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ABSTRACT

In this paper, we discuss the use of graph-cuts to merge the regions of the watershed transform optimally.
Watershed is a simple, intuitive and efficient way of segmenting an image. Unfortunately it presents a few
limitations such as over-segmentation and poor detection of low boundaries. Our segmentation process merges
regions of the watershed over-segmentation by minimizing aspecific criterion using graph-cuts optimization.
Two methods will be introduced in this paper. The first is based on regions histogram and dissimilarity
measures between adjacent regions. The second method dealswith efficient approximation of minimal
surfaces and geodesics. Experimental results show that these techniques can efficiently be used for large
images segmentation when a pre-computed low level segmentation is available. We will present these methods
in the context of interactive medical image segmentation.
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INTRODUCTION

The watershed transform (Beucher and Lantuejoul,
1979) is one of the most popular segmentation
methods. It is a fundamental concept developed in
the context of mathematical morphology. Interactive
watershed segmentation is widely used for medical
image segmentation. It offers a fast and stable way
to segment complex structures. Unfortunately, the
watershed suffers from a few limitations including
sensitivity to noise, poor detection of low boundaries
and over-segmentation. We will show in this paper
that the watershed segmentation can be used for a pre-
segmentation step.

In the last few years, since publication by Greig
et al. (1989) and Boykovet al. (1998),s-t graph-cuts
have become well established as a leading method
for image segmentation and restoration. Graph-
cuts is basically an energy minimization technique
based on combinatorial optimization. It has many
interesting characteristics such as global minimization,
solid theoretical background and flexibility in the
energy function. Although this approach is feasible
for many applications, it suffers from an excessive
computational cost and large memory requirements.
However a few improvements have been proposed
to reduce the computational cost of the max-flow
algorithm. An efficient algorithm was proposed by
Boykov and Kolmogorov (2004) and a narrow-band
like method has been developed by Lombaertet al.
(2005).

On the other side, authors have combined graph
based segmentation with the watershed transform by

using spectral approaches (O’Callaghan and Bull,
2005), minimal cuts (Liet al., 2004) and minimum
spanning trees (Meyer and Beucher, 1990; Meyer,
1994). As shown by Liet al., combining the watershed
transform and graph-cut partitioning can speed-up the
classical graph-cut segmentation and reduce memory
requirements. In fact graph based techniques as
random walker, isoperimetric partitioning, normalized
cuts (O’Callaghan and Bull, 2005) and minimal cuts
(Li et al., 2004), can efficiently be used with a
low level segmentation. We will use the numerous
regions obtained by the watershed transform to build
a binary segmentation using graph-cuts optimization.
In this paper we will primarily consider the binary
segmentation of an image with interactive placement
of markers.

METHODS

IMAGE SEGMENTATION WITH
GRAPH-CUTS

Since the first application by Greiget al. (1989)
and thanks to the work of Boykov, Kolmogorov,
Zabih, Veksler and Jolly (Boykovet al., 1998; Boykov
and Jolly, 2001; Boykovet al., 2001; Boykov and
Kolmogorov, 2003; Kolmogorov and Zabih, 2004),
(s-t) graph-cuts have been widely used for image
segmentation, restoration and many other applications.
Because image segmentation is frequently viewed as
an energy minimization problem, (s-t) minimal cuts
can natively offer a solid theoretical background for
image segmentation. Many energy functions can be
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minimized via graph-cuts as soon as the problem can
be formalized as a network flow problem.

Images are seen as non-oriented graphs, the nodes
correspond to the pixels and the arcs to the adjacency
relations between pixels. The construction of such
graphs is fully described in Kolmogorov and Zabih
(2004). As shown in Fig. 1, the nodes of the graph
are the pixels of the image with two supplementary
nodess, the source, andt, the sink. The graph arcs are
composed of :

– “s-links”: arcs connecting a nodei to the sources,

– “ t-links”: arcs connecting a nodei to the sinkt,

– “n-links”: arcs connecting neighbor pixelsi and j.

A (s-t) cut produces a binary partition{S,T} of the
set of nodes, such that the sourcesbelongs toSand the
sink t belongs toT. In the next sections we will name
the setS the foreground and the setT the background.
The value of the cut is:

c(S,T) = ∑
i∈S, j∈T

c(i, j) , (1)

wherec(i, j) is the capacity of the arc connecting nodes
i and j.

A minimal cut can be computed in polynomial
time via algorithms based on network flow such as the
one proposed by Ford and Fulkerson (1955) or more
recently by Boykov and Kolmogorov (2004).

(a) (b)

Fig. 1.A Graph and a (s-t) cut. (a) Graph construction
for a 3×3 image. (b) Arcs of the (s-t) cut have been
removed from the graph. Note that a cut severs always
the “t-link” or the “s-link” of each pixel. The graph-
cut partitions the nodes into two different sets S and T,
one containing the source and the other containing the
sink.

ARC CAPACITIES

Arc capacities drive the properties of the
segmentation. The capacityc(i, j) of arcs connecting
adjacent pixels plays the role of an edge indicator. The
term may be based on any edge indicator function:
gradient, Laplacian, etc.c(i, j) should be large when
nodesi and j have similar gray values.

The termsc(s, i) and c(i,t) are the “t-links” and
“s-links” capacities. Contrary to the termc(i, j), c(s, i)
and c(i,t) are related to regional properties of the
segmentation. For instancec(s, i) can reflect how
a pixel i fits into a given intensity profile of the
foreground. Usually, prior information has to be known
to define a regional term. Some properties of the
background or the foreground have to be extracted
before defining the arc capacities.

For some applications, it is useful to consider
an interactive segmentation, where the user hard-
constraints some pixels to be in the backgroundT
or in the foregroundS (Boykov and Jolly, 2001).
Graph construction and arc capacities are, in this
case, slightly different. These hard-constraints result
in a modification of arc weights. Nodes marked
as foreground and background have respectively “s-
links” and “t-links” of infinite capacity so that these
arcs cannot be in the minimal cut.

COMBINING (S-T ) GRAPH-CUTS
AND THE WATERSHED TRANSFORM

The Watershed Transform (Beucher and
Lantuejoul, 1979) is a well-known segmentation
method. The result of the transform is a partition of the
image. It uses an intuitive description of boundaries
in an image: considering an image as a topographic
surface where the height of each point is directly
related to its gray level, it simulates the flooding of
the surface from a finite set of points (local minima of
the image or any set of markers). In order to avoid the
merging of water that comes out of different sources,
a watershed line is constructed. Computed on the
gradient of an image, the watershed transform tends
to give the high gradient points which are related to
boundaries of the image.

The watershed transform partitions the image into
numerous regions depending on the number of local
minima of the gradient. When the flooding starts from
all gradient minima, the watershed tends to produce
an over-segmentation of the image (see Fig. 3c). The
use of markers avoids this problem, but the watershed
might still be prone to leaks (see the leak on the front
of the cameraman in Fig. 3d).

These regions can be represented by an adjacency
graph. The watershed adjacency graph has been

40



Image Anal Stereol 2008;27:39-45

used in many segmentation applications including
hierarchical segmentation (Meyer, 1994), spectral
graph partitioning (O’Callaghan and Bull, 2005),
graph-cuts segmentation (Liet al., 2004). Following
the approach of Liet al., we will study the application
of (s-t) graph-cuts to the graph produced by the
watershed transform. The adjacency graph can be
efficiently computed during the flooding process of the
watershed algorithm. Moreover the flooding process
can be used to compute different measures on regions
such as histograms, surfaces, and volumes.

The graph we consider in our application is the
non-oriented adjacency graph of the watershed regions
with two additional nodes: the source and the sink,
as illustrated in Fig. 2. The result of the graph-cut is
then two subsets(S,T) of regions of the watershed
transform. The graph-cuts partitioning can be seen
here as a region merging process.

Fig. 2. Adjacency graph on regions and the
corresponding (s-t) graph.

REGION BASED MERGING

We will now introduce a region merging
process, based on graph-cuts, that takes into
account dissimilarities between regions. Many energy
functions are related to measures on regions, for
instance, length of the region boundaries, histograms,
areas, volumes, etc. The aim of this section is to
define arc capacities of the adjacency graph so that
a cut merges regions of similar characteristics. In this
section we will consider the gray levels of an image
and the watershed transform of its gradient image.
We will then consider a region merging process using
markers provided by the user as illustrated in Fig. 3.

(a) (b)

(c) (d)

Fig. 3. Segmentation process: a) Markers Specified
by the user superposed with the original Image. b)
Gradient of the original image. c) Watershed of the
gradient. d) Marker-controlled watershed.

“s-links” and “t-links” capacities

“s-links” and “t-links” capacities reflect how
a node of the graph fits into one of the two sets
(S,T). For instance we can define the following arcs
capacities:

{

c(s, i) = dF

dF+dB ∀i ∈ I ,

c(i,t) = dB

dF+dB ∀i ∈ I ,
(2)

wheredF = |mF −m(i)|, anddB = |mB−m(i)|. mF and
mB are the average gray levels of the regions marked
respectively as “foreground” and “background”,m(i)
is the average gray level of the regioni. One should
note thatmF andmB should be different to prevent any
numerical problems.

Different energies can be used to measure the
dissimilarity between regions. Previously, we have
only considered the average gray value of the marked
region. It is also possible to use measures based on
the histogram of gray values in each region. We will
discuss the use of such measures in the next section.
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“n-links” capacities

The capacities of the graph edges are directly
related to the dissimilarity between regions.
Researchers dealing with region merging have
proposed a large number of ways to evaluate this
dissimilarity. For instance we can define a capacity
of the general form (Boykov and Jolly, 2001):

c(i, j) = exp

(

−
d(i, j)2

2σ2

)

{i, j} ∈ N , (3)

where d(i, j) is a dissimilarity measure between
adjacent regionsi and j, σ is a free parameter.N is
the set of neighbor nodes different fromsandt.

Different dissimilarity indices between regions can
be computed, the most widely used being distances
between histograms of gray levels in each regions. Let
hi be the histogram of the regioni (in the original
image),hk

i is thekth bin of hi , then we can define:

c(i, j) = exp

(

−
d(i, j)2

2σ2

)

= exp

(

−
(∑k |L

k
i −Lk

j |)
2

2σ2

)

, (4)

whereLk
i = ∑ j<=kh j

i is the cumulative histogram of
the regioni.

This measure has better perceptual properties than
simple bin by bin comparisons, since it incorporates
a notion of ground distance (O’Callaghan and Bull,
2005). However, finding a satisfying dissimilarity
measure between regions is still an open problem and
is often application dependant.

This kind of measure is only related to a global
measure in each region. The aim of the method
is to merge regions that have similar histograms.
The method will be illustrated in the last section
of this paper dedicated to experimental results. The
energy function we minimize with graph-cuts does
not take into account image’s edges information such
as gradient. In the next section we will introduce
a method that takes into account only the boundary
values of each region.

BOUNDARY BASED MERGING

Geodesics and minimal surfaces are widely used
in medical image segmentation. Two approaches can
be distinguished to compute such segmentations.
Geodesic active contours (Caselleset al., 1997) use
differential geometry to compute an optimal surface
minimizing a given Riemannian metric. Riemannian
geometry is a non-Euclidean geometry that studies

local properties of a smooth manifold. In this kind of
spaces the metric varies smoothly from point to point.
For instance a continuous and smooth image can be
considered as a Riemannian space (a smooth surface)
whose metric depends on the local gradient. The aim
of Geodesic Active Contours is to compute a curve of
minimal length in a Riemannian space.

On the other side Boykov and Kolmogorov (2003)
have proposed a method based on integral geometry
to compute minimal surfaces and geodesics by using
graph-cuts optimization. Authors proposed to use
the Cauchy-Crofton formulaes to compute the length
of a curve under a Riemannian metric. From these
formulaes they derived a mean to compute arc
capacities so that a cut in the pixel adjacency graph
approximates a given riemannian metric.

In this paper we present a technique to compute
approximate geodesics and minimal surfaces using
the watershed over-segmentation and graph-cuts
optimization. This method includes a simplification
of the existing methods and a possible speed-up of
the computation. Our approach of combining graph-
cuts and watershed segmentation allows to have a
more simple way to compute geodesics and minimal
surfaces. We use the heuristic that the geodesic or
the minimal surface to be computed should be built
by a finite union of watershed lines or surfaces.
This proposition is motivated by two observations.
First the watershed transform produces an over-
segmentation of real images. Secondly, the watershed
lines or surfaces are composed by all important
boundaries of the image. We propose to solve the
following combinatorial problem: Finding a curve (or
a surface) composed of a finite union of watershed
lines (or surfaces) so that the curve minimizes a
given Riemannian metric. We solve this problem using
graph-cuts optimization on the region adjacency graph.

Following Caselleset al. (1997), a geodesic curve
C can be computed via the minimization of the energy:

E(C) =
∫ |C|ε

0
g(∇I(C(s))) ds, (5)

where|C|ε is the Euclidean length of the curveC and
s is the curvilinear coordinate on the curveC. g is a
positive decreasing function, for instance :

g(∇I) =
1

1+ |∇(Gρ ∗ I)|p
p≥ 1 , (6)

whereGρ is a gaussian kernel of varianceρ . Finally,
The energy E(C) is obtained by weighting the
Euclidean element of lengthds by an indicatorg of
image’s edges. This energy can be minimized via a
gradient descent approach (Caselleset al., 1997) or via
graph-cuts (Boykov and Kolmogorov, 2003).
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The energy E(C) can be minimized directly
via graph-cuts segmentation based on the watershed
regions. Using the watershed adjacency graph allows
us to use a simple expression for arc capacities so that
a cut on the graph approximatesE(C). The capacity
of the arc connecting the regionsi and j have the
following expression :

c(i, j) =
∫

Fi, j

g(∇I(Fi, j))ds (7)

c(i, j) =
∫

Fi, j

1
1+ |∇(Gρ ∗ I(Fi, j))|p

ds (8)

where Fi, j is the common border between regionsi
and j.

Considering this weighting function, the minimal
cut of the adjacency graph of the watershed regions is
finally equivalent to an approximation of the geodesic
minimizing E(C). The minimal cut of the graph is the
solution of the minimization of:

E(C2) = ∑
i∈F, j∈B

c(i, j) =
∫

∪Fi, j

g(∇I(Fi, j))ds, (9)

where∪Fi, j is a curve formed by an union of watershed
lines. We only consider the capacities of “n-links” in
our graph. “s-links” and “t-links” of the graph have
a infinite capacity if corresponding nodes are marked
respectively as foreground and background. Otherwise
arc capacities are equal to zero. This ensures that
the segmentation have at most the same number of
connected components than the markers.

The minimal cut produces two regions whose
boundaries minimize the energyE(C2). The initial
combinatorial problem is a choice of a curve among all
possible curves in the image, the problem we solved is
reduced to a choice of a curve among all curves formed
by an union of watershed lines.

Considering that the watershed transform contains
all major boundaries of the image, this approximation
can be quite efficient. Moreover the search space of the
initial problem increases exponentially with the size of
the image. Using the heuristic that the geodesic or the
minimal surface should be a union of watershed lines
produces always a smaller search space. This method
merges two regions if there is no high gradient points
between each region. The aim of the method is to find
two sets of regions so that the gradient between the two
sets is maximal. This kind of energies is very useful
to find a region which presents missing boundaries
or low contrasted edges. On the other hand geodesics
and minimal surfaces does not take into account gray
values information in each region.

RESULTS

In this section{F,B} denotes the sets of nodes
marked respectively as foreground and background
andN denotes an adjacency relation between nodes.

Fig. 4 illustrates the comparison between
several marker-based segmentation methods: marker-
controlled watershed, graph-cuts segmentation using
capacities described in (Boykov and Jolly, 2001),
and region merging via graph-cuts. The following
capacities were used to compute the results:






























c(i,s) = 0 ∀i ∈ I −{F ∪B}
c(i,t) = 0 ∀i ∈ I −{F ∪B}
c(i,s) = ∞ ∀i ∈ {F}
c(i,t) = ∞ ∀i ∈ {B}

c(i, j) = exp(−
(∑k |L

k
i −Lk

j |)
2

2σ2 ), {i, j} ∈ N

(10)

(a) (b)

(c) (d)

Fig. 4. Comparison between several segmentation
methods. (a) Markers superposed with the original
image. (b) Marker-controlled watershed segmentation.
(c) Graph-cuts segmentation. (d) Region merging via
graph-cuts.

This kind of energy is only based on regional
properties in each region. “s-links” and “t-links” have
infinite capacities if the corresponding nodes have
been marked as foreground or background, otherwise
the corresponding capacities are equal to zero. This
experimental result shows that the region merging
based on graph-cuts offers a better result than the
classical marker-controlled watershed. On the other
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hand the region merging approach offers quite similar
results than the classical graph-cuts segmentation by
using a region adjacency graph instead of the pixel
adjacency graph. Moreover, using the region adjacency
graph reduces the computational cost since the graph
have less nodes and arcs than the pixel graph.

Figs. 5 and 6 show 3D examples of marker-based
graph-cuts segmentation combined with the watershed
transform using the same capacities as defined
previously. These examples illustrate multiple binary
segmentations of the same image using different sets
of markers.

Fig. 5.3D surface rendering of a segmented heart.

Fig. 6.Axial cuts of the segmentation superposed with
the original data.

Fig. 7 shows an application of marker-based
graph-cuts segmentation combined with the watershed
transform using an objective function which takes into
account only the regions boundaries.


























c(i,s) = 0 ∀i ∈ I −{F ∪B}
c(i,t) = 0 ∀i ∈ I −{F ∪B}
c(i,s) = ∞ ∀i ∈ {F}

c(i,t) = ∞ ∀i ∈ {B}
c(i, j) =

∫

Fi, j
g(∇I(Fi, j(s)))ds {i, j} ∈ N

(11)

whereg is a positive decreasing function (see Eq. 6)
and∇I is the gradient of imageI . Fi, j is the common
boundary between adjacent regionsi and j. This kind
of energy is related to geodesics and minimal surfaces.

Fig. 7. 3D surface rendering of a segmented liver
superposed with the original data.

Table 1 summarizes the comparisons between the
speed of our method with classical graph-cuts (method
2) (Boykov et al., 2001) and the marker controlled
watershed segmentation (method 1) (Beucher and
Lantuejoul, 1979). For graph based methods, Table 1
contains the time needed to construct the graph, to
compute the minimal cut and finally to build the
output image. The results were computed on a laptop
with Intel Core Duo 2.16 GHz processor and 1 GB
of memory. This limited platform does not allow to
use the classical graph cut (Boykov and Jolly, 2001)
on large datasets such as the thoracic CT illustrated in
Fig. 7. This limitation is only due to memory limitation
of the platform.

DISCUSSION

Experimental results show that our region merging
process is stable. Moreover the approximation done
using the region graph instead of the pixel graph is
negligible when the watershed transform produces a
heavy over-segmentation. When this assumption is
not verified, for instance when some important edges
have not been detected by the watershed transform,
the two methods produce different results. Using the
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Table 1.Comparisons of computation time.

Image Size Method 1 Method 2 Our method

Fig. 4 256×256 0.08 s 0.5 s 0.09 s
Figs. 5-6 128×85×90 1.60 s 14.8 s 2.39 s
Fig. 7 255×255×128 14.16 s — 152.3 s

adjacency graph of the watershed regions instead of
the pixel adjacency graph can also reduce the time to
compute the minimal cut since it offers in experiments
an important reduction of the number of nodes and arcs
of the graph.

CONCLUSION

The region merging process tries to combine
advantages from the watershed transform and the
graph-cuts partitioning. The combination of graph cuts
and watershed offers an improvement in terms of
computational cost and memory requirements of the
graph-cut based at the pixel level.

We are now working on a better integration of
morphological and graph based segmentation. We
would like to combine the two methods presented
in this paper. We will also consider different means
to construct and compute graphs and arc weights
associated with regions. This work has already
been applied to 3D medical images segmentation.
Our perspectives are now to develop morphological
and graph-based methods for 3D temporal image
segmentation.
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and the Cancéropôle for funding our research on
medical image segmentation. We would also like
to thank The Center for Advanced Visualization
and Interaction (CAVI), Aarhus University Denmark,
especially Thomas Sangild Sorensen and Jesper
Mosegaard, for their support and advices about this
paper.

REFERENCES

Beucher S, Lantuejoul C (1979). Use of watersheds in
contour detection. In: Proc Int Worksh Image Proc,
Rennes, France. September 17–21, 1979.

Beucher S (1994). Watershed, hierarchical segmentation and
waterfall algorithm. In: Proc ISMM’94, 69–76.

Boykov Y, Jolly MP (2001). Interactive Graph Cuts for
Optimal Boundary and Region Segmentation of Objects
in N-D Images. In: Proc Int Conf Comput Vis,
Vancouver, Canada 1:105–12.

Boykov Y, Kolmogorov V (2003). Computing Geodesics
and Minimal Surfaces via Graph Cuts. In: Proc Int Conf
Comput Vis, Nice, France 1:26–33.

Boykov Y, Kolmogorov V (2004). An experimental
comparison of min-cut/max-flow algorithms for energy
minimization in vision. IEEE Trans Pattern Anal
26:1124–37.

Boykov Y, Veksler O, Zabih R (2001). Fast Approximate
Energy Minimization via Graph Cuts. IEEE Trans
Pattern Anal 23:1222-39.

Boykov Y, Veksler O, Zabih R (1998). Markov random
fields with efficient approximations. In: Proc IEEE
Conf Comput Vis Pattern Recogn 648–55.

Caselles V, Kimmel R, Sapiro G (1997). Geodesic Active
Contours. Int J Comput Vision 22(1):61–79.

Ford F, Fulkerson D (1955). A simplex algorithm finding
maximal networks flows and an application to the
Hitchock problem. Rand Report, Rand Corporation,
Santa Monica 1955.

Greig D, Porteous B, Seheult A (1989). Exact maximum a
posteriori estimation for binary images. J Roy Stat Soc.
51(2):271–9.

Kolmogorov V, Zabih R (2004).What energy functions can
be minimized via graph cuts? IEEE Trans Pattern Anal
26:147–59.

Li Y, Sun J, Tang C, Shum H (2004). Lazy snapping.
SIGGRAPH 2004. ACM Trans Graphics 23:303–8.

Lombaert H, Sun Y, Grady L, Xu C (2005). A multilevel
banded graph cuts method for fast image segmentation.
In: Proc 10th IEEE Int Conf Comput Vis, Vol. 1.

Meyer F, Beucher S (1990). Morphological Segmentation. J
Vis Commun Image R 1:21–46.

Meyer F (1994). Minimal spanning forests for
morphological segmentation. In: Proc ISMM’94.
13–14.

O’Callaghan RJ, Bull DR (2005). Combined
Morphological-Spectral Unsupervised Image
Segmentation. IEEE Trans Image Proc 14:49–62.

45


