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ABSTRACT

The pivotal estimators of the surface area and the volume of ageneric “particle” are based on a point sampled
test line on an isotropic pivotal plane through a fixed pointcalled the pivotal point. The purpose of this paper
is to compare the precision of the pivotal estimator of surface area against the surfactor on the one hand, and
of the pivotal estimator of volume against the nucleator on the other. For the sake of a tractable but informative
model we compute exact variances for a spherical particle with an eccentric nucleolus.

Keywords: convex body, invariant test line, particle, pivotal point, pivotal section, point sampled test line,
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INTRODUCTION

A new representation has been described for the
invariant density of a straight lineL3

1 in R
3 (Varga,

1935; Cruz-Orive, 2005). With reference to Fig. 1,
consider a fixed pointO, called the pivotal point,
an isotropic planeL3

2[0] throughO, called the pivotal
plane, and a pointzendowed with the uniform density
on L3

2[0]. The classical construction establishes that a

straight lineL3
1 throughz and normal to the pivotal

plane is invariant with respect to motions. The new
representation implies that the density of a straight line
L2

1[·] normal to the axisOzat the pointz, and contained
in the pivotal plane, is also invariant with respect to
motions inR

3. In other words, a point sampled test line
L2

1[·] in a pivotal plane has exactly the same properties

as an invariant test lineL3
1 in R

3.

θ

Fig. 1. A point sampled test line L2
1[·] in an isotropic

pivotal plane L32[0]
through a fixed pivotal point O is

equivalent to the classical invariant test line L3
1 in three

dimensions.

As described in Cruz-Orive (2005), point
sampled test lines (not to be confused with point
sampled intercepts, see for instance Howard and
Reed, 2005) have multiple applications, notably to
estimate individual particle surface area and volume
simultaneously. It seems therefore opportune to
explore the relative precision of the pivotal estimators
against their current competitors, namely the surfactor
(Jensen and Gundersen, 1989) and the nucleator
(Gundersen, 1988): this is the purpose – and the new
contribution – of the present paper. For the sake of
a tractable but still orientating treatment, we adopt
a simple geometric particle model. The subsequent
results are not intended to be directly applicable to
real objects; they rather constitute a tentative analysis
of the relative efficiency of the pivotal estimators of
surface area and volume.

BACKGROUND AND MODEL

PIVOTAL ESTIMATORS

Here we summarize some results from Cruz-Orive
(2005). Consider a particleY, namely a compact
and connected subset ofR

3 with piecewise smooth
boundary, with (finite) surface areaS(∂Y) and positive
volumeV(Y). EmbedY in a ballB3 of equatorial area
a centred at a pivotal pointO. Take a pivotal plane
L3

2[0] throughO with isotropic normal directiont, and
generate a uniform random (UR) pointz within the
equatorial intersection circleB2,t = B3∩L3

2[0]
.
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r

a

Fig. 2.Theoretical construction of a point sampled test
line hitting a particle.

Let (r,α) denote the polar coordinates ofz with
respect toO in the pivotal plane. Finally, draw a point
sampled test lineL2

1[·] throughzand normal to the axis
Oz (seeFig. 2). The joint probability element of the
triplet (r,α ,t) is

P(dr,dα ,dt) =
r dr dα

a
·

dt
2π

,

becausez is UR on B2,t and independent from the
direction t, which is UR on the unit hemisphere.
The test lineL2

1[·] is effectively isotropic uniform

random (IUR) hittingB3, and therefore, ifL2
1[·] hits

Y ⊂ B3, it is also IUR hittingY (Miles and Davy,
1976). Define the random observationsI := number of
intersections betweenL2

1[·] and∂Y, andI := intercept

length determined inY by L2
1[·]. Resorting to the

pertinent Crofton formulae it follows that

Ŝ(∂Y) = 2aI , V̂(Y) = aL , (1)

are unbiased estimators of the particle surface area and
volume, respectively.

The preceding construction will be useful in the
sequel to compute the variances of the estimators
(Eq. 1) for a simple model. In practice, however, we
may lay a system of test points with a fundamental
tile of areaa uniformly at random with an arbitrary
orientation on the pivotal plane, and then draw
the relevant point sampled test lines (Fig. 3). The
corresponding unbiased estimators have the same form
(Eq. 1).

A special case of interest is that of a convex particle
Y with an interior pivotal point or “nucleolus”O. Upon
the isotropic pivotal sectionY∩L3

2[0]
, which is almost

surely convex, construct the corresponding support set
HY∩L3

2[0]
, namely the set of points enclosed by the graph

of the support functionh(w) of the section. Then it
holds that

S(∂Y) = 4E

{

area

(

HY∩L3
2[0]

)}

, (2)

the expectation being over the isotropic orientation
distribution of the pivotal plane.

J0

Fig. 3. Point sampled test lines upon a test system on
an isotropic pivotal plane, with pivotal point at O. The
point z is UR within the fundamental tile J0 of area
a. By Eq. 1 the surface area of the particle would be
estimated by 12a, and its volume by the total intercept
length times a.

A SIMPLE MODEL FOR VARIANCE
COMPARISONS

Our particle model is the unit ballY with an
eccentric nucleolusO at a fixed distancek∈ [0,1] from
the centre of the ball (seeFig. 4). Take an isotropic
pivotal plane L3

2[0]
through O. The corresponding

pivotal section is a circle which depends only onk and
on the colatitudeθ of the normal to the pivotal plane.
Isotropy means that the probability element ofθ is

P(dθ ) = sinθ dθ , 0≤ θ ≤ π/2 .

The radiusr(θ ;k) of the section, and the distance
l(θ ;k) from the section centreO′ to the pivotal pointO
have the following expressions,

r(θ ;k) =
√

1−k2cos2 θ ,

l(θ ;k) = k sinθ ,

respectively.
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Fig. 4. Spherical particle model with an eccentric
nucleolus fixed at O which is adopted as the pivotal
point. The subsequent estimators are all based on an
isotropic pivotal plane section.

SURFACE AREA ESTIMATORS

THE PIVOTAL ESTIMATOR OF
SURFACE AREA

Let h(w,θ ;k) denote the support function of the
pivotal section circle∂Y∩L3

2[0], namely the cardioid,

h(w,θ ;k) = r(θ ;k)− l(θ ;k)cosw , 0≤ w≤ 2π

(seeFig. 5). Bearing in mind that

area

(

HY∩L3
2[0]

;θ ,k

)

:= A(θ ;k)

=
1
2

∫ 2π

0
h2(w,θ ;k)dw , (3)

and in order to make a fair comparison with the
surfactor, instead of basing our estimator directly on
Eq. 2, we consider the following unbiased estimator of
S(∂Y):

Ŝpiv(w,θ ;k) = 4π ·h2(w,θ ;k) . (4)

The joint probability element of the pair(w,θ ) is

P(dw,dθ ) =
dw
2π

·sinθ dθ ,

0≤ w≤ 2π, 0≤ θ ≤ π/2 , (5)

whereby it is readily verified that

CV2(

Ŝpiv(w,θ ;k)
)

=
4
3
·k2 , k∈ [0,1] . (6)

Pivotal

Surfactor

Fig. 5. Pivotal section circle of the particle model
shown in Fig.4, with the relevant parameters involved
in the pivotal and in the surfactor estimators of surface
area, respectively.

THE SURFACTOR

With reference to Fig. 5, the surfactor estimator
of S(∂Y), (Jensen and Gundersen, 1989; see also
Karlsson and Cruz-Orive, 1997), reads,

Ŝsur(w,θ ;k) = 4π ·ρ2(w,θ ;k)

× (1+α(w,θ ;k) tanα(w,θ ;k)) , (7)

where

ρ(w,θ ;k) = r(θ ;k)
[(

1−λ 2(θ ;k)sin2w
)1/2

−λ (θ ;k)cosw
]

,

α(w,θ ;k) = sin−1(λ (θ ;k) · |sinw|) ∈ [0,π/2] , (8)

λ (θ ;k) = l(θ ;k)/r(θ ;k)∈ [0,1] ,

and the joint probability element of the pair(w,θ ) is
given by Eq. 5, whereby,

CV2(

Ŝsur(w,θ ;k)
)

=
4
3
·k2 +

1
15

·k4+c(k) ,

k∈ [0,1] , (9)

where

c(k) =
∫ π/2

0
r4(θ ;k)sinθ dθ

∫ 2π

0
ρ4(w,θ ;k)

×α2(w,θ ;k) tan2 α(w,θ ;k)
dw
2π

≥ 0 ,

and therefore,

CV2(

Ŝsur(w,θ ;k)
)

≥
4
3
·k2 +

1
15

·k4

≥CV2(

Ŝpiv(w,θ ;k)
)

,

see Fig. 7, in which the constantc(k) in the right hand
side of Eq. 9 has been evaluated numerically.
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Remark. It is possible to consider more precise
versions of the estimators (Eq. 4) and (Eq. 7) by
averaging out with respect to the marginal probability
elementP(dw) = dw/(2π) for eachθ . For the pivotal
estimator we obtain 4 times the area of the support set
HY∩L3

2[0]
, namely,

Ŝpiv(θ ;k) = 4A(θ ;k)

= 4π
(

1−k2+
3
2

k2sin2 θ
)

, (10)

as expected by virtue of Eqs. 2 and 3. Less obvious,
however, is the fact that the corresponding expectation
of the surfactor estimator (Eq. 7) with respect toP(dw)
yields the same result (Eq. 10).

VOLUME ESTIMATORS

THE PIVOTAL ESTIMATOR OF VOLUME

We adopt the second estimator in Eq. 1 with
a = S(∂Y)/4. This choice implies that only positive
intercept lengths are recorded, namelyL > 0.
Equivalently, the sampling pointz is chosen uniformly
at random in the interior of the support setHY∩L3

2[0]
of

the pivotal section, see Fig. 6. Thus,

V̂piv(ρ ,w,θ ;k) =
1
4

S(∂Y) ·L(ρ ,w,θ ;k) , (11)

is an unbiased estimator ofV(Y), where

L(ρ ,w,θ ;k)

=
[

r2(θ ;k)− (ρ + l(θ ;k)cosw)2
]1/2

. (12)

On the other hand, the joint probability element of
(ρ ,w,θ ) is,

P(dρ ,dw,dθ |L > 0) =
ρ dρ dw
S(∂Y)/4

·sinθ dθ ,

ρ ∈ [0,h(w,θ ;k)) ,θ ∈ [0,π/2] ,w∈ [0,2π) . (13)

Note that the unbiasedness of the estimator
(Eq. 11) is a consequence of the well known
stereological relationEL = 4V/S, (Hostinský, 1925).
The estimator (Eq. 11) is of course not practical
because, for the ball particle model considered here,
if the factor S(∂Y) in the right hand side of Eq. 11
is known, thenV(Y) is also known. The estimator is
nonetheless useful for the intended purposes.

Nucleator

Pivotal

z

Fig. 6. Pivotal section circle of the particle model
shown in Fig. 4, with the relevant parameters involved
in the pivotal and in the nucleator estimators of
particle volume, respectively.

With the aid of Mathematicar, a direct evaluation
from Eqs. 11–13 yields,

CV2(

V̂piv(ρ ,w,θ ;k)
)

=
1
8

, (14)

independently of the distancek of the pivotal point
from the particle centre. The preceding result could
have been anticipated bearing in mind that the
estimator (Eq. 11) is proportional to the length of the
intercept determined inY by an IUR test line hitting
it. This is because a point sampled test line on the
pivotal plane is effectively an invariant test line inR3

for any location of the pivotal point, as stressed in
the Introduction. The probability element of an IUR
chord lengthL of the unit ball isP(dL) = LdL/2,
0 ≤ L ≤ 2, wherebyCV2(L) = 1/8. The argument is
general:CV2

(

V̂piv(ρ ,w,θ ;k)
)

is independent of the
position of the pivotal point for any arbitrary particle
Y; it only depends on the first two moments of the
IUR intercept length ofY. If Y is not convex, then
the relevant intercept may consist of several separate
segments, in which caseL(ρ ,w,θ ;k) is the sum of the
corresponding lengths.

Remark. It is instructive to realise that

P(dρ ,dw|θ ,L > 0) =
ρ dρ dw
A(θ ;k)

,

P(dθ |L > 0) =
A(θ ;k)sinθ dθ

S(∂Y)/4
,

and the product of the preceding two conditional
probability elements yields the joint one in Eq. 13.
HereA(θ ;k) is defined as in Eq. 3.
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Fig. 7. Upper panel: Graphs of the right hand sides
of Eqs. 6 and 9, respectively, showing that the pivotal
estimator of surface area is more efficient than the
surfactor for the particle model described above
(Fig. 4). Lower panel: Graphs of the right hand sides of
Eqs. 14 and 16, respectively, showing that the pivotal
estimator of volume is more efficient than the nucleator
when k> 0.203· · · .

THE NUCLEATOR

With reference to Fig. 6 we consider the “one-ray”
nucleator estimator

V̂nuc(w,θ ;k) =
4π
3

·ρ3(w,θ ;k) , (15)

which is unbiased forV(Y), (Gundersen, 1988). The
expression forρ(w,θ ;k) is given in Eq. 8. The relevant
probability element is given by Eq. 5, whereby we
obtain

CV2(

V̂nuc(w,θ ;k)
)

= 3k2+
3
5

k4−
1
35

k6 ,

k∈ [0,1] , (16)

see Fig. 7.

In practice it is much more efficient to consider
two raysρ(w,θ ;k) andρ(w+ π,θ ;k), but in Eq. 15

we have chosen one because then the efficiency
comparison with the pivotal estimator (Eq. 11) looks
more fair. For the two ray nucleator we obtain

CV2(

V̂nuc(w,θ ;k)
)

=
9
5

k4−
18
35

k6 , k∈ [0,1] , (17)

for the ball particle model considered here.

DISCUSSION

At least for the unit ball particle model considered
here with a nucleolus at a distancek from the centre:
(i) The one-ray pivotal estimator (Eq. 4) of surface
area is simpler and more efficient than the surfactor.
(ii) The one-intercept pivotal estimator (Eq. 11) of
volume is more efficient than the one-ray nucleator for
k > 0.203· · · . Even for the two-ray nucleator (Eq. 17)
the pivotal estimator is more efficient fork> 0.542· · · .

If Y is a convex body, then for the first estimator
(Eq. 1) it is easy to show that

CV2(

Ŝ(∂Y)
)

=
a

S(∂Y)/4
−1 . (18)

On the other hand, ifY is the unit ball then for the
second estimator (Eq. 1) we have

CV2(

V̂(∂Y)
)

=
9
8
·

a
S(∂Y)/4

−1 . (19)

The preceding formulae take into account that the
estimators (Eq. 1) may be equal to zero if the test line
fails to hit Y. If we seta = S(∂Y)/4, thenŜ(∂Y) =
S(Y) becauseI = 2 with probability 1, and trivially
CV2(Ŝ(∂Y)) = 0. On the other hand̂V(Y) is in this
case the right hand side of Eq. 11, and Eq. 19 becomes
Eq. 14.

Finally we note that, unlike Eq. 18, Eq. 6 depends
on the position of the pivotal point because the
estimator (Eq. 4) is not a direct function of the
intersection between the test line andY.

ACKNOWLEDGMENTS

This research was supported by the Spanish
Ministry of Education and Science I+D Project
no. MTM2005-08689-C02-01.

REFERENCES

Cruz-Orive LM (2005). A new stereological principle for
test lines in 3D. J Microsc 219:18–28.

Gundersen HJG (1988). The nucleator. J Microsc 151:3-21.
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