insight in bone micro-architecture
changes related to bone diseases, or to those induced
by drugs or therapy. In addition, the application of this
method to other porous networks will be considered in
future.
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