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ABSTRACT

Based on observations on similar-looking randomly defatparticles inference is made about the original
common shape-type of these particles by means of statistiis.

Keywords: cross-sectional breadth, model selection kg, tesndom deformation, shape-type of grains.

INTRODUCTION the points along this symmetry axis, a set-description
model proposed in Stoyan and Stoyan (1992). Note
Quite often the outcome of an experimentalthat in this paper the prototype shape is described by
investigation presents itself in the form of a set ofthe thickness of the body measured orthogonally to the
different, disjoint, but to a certain extent similar symmetry axis and not by the radius vector function as
particles in an Euclidean spaceZ®. The near in Streit (1997; 2000; 2003; 2005; 2006). Itis supposed
similarity of the particles suggests then to assumenhat the axis of symmetry is recognizable either by
that the particles have arisen by individual randonmeans of landmarks or by taking into account a
deformation applied to the contours of bodies of ageometrical property of the particles ( for instance that
parametric class of forms, which represents the shapgse axis of symmetry is coinciding with the axis of the
type of the typical particle. When constructing agiameter, thus with the axis of the segment of maximal
sunab_le stochastic model e>§pla|n|ng the geneS|s_of tr_‘%ngth realized within the body). The particle-types
experimental outcome, an important task consists igpgsen undeH, are particularly simply structered in
reconstructing the original form of the particles. ;e\ of the fact that the cross-sectional breadth does
the following we treat problems where a choice Nas, s nange along this axis. Under we consider basic
to be made between a simple prototype form on Om§hape-types which allow changes in cross-sectional

hand and amore complex alternative shape. Based leadth, choosing in the two-dimensional version of
a few easily to perform measurements the perferre e problem:

shape-type has to be selected in a way that incorrect
decisions for the alternative shape-type are seldom and

that under this restriction the choice of the alternative o 3 circle in case A
shape-type is most often recommended when it is o an ellipse in case B
actually preferable. It will be shown that statistical o gnisosceles triangle in case C
tests are useful tools in this context. e a particle bounded by the
hyperbola(x?/aZ) —y>—1=0
and the straight-lineg= —1/2
PROBLEM DESCRIPTION BY andy = +1/2 (expressed in
A DEFORMATION MODEL planar Cartesian coordinates

(%y)) in case D.

Since most applications concern sets in dimension
2 and 3, our considerations will be restricted to planar |n the three-dimensional set-up the corresponding
particles in%? or spatial particles inz°. rotation-symmetric bodies represent the shape-types
Under the null-hypothesidy we specify the planar UnderHy, that is to say we work with the assumption
prototype to be rectangular and the spatial prototyp&at the basic form is:

to be a circular cylinder; under this hypothesis the
grains have thus roughly the form of sticks. We are

here concerned with experimental set-ups where the ® aball . incaseA
original shape is completely specified by a symmetry © @afrotations-symmetric ellipsoid  in case B
axis and by the cross-sectional breadth measured at® & Straight circular cone in case C
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e arotation-symmetric hyperboloid and
bounded by the surfaces
(0P+y?)/ag) —Z~1=0and Hy: QU (i/(2n)) =Y (i/(2n))-a-b(i/(2n))
the planez = —1/2 and i=—(n—1) (N—1):1=1,...,N]
z=+1/2 (expressed in Cartesian B ' T
coordinatesx,y,z)’ in %°) incaseD.  where a designates the breadth of the rectangle

respectively the cross-sectional breadth of the circular

In our stochastic models certain features like theCyIInder anda-b(i/(2n)) the cross-sectional breadth

" : : . : f the prototype shape at ordinate lewek i/(2n)
position, the size or the orientation of the particles arér:&wectivelyz —i/(2n) underHy. Forl € 1,... N,

supposed independent of the shape and need therefg . .

not to be taken into consideration. Each of the observe I_) (i/(2m)fi=—(n—-1),...,n—1])’ are supposed to .
particles may thus be first reoriented and standardize?e mdependgnt random samples from an exponential
by putting its axis of symmetry in vertical position and Istribution with parametex .

by assigning the ordinate= —1/2 to its lowest point Fig. 1 illustrates how the experimental data are
and the ordinatg = 1/2 to its top in the planar case obtained in the planar case for a axialsymmetric
and proceeding analogously with the assignment digure. The symmetry axis is vertical, the top point
the z-values in the spatial case (should this operatiomas planar coordinate®,1/2), the middle point of
admit different realisations we shall choose the on¢he lowest segment has planar coordindts-1/2),
which leads to the largest value of the test statistic td is 5 and we thus take 9 measurements in
be calculated). This standardization is carried out byletermening the lengths of the horizontal arrows at
using a unit of length in all length measurements folevels—4,/10,-3/10,...,4/10. The observed particles
the same particle adjusted to produce this situatiorfire usally not any more axial-symmetric due to random
For a fixed integen € 2,3, .... orthogonally to this axis deformation, but the length measurements can still be
the cross-sectional breadth is measured at the ordinad@rformed at the prescribed levels and the values of
levelsy = —(n—1)/(2n),y= —(n—2)/(2n),...,y=  QU(i/2n) be obtained in this way.

(n—2)/(2n),y = (n—1)/(2n) in the planar case,

with y replaced byz and taking the straight line

orthogonal to thez - axis which yields the largest /\
value in the spatial case. Note that any of these level N
straight lines cuts the boundary of the prototype shape Of4

only in two points symmetrically arranged around the N
symmetry axisn represents somehow the degree of 0f3
measuring-effort undertaken per individual particle. .
Let N be the number of observed particles a@d- Ol
(QW(i/(2n))[i=—(n—1),....,n—1;l=1,... N]) the .
set of measurements to be taken, whefe(i/(2n)) Uk
designates the cross-sectional breadth, (maximal >
thickness) at levely = i/(2n) or z=i/(2n) of the u

Ithe particle,q!)(i/(2n)) its realized value andthe o+
transposition of a matrix. Since our data set consists !

simply of an ordered set of length measurements it is oD
sufficient to explain the effect of random deformation !

only at the ordinate levels where such mesurements are TE—
taken. We shall here assume that random deformation !

of a particle is caused by an individual dilatation of the T
cross-sectional breadth of each particle at each level of !

the ordinate. Thus random deformation is described by

the following relations between the random variables
of the competing stochastic models valid undiy

respectively undeirl,: Fig. 1.Measurementsleading to the experimental data.

Al /i v ) Taking into account that the prototype shapes
Ho: Q (|/(2n)) Y/ (2n) a- underHp andH; should give rise to the same observed
i=—(M-1),....(n=1);I=1....,N], particles, it is reasonable to ask that the following
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additional condition is fulfilled, whenever the family only the parametep is relevant, since a change af

of shapes admitted undEl; is indexed by at leasttwo (size factor) can be counterbalanced by a change of
unrelated parameters specifying an individual figureA (factor of cross-sectional deformation). According
within the shape-class: to the fundamental theorem of Neyman-Pearson the
recommended test statistic for testiklyg versusH;

The prototype shape undeély has in the planar . ) .
nt&lggs for giverp (and for givena in case A ) the form

case the same surface area as the prototype shape u
H1 and the prototype shape unddy has in the spatial . = =
case the same volume as the prototype shape thder N =L(Hy,p:Q)/L(Ho,p: Q) =

problem of stereology, since we would like to use one-
dimensional measurements to find out the shape of a

Note that we are confronted here with a typical nﬁl b(i/(2n)) Nx
i=—(n-1)

higher-dimensional set s ¢ ) 1
) ' i/(2 1-—n |-
PP, 2 @ b<|/<2n>>>]
THE GENERAL DECISION RULE The critical region of the optimal test is formed by

the 1001 — a)% largest values of\* underHo. It is

We shall now apply standard test theoryeyigent that\* can be replaced by the equivalent test
(Mukopadhyay, 2000) to determine the optimaé.(  giatistic

most powerful) procedure, which allows us to decide

if it is appropriate to adopt the shape of a stick N nl o 1
(rectangular or cylindric) or whether in view of the =P > QV(i/(2n)) (1 m) ’
measurements we should rather opt for the alternative I=li=—(n-1)

shape-type admitted undéf;. In fact the measured
lengths do not have the same chance to arise under tOSI
null hypothesis and under the alternative hypothesis
and this fact will lead us to decide which model we  Note that QU)(i/(2n)) follows under Hy an
should prefer, taking into account that we do not wangxponential distribution with parameterand that this

to reject incorrectlyHo in more than 100L — a) % of  implies thatoQ(") (i /(2n)) follows undeHo a standard
the cases, where is the chosen size of the test. exponential distribution. Based on this consideration

According to the standard theory of statistical testdVe find for th_e first and second moments unttgrthe
we have to determine and compare the likelihood*Préssions:

The test accepts the alternative shape-type if the
ue of Ty is sufficently large.

functions undeHy and undeH;. We find for these N1 1
functions the following analytic expressions: Mo o= E[Tan: Hol =N <1_ 7> ’
n=ElnFol =N 2\ biijzn)
L(H07A>a: Q: q) =
P\E@INN e
O
a [=1i=—(n-1) a VN:n = Var[Tan : Ho] =
n—-1 1 2
and N <1— 7> .
2 i)

L(H1,A,a:Q=0q) = SinceTn,» may be represented as the suniNafandom
(A) (2n—1)N nﬁl [ <;> N y variables,
a i:—(nfl) b(l/(zn)) n—-1

. M ._ c Al 1
ﬁexp<A;(l)'(l/(2n))>]‘ Wh=p 3 Ql/en) (- 557 )
= l=1,...,N],

It is interesting to note that both likelihood which are independent and identically distributed,
functions depend oM and ona only in terms of Ty, is for fixed n and for N — o asymptotically
p = A/a whenever the values df(i/(2n)) are not normally distributed with meamy., and with variance
expressed in terms &. If this condition is fulfiled  vy:.n. This allows to determine the asymptotic critical
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value cyn(1— a) for the test of sizea. We find of these segments, choosing between shape types
cnn(l— @) = myn + (vN;n)l/Zz(l— a), wherez(1—  exhibiting a different number of segments at the same
a) satisfiesd(z(1—a)) = 1— a and is tabulated and measurement level undely and undeH; is easy and

@ designates the distribution function of the standardeads to a clear-cut rejection of (at least) one of the
normal distribution. The critical region of the test is hypotheses.

thus given byn n > cnin(1 - a). It is worthwhile to note that our procedure is
not restricted to exponentially distributed dilatation
factors; the method may be applied in an similar way

FURTHER INDICATIONS FOR if the deformation factors follow other distributions on
PARTICULAR SHAPE Z* and even in the case of interdependence between

the factors associated to the same particle.
ALTERNATIVES

In order to be able to implement the test the values
b(i/(2n)) fori=—(n—1),...,n—1 have to be known. RELATED WORK

the spatial version of the problem the following results;angomly deformed prototypes is already expressed
are obtained by elementary calculations: in the publications of Grenander (1993). In Hobolth
et al. (2003) the sets are described by the normalized

— Case A, planar particles: radius-vector function and its polar Fourier expansion.

. - In Hobolth and Vedel Jensen (2000) the observed
— . /1—_2/n2
b(i/(2n) = V1-i%/r*/a shape is a continuous stochastic deformation of a
— Case A, spatial particles: template curve by means of a zero mean stationary
b(i/(2n)) = /1—i2/n?/a cyclic Gaussian process. In Keet al. (2000) the

observed figures are represented as deformed n-sided

— Case B, planar particles: regular polygons. While these approaches work with

b(i/(2n)) = (4/m)\/1—i2/n? transformed measurements to describe particles in
— Case B, spatial particles: general and lead thus to the necessity to find out which
b(i/(2n) = (/3/2)x/1 —i2/n2 set of transformed measurements correspond to the
(i/(2m) = (v3/2) _ / shape-types to be distinguished, these shape-types are
— CaseC, planar particles: in my contribution introduced at the outset, since they
b(i/(2n)) = (1—(1/n)) or 1+ (i/n) are chosen as classes of admitted templates.
— Case C, spatial particles:
b(i/(2m) = v3[(1/2)  (i/(2n))] or REFERENCES
V3[(1/2) +(i/(2n))]. Grenander U (1993). General pattern theory. Oxford:Oxford
— Case D, planar particles: University Press.
b(i/(2n)) = ((v/5/4) +In((v/5+1)/2)) "1 Hobolth A, Pedersen J, Vedel Jensen EB (2003). A
1+i2/(4n2) continuous parametric shape model. Ann Inst Statist

) ) Math 55(2):227-42.
B Cgse D, spatial particles: — > Hobolth A, Vedel Jensen EB (2000). Modelling stochastic
b(i/(2n)) = \/12/13\/1+' /(4n2). changes in curve shape, with an application to cancer
diagnostics. Adv Appl Prob 32:344-62.

Kent JT, Dryden IL, Anderson CR (2000). Using circulant
EXTENSION OF THE METHOD symmetry to model featureless objects. Biometrika
87(3):527-44.

The described method can also be applied t%l . -
: : - ; ukopadhyay N (2000). Probability and statistical
particles with axial symmetry which have for some inference. New York: M.Dekker. Ch. 8.

straight-lines at some ordinate levels more than two
intersection points with their boundary when weStoyan D and Stoyan H (1992). Fraktale, Formen,

replace the measurement of the cross-sectional breadth Punktfelder. Methoden der Geometrie—Statistik. Berlin:

by the measurement of the total (maximal) length of ~Akademie Verlag, pp.81-2.

the segments of intersection between the particle arstreit F (1997). Sur des tests statistiques utiles pour
the linesy = i/(2n) respectivelyz = i/(2n). Since la reconnaissance des formes. Archs Sci Genéve
our random deformations do not change the number 50:217-22.
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