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ABSTRACT

In this paper, we discuss the use of graph-cuts to merge thenwof the watershed transform optimally.
Watershed is a simple, intuitive and efficient way of segtimgnan image. Unfortunately it presents a few
limitations such as over-segmentation and poor detecfitowcboundaries. Our segmentation process merges
regions of the watershed over-segmentation by minimizisgegific criterion using graph-cuts optimization.
Two methods will be introduced in this paper. The first isdsh®n regions histogram and dissimilarity
measures between adjacent regions. The second methodvd#alsfficient approximation of minimal
surfaces and geodesics. Experimental results show thse tieehniques can efficiently be used for large
images segmentation when a pre-computed low level segti@mmimavailable. We will present these methods
in the context of interactive medical image segmentation.
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INTRODUCTION using spectral approaches (O’Callaghan and Bull,
2005), minimal cuts (Liet al, 2004) and minimum
The watershed transform (Beucher and Lantuejoukpanning trees (Meyer and Beucher, 1990; Meyer,
1979) is one of the most popular segmentatior994). As shown by Let al., combining the watershed
methods. It is a fundamental concept developed itransform and graph-cut partitioning can speed-up the
the context of mathematical morphology. Interactiveclassical graph-cut segmentation and reduce memory
watershed segmentation is widely used for medicalequirements. In fact graph based techniques as
image segmentation. It offers a fast and stable wayandom walker, isoperimetric partitioning, normalized
to segment complex structures. Unfortunately, theuts (O’Callaghan and Bull, 2005) and minimal cuts
watershed suffers from a few limitations including (Li et al, 2004), can efficiently be used with a
sensitivity to noise, poor detection of low boundariedow level segmentation. We will use the numerous
and over-segmentation. We will show in this paperregions obtained by the watershed transform to build
that the watershed segmentation can be used for a pr@-binary segmentation using graph-cuts optimization.
segmentation step. In this paper we will primarily consider the binary
segmentation of an image with interactive placement

In the last few years, since publication by Greigof markers.

et al. (1989) and Boyko\et al. (1998),s-t graph-cuts
have become well established as a leading method
for image segmentation and restoration. Graph-
cuts is basically an energy minimization technique
based on combinatorial optimization. It has many
interesting characteristics such as global minimization, IMAGE SEGMENTATION WITH
solid theoretical background and flexibility in the GRAPH-CUTS

energy function. Although this approach is feasible
for many applications, it suffers from an excessive
computational cost and large memory requirement
However a few improvements have been propose
to reduce the computational cost of the max-flo : .
algorithm. An efficient algorithm was proposed by Kolmogorov, 2003; Kolmogorov and Zabih, 2004),

Boykov and Kolmogorov (2004) and a narrow-bandS graph-cuts have been widely used for image
like method has been develobed by Lombagral segmentation, restoration and many other applications.
(2005) P y " Because image segmentation is frequently viewed as

an energy minimization problems-f) minimal cuts
On the other side, authors have combined grapban natively offer a solid theoretical background for
based segmentation with the watershed transform hiynage segmentation. Many energy functions can be

METHODS

Since the first application by Greigt al. (1989)
nd thanks to the work of Boykov, Kolmogorov,
abih, Veksler and Jolly (Boykost al., 1998; Boykov
nd Jolly, 2001; Boykowt al, 2001; Boykov and
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minimized via graph-cuts as soon as the problem can ARC CAPACITIES

be formalized as a network flow problem. Arc capacities drive the properties of the

Images are seen as non-oriented graphs, the nodeggmentation. The capacityi, j) of arcs connecting
correspond to the pixels and the arcs to the adjacen@gjacent pixels plays the role of an edge indicator. The
relations between pixels. The construction of suctierm may be based on any edge indicator function:
graphs is fully described in Kolmogorov and Zabihgradient, Laplacian, ete(i, j) should be large when
(2004). As shown in Fig. 1, the nodes of the grapmodes and | have similar gray values.

are the pixels of the image with two supplementary  The termsc(s,i) andc(i,t) are the t-links” and
nodess, the source, and the sink. The graph arcs are «g jinks" capacities. Contrary to the teroi, j), c(s,i)
composed of : and c(i,t) are related to regional properties of the
— “slinks”: arcs connecting a noddo the sourcs, ~ Segmentation. For instance(s,i) can reflect how
e _ _ a pixel i fits into a given intensity profile of the
— “tlinks™: arcs connecting a nodeo the sinkt, foreground. Usually, prior information has to be known
— “nlinks”; arcs connecting neighbor pixdlandj. 0 define a regional term. Some properties of the
background or the foreground have to be extracted

A (s-t) cut produces a binary partitiois, T} of the  pefore defining the arc capacities.
set of nodes, such that the sousd®longs td&Sand the

sinkt belongs taoT. In the next sections we will name
the setSthe foreground and the s&tthe background.
The value of the cut is:

For some applications, it is useful to consider
an interactive segmentation, where the user hard-
constraints some pixels to be in the background
or in the foregroundS (Boykov and Jolly, 2001).

c(ST) = c(i, ), (1) Graph construction and arc capacities are, in this

,egeT case, slightly different. These hard-constraints result
in a modification of arc weights. Nodes marked
wherec(i, j) is the capacity of the arc connecting nodesas foreground and background have respectively “
iandj. links” and “t-links” of infinite capacity so that these

- . ., arcs cannot be in the minimal cut.
A minimal cut can be computed in polynomial

time via algorithms based on network flow such as the

one proposed by Ford and Fulkerson (1955) or more COMBINING (S-T) GRAPH-CUTS

recently by Boykov and Kolmogorov (2004). AND THE WATERSHED TRANSFORM
The Watershed Transform (Beucher and
Source Source Lantuejoul, 1979) is a well-known segmentation

method. The result of the transform is a partition of the
image. It uses an intuitive description of boundaries
in an image: considering an image as a topographic
surface where the height of each point is directly
related to its gray level, it simulates the flooding of
the surface from a finite set of points (local minima of
the image or any set of markers). In order to avoid the
merging of water that comes out of different sources,
a watershed line is constructed. Computed on the
gradient of an image, the watershed transform tends
~ P~ to give the high gradient points which are related to
Sink Sink boundaries of the image.

The watershed transform partitions the image into
@) (b) numerous regions depending on the number of local
minima of the gradient. When the flooding starts from

all gradient minima, the watershed tends to produce

Fig. 1.A Graph and a (s-t) cut. (a) Graph construction ’ - A
for a 3x3 image. (b) Arcs of the (s-t) cut have been?” over-segmentation of the image (see Fig. 3c). The

removed from the graph. Note that a cut severs alwaysS€ of markers avoids this problem, but the watershed
the “t-link” or the “s-link” of each pixel. The graph- might still be prone to leaks (see the leak on the front

cut partitions the nodes into two different sets S and T?f the cameraman in Fig. 3d).

one containing the source and the other containing the These regions can be represented by an adjacency
sink. graph. The watershed adjacency graph has been
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used in many segmentation applications including -
hierarchical segmentation (Meyer, 1994), spectra
graph partitioning (O’Callaghan and Bull, 2005),
graph-cuts segmentation (et al, 2004). Following
the approach of Let al., we will study the application
of (s-f) graph-cuts to the graph produced by thef!
watershed transform. The adjacency graph can t
efficiently computed during the flooding process of the
watershed algorithm. Moreover the flooding proces:
can be used to compute different measures on regions

such as histograms, surfaces, and volumes. (a) (b)

The graph we consider in our application is the
non-oriented adjacency graph of the watershed regior §
with two additional nodes: the source and the sink &8
as illustrated in Fig. 2. The result of the graph-cut is &8
then two subset$S T) of regions of the watershed
transform. The graph-cuts partitioning can be see
here as a region merging process.

(€) (d)

Fig. 3. Segmentation process: a) Markers Specified
by the user superposed with the original Image. b)
Gradient of the original image. ¢) Watershed of the
gradient. d) Marker-controlled watershed.

“s-links” and “t-links” capacities
Fig. 2. Adjacency graph on regions and the “slinks” and ‘t-links” capacities reflect how

corresponding (s-t) graph. a node of the graph fits into one of the two sets
(ST). For instance we can define the following arcs
capacities:
REGION BASED MERGING c(s,i) = dFd_FdB viel, )
i) =g4m Viel,

We will now introduce a region merging - ' 5 _
process, based on graph-cuts, that takes intyhered” =[me—m(i)|, andd™ = |mg—m(i)|. mr and
account dissimilarities between regions. Many energ{f® &€ the average gray levels of the regions marked
espectively as “foreground” and “backgroundi(i)

functions are related to measures on regions, folrs the average gray level of the regianOne should

instance, length of the region boundaries, histogramﬁote thatme andmg should be different to prevent any
areas, volumes, etc. The aim of this section is tymerical problems.

define arc capacities of the adjacency graph so that _. .

. . . . Different energies can be used to measure the
a cut merges regions of similar characteristics. Inth'%lissimilarity between regions. Previously, we have
section we will consider the gray levels of an image, |y considered the average gray value of the marked
and the watershed transform of its gradient imageéregion. It is also possible to use measures based on
We will then consider a region merging process usinghe histogram of gray values in each region. We will
markers provided by the user as illustrated in Fig. 3. discuss the use of such measures in the next section.
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“n-links” capacities local properties of a smooth manifold. In this kind of
The capacities of the graph edges are directlipaqes the metric varies smoothly from point to point.
or instance a continuous and smooth image can be

related to the dissimilarity between regions. . . X

. . . . considered as a Riemannian space (a smooth surface)
Researchers dealing with region merging have . . .
.-Whose metric depends on the local gradient. The aim

(Fj)ir;)spiE)nsig?ita Igg?eingtuarr?g:rwg (\;\;?]yz;ﬁngv:“ézteaén%f Geodesic Active Contours is to compute a curve of
Y. PaCY hinimal length in a Riemannian space.

of the general form (Boykov and Jolly, 2001):
, On the other side Boykov and Kolmogorov (2003)

. d(i, j) . have proposed a method based on integral geometry

c(i,j) = exp< 25? ) {LiyeN, @) 4 compute minimal surfaces and geodesics by using
graph-cuts optimization. Authors proposed to use

where d(i,j) is a dissimilarity measure betweenthe Cauchy-Crofton formulaes to compute the length
adjacent regions and j, o is a free parameteN is  of a curve under a Riemannian metric. From these
the set of neighbor nodes different fraandt. formulaes they derived a mean to compute arc

Different dissimilarity indices between regions Cancapacit_ies SO tha_t a cut in thg pixel a_djacency graph
approximates a given riemannian metric.

be computed, the most widely used being distance
between histograms of gray levels in each regions. Let In this paper we present a technique to compute
hi be the histogram of the region(in the original approximate geodesics and minimal surfaces using

image),h{‘ is thek!" bin of h;, then we can define: the watershed over-segmentation and graph-cuts
optimization. This method includes a simplification

. d(i, j)? of the existing methods and a possible speed-up of

c(i.J) :exp(— 202 ) the computation. Our approach of combining graph-

(s Lk Lk))2 cuts and watershed segmentation allows to have a

= exp| — k1= ] 7 (4) more simple way to compute geodesics and minimal

202 surfaces. We use the heuristic that the geodesic or

_ the minimal surface to be computed should be built
where LK = Y j<—xh is the cumulative histogram of by a finite union of watershed lines or surfaces.
the region. This proposition is motivated by two observations.

First the watershed transform produces an over-

__This measure has better perceptual properties thalyymentation of real images. Secondly, the watershed
simple bin by bin comparisons, since it incorporatesinas or surfaces are composed by all important

a notion of ground distance (O'Callaghan and Bull,,ndaries of the image. We propose to solve the
2005). However, finding a satisfying dissimilarity fo)16ing combinatorial problem: Finding a curve (or
measure between regions is still an open problem a surface) composed of a finite union of watershed

is often application dependant. lines (or surfaces) so that the curve minimizes a
This kind of measure is only related to a globalgiven Riemannian metric. We solve this problem using
measure in each region. The aim of the method@raph-cutsoptimization on the region adjacency graph.

is to merge regions that have similar histograms. EFqjlowing Casellet al. (1997), a geodesic curve

The _method will .be illustrated i_n the last sectionc can pe computed via the minimization of the energy:
of this paper dedicated to experimental results. The

energy function we minimize with graph-cuts does _ [ICk

not take into account image’s edges information such E(©) _/0 9(0I(C(s))) ds, ®)
as gradient. In the next section we will introduce
a method that takes into account only the bounda@'
values of each region.

here|C|, is the Euclidean length of the cur@and
is the curvilinear coordinate on the cur@e g is a
positive decreasing function, for instance :

1
BOUNDARY BASED MERGING gd)=+——"——— p>1, (6)

Geodesics and minimal surfaces are widely used 1+[B(Gp )P
in medical image segmentation. Two approaches canhereG, is a gaussian kernel of variange Finally,
be distinguished to compute such segmentationThe energy E(C) is obtained by weighting the
Geodesic active contours (Caselletsal, 1997) use Euclidean element of lengttis by an indicatorg of
differential geometry to compute an optimal surfacamage’s edges. This energy can be minimized via a
minimizing a given Riemannian metric. Riemanniangradient descent approach (Casedlesal, 1997) or via
geometry is a non-Euclidean geometry that studiegraph-cuts (Boykov and Kolmogorov, 2003).
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The energyE(C) can be minimized directly RESULTS
via graph-cuts segmentation based on the watershed
regions. Using the watershed adjacency graph allows In this section{F,B} denotes the sets of nodes
us to use a simple expression for arc capacities so thatarked respectively as foreground and background
a cut on the graph approximat&$C). The capacity andN denotes an adjacency relation between nodes.

of the arc connecting the regionsand j have the Fig. 4 illustrates the comparison between
following expression : several marker-based segmentation methods: marker-
controlled watershed, graph-cuts segmentation using
c(i,j):/ g(I(F j))ds 7) capacitigs described in (Boykov and Jolly, 2091),
Fij and region merging via graph-cuts. The following
. 1 capacities were used to compute the results:
c(i, j) = ds (8
Ry 1H[B(Go *1(F )P c(i,9 =0 Viel—{FUB}
whereF, j is the common border between regidns c(i,t)=0 viel—{FUB}
andj. c(i,s) = Vie{F} (10)
Considering this weighting function, the minimal ofi,f)y = vie {B& Lkpy2
cut of the adjacency graph of the watershed regionsis | c(i, ) = exq—w), {i,jteN

finally equivalent to an approximation of the geodesic
minimizing E(C). The minimal cut of the graph is the
solution of the minimization of:

EC2)= y cii)=[_ oOiFpds ©
ieFje i

whereUF, j is a curve formed by an union of watershed
lines. We only consider the capacities oFlinks” in

our graph. $links” and “t-links” of the graph have

a infinite capacity if corresponding nodes are marked
respectively as foreground and background. Otherwise (a) (b)
arc capacities are equal to zero. This ensures that

the segmentation have at most the same number o
connected components than the markers.

The minimal cut produces two regions whose
boundaries minimize the enerdy(C2). The initial
combinatorial problem is a choice of a curve among all
possible curves in the image, the problem we solved is
reduced to a choice of a curve among all curves formed
by an union of watershed lines.

Considering that the watershed transform contains (©) (d)
all major boundaries of the image, this approximation
can be quite efficient. Moreover the search space of theig. 4. Comparison between several segmentation
initial problem increases exponentially with the size ofethods. (a) Markers superposed with the original
the image. Using the heuristic that the geodesic or thighage. (b) Marker-controlled watershed segmentation.
minimal surface should be a union of watershed line§c) Graph-cuts segmentation. (d) Region merging via
produces always a smaller search space. This meth8§ph-cuts.
merges two regions if there is no high gradient points  This kind of energy is only based on regional
between each region. The aim of the method is to finql)roperties in each regions‘inks” and “t-links” have
two sets of regions so that the gradient between the twigfinite capacities if the corresponding nodes have
sets is maximal. This kind of energies is very usefubeen marked as foreground or background, otherwise
to find a region which presents missing boundarieshe corresponding capacities are equal to zero. This
or low contrasted edges. On the other hand geodesiegperimental result shows that the region merging
and minimal surfaces does not take into account gragased on graph-cuts offers a better result than the
values information in each region. classical marker-controlled watershed. On the other
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hand the region merging approach offers quite similar Fig. 7 shows an application of marker-based
results than the classical graph-cuts segmentation kgraph-cuts segmentation combined with the watershed
using a region adjacency graph instead of the pixdransform using an objective function which takes into
adjacency graph. Moreover, using the region adjacendgyccount only the regions boundaries.

graph reduces the computational cqst since the graph c(i,s)=0 Viel—{FUB}

have less nodes and arcs than the pixel graph. c(it)=0 Viel—{FUB}

Figs. 5 and 6 show 3D examples of marker-based { c(i,s)=o Vie {F} (11)
graph-cuts segmentation combined with the watershed | ¢(i t) = Vi {B}
trans_form using the same capacities as d_eflned ci,j) = fH g(dI(R(s)ds {i,j} eN
previously. These examples illustrate multiple binary o)
segmentations of the same image using different sewghereg is a positive decreasing function (see Eq. 6)
of markers. and0l is the gradient of image. F j is the common
boundary between adjacent regidrend j. This kind
of energy is related to geodesics and minimal surfaces.

Fig. 7. 3D surface rendering of a segmented liver
superposed with the original data.

Table 1 summarizes the comparisons between the
speed of our method with classical graph-cuts (method
2) (Boykov et al, 2001) and the marker controlled
watershed segmentation (method 1) (Beucher and
Fig. 5.3D surface rendering of a segmented heart.  Lantuejoul, 1979). For graph based methods, Table 1
contains the time needed to construct the graph, to
compute the minimal cut and finally to build the
output image. The results were computed on a laptop
with Intel Core Duo 2.16 GHz processor and 1 GB
of memory. This limited platform does not allow to
use the classical graph cut (Boykov and Jolly, 2001)
on large datasets such as the thoracic CT illustrated in
Fig. 7. This limitation is only due to memory limitation
of the platform.

DISCUSSION

Experimental results show that our region merging
process is stable. Moreover the approximation done
using the region graph instead of the pixel graph is
negligible when the watershed transform produces a
heavy over-segmentation. When this assumption is
not verified, for instance when some important edges
Fig. 6.Axial cuts of the segmentation superposed witthave not been detected by the watershed transform,
the original data. the two methods produce different results. Using the
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Table 1.Comparisons of computation time.

Image Size Method 1 Method 2 Our method
Fig. 4 256x 256 0.08s 05s 0.09s
Figs.5-6  12885x 90 1.60s 14.8 s 2.39s
Fig. 7 255x 255x 128 14.16 s — 152.3s

adjacency graph of the watershed regions instead @&oykov Y, Jolly MP (2001). Interactive Graph Cuts for
the pixel adjacency graph can also reduce the time to Optimal Boundary and Region Segmentation of Objects
compute the minimal cut since it offers in experiments in N-D Images. In: Proc Int Conf Comput Vis,
an important reduction of the number of nodes and arcs  Vancouver, Canada 1:105-12.

of the graph. Boykov Y, Kolmogorov V (2003). Computing Geodesics
and Minimal Surfaces via Graph Cuts. In: Proc Int Conf
Comput Vis, Nice, France 1:26-33.

CONCLUSION Boykov Y, Kolmogorov V (2004). An experimental

. . . . comparison of min-cut/max-flow algorithms for ener
The region merging process tries to combine P g 9y

advantages from the watershed transform and the ?énllT;a_tg); in-vision. IEEE Trans Pattern Anal
graph-cuts partitioning. The combination of graph cuts ' ' _ ,

and watershed offers an improvement in terms oPOYkov Y, Veksler O, Zabih R (2001). Fast Approximate
computational cost and memory requirements of the Energy Minimization via Graph Cuts. IEEE Trans
graph-cut based at the pixel level. Pattern Anal 23:1222-39.

Boykov Y, Veksler O, Zabih R (1998). Markov random

morphological and graph based segmentation. We fields with efficient approximations. In: Proc IEEE
would like to combine the two methods presented Conf Comput Vis Pattern Recogn 648-55.

in this paper. We will also consider different meansCaselles V, Kimmel R, Sapiro G (1997). Geodesic Active
to construct and compute graphs and arc weights Contours. IntJ Comput Vision 22(1):61-79.
associated with regions. This work has alreadyrord F, Fulkerson D (1955). A simplex algorithm finding
been applied to 3D medical images segmentation. maximal networks flows and an application to the
Our perspectives are now to develop morphological Hitchock problem. Rand Report, Rand Corporation,
and graph-based methods for 3D temporal image Santa Monica 1955.

We are now working on a better integration of

segmentation. Greig D, Porteous B, Seheult A (1989). Exact maximum a
posteriori estimation for binary images. J Roy Stat Soc.
51(2):271-9.
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