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ABSTRACT

The human corneal endothelium can be observed with two typesof microscopes: classical optical microscope
for ex-vivo imaging, and specular optical microscope forin-vivo imaging. The quality of the cornea is
correlated to the endothelial cell density and morphometry. Automatic methods to analyze the human corneal
endothelium images are still not totally efficient. Image analysis methods that focus only on cell contours
do not give good results in presence of noise and of bad conditions of acquisition. More elaborated methods
introduce regional informations in order to perform the cell contours completion, thus implementing the duality
contour-region. Their good performance can be explained bytheir connections with several basic principles
of human visual perception (Gestalt Theory and Marr’s computational theory).

Keywords: cell detection, contour closure, contour-region duality, human corneal endothelium, mosaic
reconstruction, specular microscopy.

INTRODUCTION

CORNEA: VISION AND QUALITY
CONTROL

The cornea is the transparent surface in the front
side of the eye. It has a role of protection of the eye.
Together with the lens, it enables to focus the incident
light onto the retina.

It is constituted of several layers, such as the
epithelium (at the frontside of the cornea), the stroma
and the endothelium (at the backside of the cornea).
The endothelium contains non-regenerative cells tiled
in a monolayer and hexagonal mosaic.

This endothelial layer pumps water from the
cornea, keeping it clear. A high cell density and a
regular morphometry of the cells of this layer reflect
the good quality of a cornea before transplantation, the
most common medical transplantation in the world.
Herein lays the importance of the endothelial quality
control.

Before transplantation, the cornea button is
observed by classical optical microscopy (ex vivo,
Fig. 1). After grafting, the cornea is observedin
vivo with an optical specular microscope (Gainet al.,
2002; Fig. 2). Those two images have similarities (the
cell borders correspond to the intersticial zone that
surround the cell bodies): a human observer, expert or
not, can easily count the cells and draw their borders.

Fig. 1. Optical microscopy imaging of a human
corneal endothelium.This image is 400× 400 pixels,
representing 0.52× 0.52 mm. Within the black circle,
one can notice that the endothelial cell borders are not
visible and that a lot of informations is lost partly due
to the saturation effect. A simple thresholding on this
image will thus not give a good segmentation of the
cells.

But, due to a lack of informations in some parts of the
borders, computer algorithms cannot easily perform
the completion of the cell borders. This problem is very
time consuming for experts that have to manually take
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the place of the software. Moreover, this operation is
simple (for not too bad images) and a child could easily
do it visually (but coding it in a computer program is
not so easy!).

Fig. 2. Specular microscopy imaging of a human
corneal endothelium. This 8-bits (256 grey levels)
image is constituted by 215× 468 pixels, and
represents a spatial field of 0.08 mm2 (0.19 mm×
0.42 mm).

THE LIMITS OF EXISTING METHODS

Several methods exist to evaluate the cell density
of the human corneal endothelium. Some perform
a global analysis like Doughtyet al. (1997); Fitzke
et al. (1997), or Ayalaet al. (2001). However, these
techniques avoid the problem of detecting the cells
since they are only focusing on an average cell density
computation. Some other methods try to mimic the
human visual perception by detecting the borders of
the cells (Gainet al., 2002; de Andrade, 2004; Debayle
et al., 2006), or by extracting the cell bodies (Foracchia
and Ruggeri, 2000).

The first limitation of such methods is that a
specialist of the domain still has to interact with the
software to either choose a threshold value (Gainet al.,
2002), select the center of the cells (de Andrade,
2004) or correct and add borders to the detected ones
(Foracchia and Ruggeri, 2000). Second, the algorithm
of Gainet al. (2002) is too simple to work well in the
case of a poor acquisition step or of bad conditions of

lighting (Fig. 1). In specular microscopy, the Fig. 2
presents an illumination deviation (due to the optics
of the microscope) that forbids the use of a global
threshold to detect the borders of the cells.

Those borders lead into a partition of the plane,i.e.,
a tesselation that will be called in this article “mosaic”,
word taken from the ophtalmology vocabulary to
describe the pattern formed by the hexagonally-shaped
cellular structure of the corneal endothelium.

GOAL OF THIS PAPER

The goal of this article is to show how
we can mimic the visual perception system to
computationnaly get the borders of the cornea cells,
and to show why some advanced image analysis
techniques that give good results in fact involve some
vision principles.

IMAGE ANALYSIS TOOLS
AND LINKS TO HUMAN VISUAL
PERCEPTION

GESTALT THEORY AND ALGORITHMS

It is a fact that the human visual perception
system is very performant. It does not need complete
informations to infer objects (Fig. 3; Kanizsa, 1980)
and to understand a scene. Moreover, it has been
proved that animals could also percept such subjective
figure (Haterenet al., 1990; Nieder, 2002).

Fig. 3. Kanisza triangle: although not drawn, the
triangle can be easily visually infered.

To describe the human visual perception,
Wertheimer provided some principles under its Gestalt
Theory (Wertheimer, 1923a;b; Koffka, 1935; Rock,
2001). According to it, basic elements like dots, lines
and segments, curves, are grouped together according
to some visual principles,e.g., continuation (Fig. 4),
proximity (Fig. 7) and symmetry.
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Fig. 4. The lines A–C and B–D are visually grouped
by good continuation. On contrary, we have to do an
effort to percept the groups A–B and C–D.

The continuity of direction between (for example)
segments plays an important role. The Gestalt Theory
calls it the “good continuation” principle. An angular
variation of 30◦ has been proved to be a visual
“limit” between continuous and intersection lines
(Dakin and Hess, 1999; Mullenet al., 2000). Visually,
this principle means that a line does not need
to be continuously drawn as long as the “good
continuation” is respected (Kovács and Julesz, 1993).
The implementation of this principle in a computer
program consists in testing every pair of segments and
to verify if the angle criterion is satisfied or not (see
Fig. 5 and Fig. 6).

Fig. 5.If the angle between segment A and segment B is
less than30◦, then the “good continuation principle”
applies between A and B and the continuation line
between A and B can be drawn. Notice that this
relation is symmetric: A is in the continuation of B,
as well as B is in the continuation of A.

As claimed by the Gestalt Theory, the human
visual system groups objects by following the
“proximity” principle. Kubovy and Gepshtein (2000)
proved, with what they called “the pure distance law”,
that the direction of an alignment was preferentialy
chosen according to the proximity between stimuli. To
test the “proximity” principle, the Euclidean distance
is used.

Fig. 6.When the extremity of the segment B lays in the
cone C, then B is considered as a “weak continuation”
of segment A (A′ shows the direction of A). The
“good continuation” is more restrictive than the weak
continuation (see Fig. 5).

Fig. 7. The six rectangles form 3 groups by
“proximity”.

SKELETONS, WATERSHEDS
AND DISTANCE MAPS

“Symmetric” objects are visually more important
than the others. A symmetry gives informations on
the structure of the object. This can be linked to
the medial axis (Calabi and Hartnett, 1968; Blum
and Nagel, 1978; Zouet al., 2001, and Fig. 8)
that concentrates informations about the original
shape. Therefore, the hexagonally-shaped structure
of the cornea endothelium is very symmetric, and
those properties should give practical information to
properly detect the cells.

Fig. 8.Illustration of the medial axis, here in dot lines,
that summarize the informations of the contours (the
connected lines). The medial axis corresponds to the
crest line of the distance transform obtained from the
contours.

The primal sketch of Marr (1983) is the knowledge
of contours. This is the first step in perception
according to Marr. When trying to mimic the
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human visual perception system, it seems thus logic
to begin with a contour detection, followed by
a morphological skeletonization (Soille, 2003), as
illustrated in Fig. 11b.

Closed and convex contours are important to
human visual perception (Kovács and Julesz, 1993),
and the use of the watershed operator is indeed justified
(Beucher and Lantuejoul, 1979). Moreover, a distance
map (Cuisenaire, 1999) and its maxima add a regional
information that can complete or close the contours
(distance map calculated from a watershed or from a
skeleton), thus introducing the duality contour-region,
which is what was suggested by Marr (1983) for
the human visual system: a “top-down–bottom-up”
analysis.

BORDERS DETECTION
AND RECONSTRUCTION

The first subsection will show how to detect
the borders of the cells. The next subsections will
present methods to reconstruct the cell mosaic: first by
focusing only on the borders, and then by introducing
some regional informations.

SIMPLE METHOD: CELL BORDERS
DETECTION

The generic method for the recognition of the
cell mosaic in human corneal endothelium microscopy
images is presented through a synoptical scheme
(Alg. 1).

The Alg. 1 is a summary of what will be presented
in the next subsections. The image filtering and borders
detection steps correspond to what a computer can
’see’ or not (see Figs. 1, 2): sometimes, the cell
borders are not complete. The human visual perception
system infers the missing information: this third step
is done with a computer program by what is called
“reconstruction”.

Data: Greyscale specular microscopic image of
corneal endothelial cells (Fig. 2).

Result: Segmentation of the corneal endothelial
cells mosaic.

Image Filtering;1

Borders Detection;2

Mosaic Reconstruction;3

Algorithm 1: General method for detecting and
reconstructing the endothelium mosaic.

Indeed, a filtering process is necessary for
detecting the borders (see algorithms 2, 3 and 4 below).

This is what is implicitely done by the visual system.
The medial axis gives a thin version of the cell borders
(Fig. 11b), that we will call cell contours. This skeleton
is the dual operation of the SKIZ (skeleton by influence
zone, Soille, 2003) that will be performed later.

In the field of mathematical morphology, alternate
sequential filters are often used. They consist of an
alternance of openings and closings of growing sizes.
A more classical filter could also be used (like mean or
gaussian filter), but the morphological filter preserves
better the borders of the cells.

Neural networks have also been used to perform
the task of segmenting corneal endothelium images,
as for example in Salernoet al. (1998), where the
segmentation into cell bodies and cell boundaries is
achieved by a shift invariant artificial neural networks
(with the classical backpropagation technique as
training process). The drawbacks of this method is
the use of a fixed-size mask; notice that an expert is
required to perform the necessary corrections, whereas
our method intent to compute them automatically.

CONTOUR COMPLETION BY GOOD
CONTINUATION

This first method to reconstruct corneal mosaics is
based on the “good continuation” principle from the
Gestalt Theory. The angle criterion (see Figs. 5, 6) can
easily be applied between line segments. This is why
the mosaic is approximated by segments, for example
with gestalt based methods,e.g., Hu and Yan (1997).

Synthetical testing mosaic

To simulate the reconstruction, a synthetical
binary mosaic (Fig. 9) is manually drawn. Holes are
performed on it and an algorithm tries to reconstruct
it. This algorithm is a strict implementation of the
“good continuation”: every segment can potentially be
continued to another one and every pair of segment is
thus tested.

The main drawback of the “good continuation”
algorithm is obvious: no information about the
distance between the segments is used in order to avoid
(for example) the cross-over of two continuations.
In a second version of this algorithm, a condition
of distance is introduced: the continuation of two
segments can be done only if the hole between them is
smaller than the length of both the original segments.
This criterion is still not the good one: it seems that a
regional information have to be introduced in order to
close the borders of the cells.
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(a)

(b)

Fig. 9. A test mosaic and the holes that the
“good continuation” algorithm tries to close. (a) A
synthetical test mosaic. It will be used as a basic
spatial pattern to test the reconstruction methods. (b)
Holes are randomly performed into the test mosaic (a)
and the “good continuation” algorithm tries to close
them. Although this is a synthetical mosaic, the human
visual system performs the closing easily.

When using the “good continuation” only
(Fig. 10b), the errors come from the fact that there
is no information about what couple of extremities are
to be reconnected. The distance used in this method is
used for comparing “continuations” together, but not
to limit the “continuation” to a certain region.

Real cornea mosaic

Looking at a mosaic over the original cornea
gives some more informations about how to close the
contours. It seems that there is not a linear path but
a geodesic path (if we think about the image as a

surface) of “continuation”. This can be seen as an
extension of the “good continuation principle” to the
grey level images. At each extremity of the segments to
be continued, the computation of the geodesic shortest
path (see Ikonen and Toivanen, 2005) gives a distance
value and a path to every other extremity in the mosaic
(Fig. 10). The angle criterion is no more used; instead,
we use the minimal distance from an extremity to
another.

(a) (b)

Fig. 10. The geodesic distance is tested on a sub-
image extracted from Fig. 2, because it presents typical
situations (informations not present but inferred by a
human observer). (a) Given two points (the extremities
of the white path), the geodesic shortest path between
the two points is highlighted here in white. This path is
visually following the contours of the cells. It could be
used to close the contours of the mosaic. (b) This image
in a zoom of the bottom-left corner of Fig. 2. It shows
in overlay the mosaic (in white) and the goedesic path
(in black) to reconstruct it by “continuation”. If some
closure seem to correctly reconstruct the borders, some
others appear to be at the wrong place.

Applied to two points laying on the cornea borders,
the shortest path between those two points coincide
with a border a of cell (Fig. 10a). It seems logic to
wait for good results with this method. But, when
trying to connect one extremity with the closest other
extremity, the connection is not what is expected
(Fig. 10b). These results mean that something more
is used to visually infer the cells: in fact, some
regional informations are necessary to first extract the
extremities to be connected, and then to draw a path
between them.

REGION-BASED RECONSTRUCTION
OF THE MOSAIC

More efficient methods exist to segment mosaic
images like cornea cells. They go one step further
into the process of reconstruction, using a regional
information to make a good closure of the cells.
For example, the methods proposed by Vincent and
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Masters (1992) and Angulo and Matou (2005) perform
a really accurate detection and reconstruction of
the mosaic in cornea endothelial. This subsection
describes those methods and the explanation of their
good results according to human visual principles
previously presented.

These methods (Alg. 2, 3) follow the general
algorithm (Alg. 1): after a filtering process (alternate
sequential filtering or simply opening), both methods
consist on extracting markers of the corneal cells and
using them in a constrained watershed to get the
borders of the cells. The difference is that Alg. 2 does
an effective reconstruction whereas Alg. 3 directly
performs a detection of closed contours.

Data: Input← Greyscale image of cornea
endothelial cells.

Result: Segmentation of the cornea endothelial
cells.

begin1

I ← Opening ofInput;2

t← Top-Hat ofI ;3

skel← Skeletonization oft;4

DM← Distance Map fromskel;5

markers← regional maxima ofDM;6

segmentation←Watershed constrained to7

the markers in the inverse ofDM;
end8

Algorithm 2: Angulo’s method for detecting the
cells (Angulo and Matou, 2005).

Data: Input← Greyscale image of cornea
endothelial cells.

Result: Segmentation of the cornea endothelial
cells.

begin1

I ← Alternate Sequential Filter ofInput;2

ρ(I−h)← Grayscale reconstruction ofI3

from I −h;
domes← subtraction ofρ(I −h) from I ;4

markers← threshold ofdomes;5

segmentation← watershed constrained by6

markerson Input image;
end7

Algorithm 3: Vincent’s method for detecting the
cells (Vincent and Masters, 1992).

SOME EXPLANATIONS ON THE
ALGORITHMS

These algorithms are based upon the mathematical
morphology (Serra, 1982; Soille, 2003): erosion
and dilation are the basic operators, and their
combination enables the definition of opening and

closing operators, top-hat operator (used to detect
crests) and alternate sequential filters (alternance of
opening and closing of growing sizes). The watershed
is also based upon mathematical morphology. If a
distance map is considered as a grey level image,
it may be interpreted as a surface (the grey level
is seen as an elevation). The watershed partitions
such an image into catchment basins, each marker
being a regional maximum of the distance map. As
previously said, those basins are connected. The main
problem using the watershed is to constrained them
with relevant markers (hence the choice of the markers
is crucial).

The distance map associates a distance value from
every pixel in an image to an object. For example, the
distance map from every pixel to the skeleton of the
borders of the cells is represented in Fig. 11(c). When
locating the maxima of this map, they can be roughly
considered as the centers of the cell bodies and be used
to constrain the watershed.

In those region-based methods, the distance
criterion is introduced implicitely by detecting the
centers of the cells with a distance map (Angulo and
Matou, 2005) or with an extended regional maxima
(extraction ofh-domes in Vincent and Masters, 1992).
Thus, the regional information that was missing in the
cell borders detection methods is used to segment the
cells, but there are still remaining problems.

The results of the segmentations can be observed
in Fig. 12. This is almost what is visually expected,
except that there is an over-segmentation. The noisy
image does not simply provide the centers of the
cells, and this is the main problem of these algorithms
(Algs. 2, 3), due to non-relevant markers (Soille,
2003). One advantage of using a distance map to get
the markers is that it is well adapted to detecting
convex cells. For non convex cells this could generate
errors (like grain boundaries in material sciences).

IMPROVEMENTS IN CORNEAL CELLS
DETECTION

A more efficient method has been recently
developped (Gavet, 2008). Its efficiency can be
explained by a better detection of the regional markers:
the supremum of openings by segments preserves the
linear parts of the mosaic (Fig. 4). This is inspired from
Chazallon and Pinoli (1997), where only the principal
component of the skeleton is retained.
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Data: Input← Greyscale image of corneal
endothelial cells.

Result: Segmentation of the cornea endothelial
cells.

begin1

I ← Alternate Sequential Filter ofInput;2

R← Input− I ;3

c1← closing ofR ;4

linear← Supremum of Openings ofc1 by5

segments ;
c2← closing oflinear;6

S← skeletonization ofc2;7

DM← Distance Map ofS ;8

markers← Regional Maxima ofDM;9

segmentation← watershed constrained by10

markerson inverse ofDM;
end11

Algorithm 4: Present article’s method for
detecting the cornea endothelial cells.

The structure of this algorithm (Alg. 4) is similar to
the one Alg. 1 (see Fig. 11); the reconstruction step is
the same as for Angulo and Matou (2005), and the filter

is an alternate sequential (as for Vincent and Masters,
1992). The main difference is the opening by segments
(line 5) followed by a closing (line 6), that performs a
filter (by keeping the linear parts) of the borders: the
skeleton is thus more accurate, and the reconstruction
is made easier.

This mosaic alone is already enough for a visual
reconstruction by an expert (since the grey level
information is not present, an observer has to know
that certain types of cells, too litle or not convex, do
not exist in a real cornea).

RESULTS AND DISCUSSION

Focusing only on the contours to extract a mosaic
is not enough to perform a good segmentation. Some
regional informations like markers pointing the centers
of the cells improve the detection of the mosaic (see
Fig. 12), but this is not perfect. This is due to a
detection of too many markers, or in fact because of
a detection of wrong borders.

(a) (b) (c) (d)

Fig. 11.Mosaic recognition within the image (a) using Alg. 4. (a) Specular microscopy image of a human corneal
endothelium. (b) Corneal endothelium mosaic before reconstruction. This skeleton is the result at line 6 of Alg. 4.
(c) Distance map from the skeleton presented in (b). Every pixel is given the value of the Euclidean distance to
the original skeleton, and represented as an image. The local maxima in this image are used as markers for the
watershed process. (d) Present article’s resulting mosaic.
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(a) (b) (c) (d)

Fig. 12. Mosaic recognition within the image 12(a) by different methods. Excepted at the left and right sides
of the images (where hardly nothing can be seen), the detection is really efficient, especially for the proposed
method (d). But there subsists some problems that remains visually evident. (a) Specular microscopy image of
a human corneal endothelium. (b) Angulo’s method (Angulo and Matou, 2005) applied on (a). (c) Vincent’s
method (Vincent and Masters, 1992) applied on (a). (d) Present article’s resulting mosaic.

By using a supremum of openings by segments,
the proposed algorithm (see Fig. 12d) eliminates a lot
of non cell borders, but not all of them. In practice,
there will always be cases where false borders will
be detected. The next improvements of this algorithm
will be placed on avoiding the detection of these false
borders and/or on knowing that they are false (Gavet,
2008).

CONCLUSION AND
PERSPECTIVES

Theories of visual perception provide explanations
of the efficiency of some image analysis methods:
their study allows to improve their use in some
new algorithms, specially adapted to the endothelial
mosaic structure. The presented method gives better
results than previous ones. It makes a better use of
the knowledge of the human perception and of the
particular geometry of the corneal mosaics.

In a near future, this method will be improved
by using this duality “region-contour”: a contour
detection followed by a region analysis to then
reconstruct the mosaic by closing the contours.

This last step will be done by computing regional
geometrical or morphological factors, like symmetry
or shape criteria. Those parameters should be efficient
to detect false positives,e.g., distinguish erroneously
detected cells from real ones.
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