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ABSTRACT

Robust image analysis of spots in microarrays (quality rmbrt spot segmentation + quantification) is a
requirement for automated software which is of fundamemglortance for a high-throughput analysis of
genomics microarray-based data. This paper deals withetelapment of model-based image processing
algorithms for qualifying/segmenting/quantifying adaply each spot according to its morphology. A series
of morphological models for spot intensities are introdliCEhe spot typologies represent most of the possible
gualitative cases identified from a large database (difter@utines, techniques, etc.). Then, based on these
spot models, a classification framework has been developkd.spot feature extraction and classification
(without segmenting) is based on converting the spot imagpadlar coordinates and, after computing
the radial/angular projections, the calculation of grametric curves and derived parameters from these
projections. Spot contour segmentation can also be solyetoloking in polar coordinates, calculating the
up/down minimal path, which is easily obtained with the geafieed distance function. With this model-based
technique, the segmentation can be regularised by cantyallfferent elements of the algorithm. According
to the spot typologyd.g, doughnut-like or egg-like spots), several minimal pats lse computed to obtain a
multi-region segmentation. Moreover, this segmentasanare robust and sensible to weak spots, improving
the previous approaches.

Keywords: genomic microarray image, mathematical morpiml polar coordinates, shortest path
segmentation, spot modelling, spot segmentation.

INTRODUCTION and Serra, 2003). This inner marker (spot center)
plus outer marker (bounding box from rectangular
DNA microarrays are an experimental bio- grid) watershed-based segmentation yields satisfactory
technology of growing importance in identifying results for “normal” spots. However, it is observed, on
sequences in genomes (genotyping experimentd}je one hand, segmentation problems for low intensity
in quantifying the presence (comparative genomispots or for spots on strong noisy background; and
hybridization experiments) and expression level®n the other hand, difficulties to define a right
(transcript experiment) of genes. The method basicallpegmentation/quantification for structured sp@tsg)(
consists in the detection and/or quantification ofdoughnut-like and egg-like spots). In addition, several
the hybridization signal of a DNA or RNA sample typologies of abnormal or irregular spots can be related
on an array of thousands of known oligonucleotidego different problems of preparation of microarrays
sequences (probes) that are printed as spots onaad consequently, a qualitative automatic evaluation of
support (Brown and Botstein, 1999; Schena, 2003). spots can be of help for flagging the suspect spots, a

o . . . L necessary step for data analysis.
Spot finding and signal intensity determination are y step y

performed with the help of image analysis software. This manuscript is an extended version of the
Recently it has been shown that segmentatiomonference paper presented in tk# International
methods can significantly influence microarray data&Conference in Stereology (ICSXI{(Angulo, 2007),
precision (Ahmedet al, 2004). Successful work on held in Saint-Etienne (France) in August 2007. It
spot location and segmentation has already been doite organised into two main parts and it deals with
during the last years (Cheat al, 1997; Steinfatret the development of model-based image processing
al., 2001; Bozinov and Rahnenfuhrer J, 2002; Yanglgorithms for qualifying, segmenting and quantifying
et al, 2002; Demirkayaet al, 2005; Gottardoet adaptively each spot according to its morphology. In
al., 2006). A comparative evaluation of performancethe first part, we focus on the morphological modelling
can be found in (Lehmussokt al, 2006). We have and automated classification of spots according
previously proposed an automatic spot segmentaticio different typologies. Several models have been
based on advanced morphological operators (Angulsuggested for spot intensity distribution, including
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special statistical models: a stochastic/geometrimtroduces the polar-based spot segmentation by global
model (Balagurunathan and Dougherty, 2002), aninimal paths according to the spot typology. In
scaled bivariate Gaussian density function (Steinfatthe seventh sectionthe results obtained from a deep
et al, 2001), a difference of two Gaussian densitiesempirical study are discussed. Finally, the conclusions
or a cylinder (Wierlinget al, 2002), a polynomial- and perspectives are given in the eighth section.
hyperbolic model (Ekstrorat al,, 2004), linear models The paper is completed with two appendix sections.
based on PCA (Glasbey and Khondokesl, 2005). Appendix A provides some additional elements about
These models are typically used for image simulatiorthe spot classification algorithm. Appendix B presents
or for fitting model parameters. We prefer here tothe algorithm to optimally compute the spot center,
propose a morphological model with spot typologieswvhich is required for spot polar transformation.

which represent most of the possible qualitative cases

identified from a large database (different routines,

techniques, etc.). Then, based on these spot models, NOTATION AND BASIC

a classification framework has been developed. The

spot feature extraction and classification (without DEFINITIONS

segmenting) is based on converting the spot image o . _

to polar coordinates, and after computing the Intheframework of digital grids, a grey tone image
radial/angular projections, calculating granulometric@ssociated to a scanned microarray can be represented

curves and derived parameters from the projections. Py & functionf : E — .77 = {tmin,tmin +1,- - , tmax}
where E is a discrete spaceE(c Z2), domain of

Furthermore, spot segmentation can also b@efinition of the functionf, and.7 is an ordered set
approached in a more flexible and understandable way giscrete grey-levels,e., a subset ofZ. Typically,
when working in polar coordinates. But the samg,_. — 0 andtyay= 26— 1 = 65535 for a 16-bits image

weaknesses of the watershed on the low or noisjjle. f(x) is the intensity value of the image at point
gradients are still underlying. The spot contour in polak, _ (X,y)

coordinates is equivalent to calculating the left/right
markers watershed-based transformation. This well- The spots are structures placed regularly on the
posed problem of segmentation can be also solved Byicroarray image. Let the image zok C E be _
calculating the up/down minimal path (easily obtainecfefined as the influence cell (or bounding box region
with the generalized distance function). The aim ofsince the spots are usually placed in an orthogonal
the second part of the paper is just to introduce a@'ray structure) around spati.e., pixels of the zone
innovative model-based spot segmentation accordin‘%hi:-‘”_a their distance to the center of spistiower than
to this paradigm, where the type of segmentation ighe distance to the other spot centers. Ideally, we can
adapted to the spot typology. Several issues must saippose thaZi NZ; = 0, Vi, j\i # | (i.e, overlapping
addressed, mainly the way for filtering the image orPetween neighbouring spots is impossible). The image
which the distance is computed and the manner t§ignal intensity in the cell associated to the spot
obtain a closed segmentation (circular shortest path). at pixel positionx is denoted byf : Z — 7,
The shortest path segmentation can be regularised Byhere obviouslyfi(x) = f(x), that is, function f;
controlling different elements of the algorithm. Thelis a restriction of functionf to the set of support
segmentation of microarray spots in polar coordinatedi- In order to consider individually each spot but
has also been addressed by (Appleton and Talbogstablishing spot models, we referdpix —x¢) = fi(x)
2005), as an example of application of globally optimaffunctionsi(y), y € E, translated at?, the central point
geodesic active contours, but without considering th@f spoti.
different typologies of spots. Another recent work has
proposed a model-based spot segmentation by means
of clustering algorithms (Lét al.,, 2005). e
it
The rest of the paper is organised as follows. {7 1T}
In the second section we fix the notation and we T\~ @ye
give a reminder on image (log-)polar transformation. ‘\g
The third section introduces the image models for
spots in microarray images. Then, in the fourth
section the classification framework for polar-based
spot classification is presented. In the fifth section
the algorithm for computing the generalized distancéig. 1. Examples of polar and log-polar
global minimal paths is reminded. The sixth sectiortransformation of a grey-level image.

log p

f(x,y) f°(logp, 0)
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The polar transformation converts the Cartesian
image functionf(x,y) : E — .7 into another polar
image function f°(p,0) : Ep 9 — 7, where the
angular coordinates are placed on the vertical axis
and the radial coordinates are placed on the horizonta
one. More precisely, with respect to a central point
X = (x°,y°), we have:

(D-Regular (I1)-Cracking-Like

p=\Jx—2tly-¥2 0<p<R, (1) g

and

6= arCtan<—§:£> , 0<6<2m. ) (IV)-Doughnut-like (V)-Egg-Like (VI)-Fragmented
To determine the angular coordinafein the polar g 2 Examples of spot typologies.
representation, it must be limited to an interval of

size 2. Conventional choices for such an interval are

[0,2m) and (—11/2,11/2]. To obtain@ in the interval

[0,2m), the following algorithm may be used: MODELS FOR SPOTS IN

MICROARRAY IMAGES

arctan(y/X) if x> 0 andy™> 0

arctan(y/%) +2m if x>0 andy'<0 Based on empirical observations of spots, we
g ] arctany/R)+m if k<0 consider that the image intensity distribution for any

/2 if x= 0 andy> 0 spoti is given by the following expression:

3m/2 if x=0andy'< 0

undefined ifX=0 andy’=0 fi(x) = a5 (x —x7) +ni(x) , (3)

wherexX=x—x° andy=y—y°. Now, the space support wheres(y) corresponds to the morphological shape
is Ep e, (p,0) € (Z x Zp) (discrete period op pixels  distribution for spot. It is assumed for our purposes
equivalent to 2r). A relation is established where the of classification and segmentation tisais represented
points at the top of the imag® (= 0) are neighborsto py a cylindrical model. More precisely is the

the ones at the botton® (= p — 1). height of the “cylindrical” peak for spdt x¢ are the
jcoordinates of the center position of the peak for spot

In many computer vision problems, the radia _ : _ ) ;
y P P i, andn;(x) is a function that describes the image noise.

coordinate is replaced by the logarithm @f named
log-polar representation. The main advantage of
the log-polar coordinates with respect to the polar
coordinates is the fact that scale changes in the Two different sources of background noise can be
Cartesian image become horizontal shifts in thalistinguished:

transformed image. In both polar and log-polar

representations, rotations in the Cartesian image ni(x) = n9(x) +nl(x) . 4)
become vertical cyclicife., periodic) shifts in the
transformed space. The application of morphological

operators to images in (log-)polar coordinates has be(?n n9(x) is the global background at point This
recently studied by Luengo-Oroet al. (2005). In unction can be typically described by a randomly

Fio. 1 a comparison of the polar and the lod- OlarGaussian distributed noise for the whole image,
9. P P 9-POIAL & N9 ~ N(pn,02). This part of the noise can be

']Eroe:ntifgrnle:tlggzsog?g 'rgtar%%éseﬁi'xenérygesza\r/ﬁe%rt‘gtsisgonsidered as associated to the acquisition system
purp P 9 €9 photon-electronic scanner, CCD camera, etc.)
to work on the polar representation, which leads t

a better resolution near the spot center since this n!(x) is the local background noise (regionalised
resolution is needed for analysing structured spots. Imariable). It can be associated to different local
addition, the log-polar requires a resampling of thgghenomena: inhomogenous illumination, artefacts and
Cartesian grid to improve the structure resolution closenhomogeneities on the surface of support, errors in the
to the center. preparation, etc.

Background noise
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Morphological spot typologies zones typically result in low intensities levels. The
radius shape function fari(8) has the same normal
distribution as for a typical spot. The texture function
can be given by the equatiany) = ti(y) — xi(y),
P , wherefti(y) has the same model as the typical spot
s(y) =ri(0)ti(y) . ©) and Wher)e the cracking functiogi(y) > 0 if y €
o _ Crack Zone. The distribution ofi (y), the morphology
ri(0) is a “shape” function in polar coordinates of the strips (number, length, etc.) and spatial position
describing the contour of spat It defines a closed are difficult to be modeled but typically, the strip
boundary such that thickness is significantly smaller than spot radius

ti(y) if [x—xf|| <ri(6
s(y)={ o) if Hx—xﬁ”>ri(6

The intensity distribution for spatis a cylindrical
peak with a variable radius and height:

) (I11) Saturated spot: The fluorescence saturated

)f (6) spots are characterised by a saturated intenisity,
a = tmax, With no variation of texturei.e,, ti(y) = 1,
and a regular shape of the contoue,, ri(6) has the

& g) i(S a “textlure” funcltio)n,f that is, ]:’:1. spatial same normal distribution as for a typical spot.

variable (more or less regular) function of intensity. . .

Note that this structural variation of intensity at each . (IIV) “Eolug"hnq;[-llke tSpOEI'_hThet spc_);[ %r_etsek;\tf_ a

point of the spot (biochemistry, hybridisation, Washing.CIrCu ar-hole’ in Its center. 1he intensity distribution

and fixing, etc.), is different from the background:clsmg,:iing?mbmauon of two radial-defined texture
noise. )

. . T §OV(y) if [} =Xl <r{"(8) ,
According to the particular distributions of(8) i (y) :{ {high it ring) < ol < rou(g
andtj(y) in this model, it is possible to identify six ) i r(0) < Ix =il < re)
main typologies of spots, see the examples of Fig. 2. where o (y) and tih'gh(y) are the texture functions

(1) Regular spot: In the case of a typical regular associated to the central part and to the peripheral
spot, the DNA material deposition on the spot ispart respectively; and"(8) andr?!(9) are the radius
considered to be circular with an homogenous intensitfunctions of the center and of the spot contour
distribution. The radius can be modeled by a normatespectively. We suppose that the inner and outer
distribution having meary; and variances? r ~  radius shape function®(8) andr®(8) have the same
N(ur, 0?). Typically, the radius mean is random over anormal distribution as for a typical spot (with megam
small range within the array and it can be considere@dndg,ou). In a similar way, the texture functionlgw(y)
as an uniform distributiong; ~ U (rmin,fmax). The  gpq t""(y) have a normal distribution. Moreover,
global variation of intensitygt; (y) can be modeled as usuaily the mean fou_jow(y) tends to 0 and the mean
a normal distribution function, where the texture is a ™" 1 !
normal distribution with meap; = 1 and variance2: ~ forti~ (v)tendsto 1.

t ~N(1, 7). Coefficients; is considered as the ground ~ We can consider also theng-like spot as a

truth expression signal, modeled as another uniforrdegenerated case of the doughnut-like spot such that

distribution,a ~ U (tmin, tmax)- (Hrou — Hein) < & (being relatively small), that is, the
central hole is very large with significantly smaller
than uyou.
' 0 spot has also two superposed intensity levels. More
‘ precisely, a circular peak of intensit-S/gh centered at
(V1)-Doughnut-like (V)-Egg-like (VI)-Fragmented POSitionx{" (but not necessarily witk|" = x¢) which is

B I. - . u ' added to a pedestal of intensif§", i.e.,
§'9y) i x x| <r7(6)

ti(y){ §(y) it (r"(8) < [x—xf)
Fig. 3. Examples of spot typologies in Cartesian and and([[x —xgl| <rP4(8)) .

polar coordinates (in image pairs, left images are (8)
depicted in Cartesian and right in polar coordinates). The inner and outer radius shape functioiﬁﬁe)

(Il) Cracking-like spot: The spot has an aspect and r*(6), and the texture function§®"(x) and

of cracked or ripped intensityj.e, some dark tihigh(x) have typically normal distributions, where here

tortuous lines or strips cross the spot surface. Thedgpically L;nigh tends to 1 angon > 0.
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n i
200 250

In black, (I)-Regular In blue ,(IV)-Doughnut-like In cyafill)-Saturated
In green, (I)-Cracking-Like Inred, (V)-Egg-Like In yellg (VI)-Fragmented

Fig. 4. Angular projections R(0)( f°) (top row) and radial projectionsgp)(f?°) (bottom row) for a selection of
representative spots of each typology.

In this case, we suppose that in the global variationo be appropriate to characterise the different spot
of intensity aiti(x), the value ofay = 1. The estimate distributions. Let f°(p,08) be the image polar
of the mean or the median intensitytgfx) cannot be representation of spot Fig. 3 gives an example
adequate as a spot parameter. The same consideratiafisa spot for each typology. As pointed above, we
are valid for the Doughnut-like spots. have compared it with the log-polar representation and
verified that it is more interesting to work on polar

(VI) Fragmented spot: A fragmented spot is images for texture analysis. The “optimal” center point

chargctensed by_ a degener'ated or irregular sha&% for each spot is obtained by means of the algorithm
functionr;(6), having also a size (surface area) lower

than the typical spot within the array. The standaromesented in Appendix B of the paper.
deviationo is relatively important with respect to the Angular and radial projections: The horizontal
mean. The texture functio(y) can still be modeled and vertical projections of imagé&°(p,0) are then
as a normal distribution. used to describe the spot structures: angular projection
P(0)(f?) = Yhof(p,0) and radial projection
Pa(p)(f) = Yh_5f(p,0). Fig. 4 provides the
MODEL-BASED SPOT projectionsP,(6) andPy(p) for a selection of spots

CLASSIFICATION from each typology.
From the analysis ofP,(0) using Fourier

Based on the spot models introduced above, wdescriptors or morphological parameters (Angulo,
have developed a classification framework for the2005), we state that its variation combines the
different spot typologies. The algorithms for featurecontributions of the background and the spot,
extraction and classification must be simple and fasincluding the texture and the shape irregularities.
each spot should be individually processed and typicalonsequentlyP,(8) is a very poor descriptor to
microarrays have thousands of spots. The parametedigscriminate spot typologies. As we show below,
and the typology will be used to improve and to makePy (p) is more useful for spot classification.

the result of segmentation/quantification more robust. Morphological filtering  of  Pp(p): We

Spots in polar coordinates: According to the start by extracting the background contribution
models proposed, the polar representation seemusing the top-hat transformation  followed
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In black, (I)-Regular In blue ,(IV)-Doughnut-like In cyafi|l)-Saturated
In green, (Il)-Cracking-Like In red, (V)-Egg-Like In yellg (VI)-Fragmented

Fig. 5. Pattern spectra of angular projection, R%,P,(0)), (top row) and pattern spectra of radial projection,
PS(ny,Pa(p)), (bottom row) for a selection of representative spots ohegpology.

by a normalisation, i.e, Pj(p) = Ps(p) — the computation of these 1D openings/closings
¥a(Po(p)) and Pg(p) = pg(p)/maxjs(e), The is very fast. In Fig. 5 the corresponding pattern

value ol — Z;Ff:oyn(Pe(P))/ZE:ope(P) gives spectra for the selection of spots are shown. The

an estimate of the regional background. FinallySignificant parameters computed frdSn,, Py (p))

a pre-filtering step is necessary in order {o(see definitions and some examples in Appendix A)

the insianificant ext : BN ~ combined with those obtained directly frofy(p)
remove the insignificant extremd.e, Pg(p) = allow a spot classification into the different typologies

pree (Pg(p) +h; y*(Pa(p) —h; Pg(p))), where considered and without needing the spot segmentation.

typically h = 2% to 5% of the maximum oPg(0)  (More details in Angulo (2005)).
(which is equal to 1 since it has been normalised).

We can now compute several parameters from the

processed curve§2(p) such as: an approximation GENERALIZED DISTANCE

of spot radius, the value fgr = 0, standard deviation,

the percentage of points equal toet¢, which allow GLOBAL MINIMAL PATH

detecting the main typologies. In Appendix A of the ~ ALGORITHMS
paper the precise definition of parameters and the
corresponding values for a selection of representative | imitations of watershed transformation for
spots of each typology are given. detecting lines:According to the analysis by Vincent
Granulometric analysis of Py(p): Furthermore, (1998), extracting a continuous track (="crest-line”)
the variation ofPs(p) can be analysed by means ofgoing from the top to the bottom of the image by means
1D granulometries or pattern spectra. A granulometrpf a constrained watershed, using as markers the right
is a family of openings of increasing sife}n>0 and  and left sides of the image, presents several limitations:
the pattern spectrum of is the following mapping (1) it fails whenSNR(= sensitivity of watershed line to
PS/(f,n) = (M(ya(f)) — m(yns1(F)))/m(f), n > 0 noise)is low; (2) the watershed between two markers
and wherem(g) is the integral ofg. A dual definition andB depends on the position of the saddle points (for
PS (f,—n) is associated to a family of closings andall the paths joiningA to B with minimal elevation,
then both curves are represented togefher,0,n} —  the highest pixels along those paths are the saddle
PSf,n) = {PS(f,—n),0,PS,(f,n)}. Note that points)between the markers, and their location is one
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of the main factors determining the location of the line;

Global minimal paths, GMP: Each pathP in

(3) the criteria used to build the watershed are baseithe 8-connect graph has an associated €ysP),
on grey levels, and the length of watershed lines igqual to the sum of the cost of its successive edges.
irrelevant. Length constraints can be introduced in thgve can now define the distanak (p,q) between

segmentation by using global minimal path algorithmstwo pixels p and q in the imagef as: d¢(p,q) =
This approach is also useful to detect “disconnectedmin{C; (P), P path betweem andq}.

crest-line between two markers.

f disup(f)  min(disup(f))

Fig. 6. Top, generalised distance function and global_
paths. Bottom, two examples of GMP

minimal
detection in very noisy images.

Generalised distance function, GDF: The

algorithm is based on a modification of the classic
distance function algorithm
of Rosenfeld and Pfaltz (1968) so that: (1) edge cost

two-pass sequential

For the simple problem of finding a path of
minimal cost (or global minimal path, GMP) going
from the top rowd to the bottom rowD of the image,
we use the following result: a pixgl belongs to such
a minimal path if and only ifd¢(p,U) +d¢(p,D) =
d¢ (U,D). This is the approach introduced by Vincent
(1998). To extract such Up/Down GMP in imagewe
can therefore proceed as follows:

— Compute GDF to setl in image f: for each pixel p,
computed; (p,U);

— Compute GDF to sdD in imagef: d;(p,D);

Sum these two distance functiond;(U,D)(p) =
df(p,U)+df(p,D),

—  Find upin, the minimal value ofis (U, D) and threshold
the result in order to keep only the pixels which values
in d¢(U,D) are equal t@imin.

Since the extracted minimal paths are

is taken into account; (2) raster and anti-raster scarieferentially located on dark pixels.., have low

are iterated until stability. Let us denote Y™ (p)

cost), the original image with the bright track must

(resp..N~(p)) the neighbors of pixgh scanned before be inverted before computing the two generalised
p (resp., after p) in a raster scan, for a 8-connectedistance functions. From an algorithmic point of
grid (neighborhood graph). In this graph, to each edgeiew, the problem is reduced to computing two grey-

between two neighboring pixels andqg of an image
f one associates the cost valbgp,q) = f(p) + f(q)

weighted generalised distance transforms. Fig. 6 shows
some examples, illustrating the robustness against the

(or any other monotonically increasing function, noise.

such as maif (p), f(q)) or min(f(p),f(q))). More
specifically, the algorithm of GDF to s&tin image f

proceeds as follows,

— Initialise result imagel: d(p) =0 if pe X andd(p) =
+oo otherwise;

— lterate until stability:

Scan image in raster order» For each pixel
p, do: d(p) « min{d(p),min{d(a) + Cs(p,a),q €
N*(p)}}

Scan image in anti-raster ordes For each pixel
p, do: d(p) « min{d(p),min{d(q) +Cr(p,q),q €
N™(p)}}

To give priority to the “vertical” paths, the
computation of the distance function is constrained
for raster scan to the top-left, top-middle and top-
right pixels of p in the neighborhood™ (p) (resp.,
bottom-left, bottom-middle and bottom-right for anti-
raster scarN~(p)). Another way to formulate it is
to say that at any location along a track, according
to the neighborhood graph used, it is assumed that
the absolute value of the angle between the track and
the vertical direction is less than or equal to°45
It guarantees a certain smoothness to the extracted
tracks. This segmentation can be interpreted in terms
of an optimality criteria framework (Vincent, 1998):

Depending on the cost value considered, the algorithr(ll) the pixel values along the track (to maximise),
typically converges in two or three iterations (relatively(2) the length of the track (to minimise), (3) the

efficient).

raggedness of the track (to minimise).
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Feature i « Parameters :

- ]
extraction - Typology

Filtering +

B (x,¥)—(p,8) r
Transformation Gradient

v

(psa) — (X,y) UpJ'DOWn
I I‘— Transformation + Minimal Path
Close contour

0e[0,2

Bel-211/3, 41/3]

U
o

Fig. 7. Top, flowchart of algorithm for model-based spot segmenntédti polar coordinates. Bottom, selection of
a period of cyclic minimal path to define close contour.

MODEL-BASED SPOT segmentedt,(x) (a factork = 4 constitutes a typical
SEGMENTATION BY MIN. PATHS value considered in all our examples). The Cartesian-
to-polar conversion is then computed from this image,
followed by the Up/Down GMP and the inverse
. - . . conversion. The advantages of this interpolation
_the spotin pola_lr coordinates, the aim nowlis to segme re:(1) to increase the accuracy of segmentation; (2) to
its contour using the GMP technique. To achieve &, 4 contour regularisation by a larger choice for the
robust algorithm several issues must be considered Yjterent sizes of filtering; (3) the spot region could be
detail (see the diagram of Fig. 7). segmented into several regions using multiple GMPs
Interpolation: The spots are small image (Obviously, the closed contour must be decimated by
structures, typically their diameter is approximatelytn® same factok in order to obtain the original spot
equal to 15 pixels and their bounding boxes of siz&1Z€); (4) spot feature extraction and spot classification
25x 25 pixels. In polar coordinates, the radial variation'S &/S0 obtained from this enlarged representation.
is consequently limited to around 7 pixels. These Circular minimal path to close contour: In order
small magnitudes limit the possibilities to obtain ato obtain a closed contour for the spot region, we
regularised or multi-level segmentation of the spots bynust impose a circular minimal pathe., in polar
using Up/Down GMPs. Lef;(x) be the original spot coordinates and with the Up/Down GMP, the initial
sub-image, we propose to interpolate it by using a biradial value p,p (for 8 = 2m) and the final one
linear schema to increase the size of structures to b@own (6 = 0) are equal. Several algorithms have been

Starting from the gradient of a filtered version of
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proposed in the literature to calculate circular minimalobtained from the radial projection (see previous
paths, relatively sophisticated and solved by dynamisection). Concerning the gradient, the external gradient
programming (multiple search algorithm, branch ands always appliedg™ (f(x)) = d1(f(x)) — f(x).

bound algorithm, etc.) (Sun and Pallottino, 2003). We ] ]

propose to apply a simpler algorithm to allow using SPot typologies for segmentation The

GMP approach to define closed spot contours. homogeneous spotgregular or saturated) are
easily segmented using the present approach. The

The original polar imagesD, 271 can be cycled, jnhomogenous spotécracked or fragmented) need
extending the image along its angular direction by, egtimate of the spot diameter and of the texture
?hded;)noq[tg:r? ;girjt gr?ithgftct)gea{rr?daggnggt;ggnggtﬁg;ne:t? ng(‘algree to adapt the size of the horizontal/vertical

) ; ' isotropic filtering. In the case admpty spot(or
another period of the image. When the Up/Down GMP bsent Spot), we gpropose to calcula{)eyalspo ; GMP

is applied to this cycled image, the continuity provide
by the added cycle yields almost always a circular patﬁ; segment the background and try to compute a

. arameter of intensity. These classes of spots onl
In fact, even ifoup # Pgown BU|Oup— Pdowr] <Bp (B + y P Y

being a small value, typically 2 to 5 pixels), the contourneed one contour._ The segmentatlorfjotjghnut_-llke
can be “closed” applying previously a dilation of sizeSPOtS("e" prese_zntlng a hole) aneg-like spots{_l.e.,

Ap before computing the transformation to CartesiarY‘"th.a peak of 'F‘tens”y). need_s _the computation of a
coordinates. Moreover, the cycled image allows tdgn!tiPle contourj.e., multiple minimal path.

select different periods of the minimal path to find @ geyeral alternatives can be applied for the spot
circular minimal path or at least the minimal path W'thsegmentation in two or more regions. From a

the lowestA,. In practice, the translation along the ,5ihematical morphology viewpoint, this involves

angular axi® in polar coordinates involves a rotation filtering the spot, removing the hole/peak, and
in Cartesian coordinatese., if the selected period of therefore enhanci,ng its main contour. In oraer to

0 =[0+a,2m+af the_image of th«_s closed contour do that, we use the “close-holes” operator. This
should be rotatedr radians. To avoid the vaguenessoperator fills all holes in an imagé that does not

due to the rotation, we usually consider five simpletouch the image boundary, (used as a marker)
0

cases ¢ = 0, /2, m, —71/2 and—71) and we choose and therefore provides a parameter free approach
the o which has lowe\, (see example in Fig. 7). to detect holes in an imagap™(f) — [51°(f,)J°,

Filtering and gradient in polar coordinates: As - where {°°(m) is the geodesic reconstruction of the
we have shown, the polar imadg(p, 6) is cycled to  marker imagem within the reference imagg. For
ensure the periodicity of the angular coordinate. The pinary image, the definition of grains and holes is
pqlgr |mage_f|Iter|ng|(e., type and sizes of filters) is a clear; for the case of grey level images, a “hole” is
critical step in order to achieve a robust segmentatiogefined as a set of connected points surrounded by
method. connected components of value strictly greater than

An anisotropic effect in polar coordinates isthe hole values. This operator is a morphological
obtained by applying two separable directional filtersclosing and therefore removes the dark structures
(unidimensional filtering) in the angular and radial(valleys of intensity). A dual version of this operator,
coordinates. Usually, for the polar image of spots, thep®-dua\(f) — [°N(£¢)]°, allows the definition of a
vertical (according to the angular coordinate) filteringdual close-holes operator to remove the peaks of
has a sizeng which is notably higher than the size intensity.
np of horizontal filtering (radial direction). We have )
compared three different families of filters: Gaussian We can also work on the residues of these
diffusion, morphological operators (opening/closing +morphological operators. That is, to be able to
levelling) and sliding average. In fact, the average filte§€gment, on the one hand, the spot without hole or
is the simplest and fastest approach which simplifie§rain and on the other hand, the hole and the grain.
the structure in such a way that the GMP correspondkhe final algorithm proposed is based just on working
to the main spot contour. It seems that the sizegn three different images on which we compute
n, = 16, ng = 48 (~ 11/3) yield a satisfactory trade- eventually, and according to the typology, up to three
off for this spot whose diameter is approx. equalJp/Down GMP. This algorithm can be summarised as
to 7 pixels (7x 4 = 28 pixels in the interpolated follows. Let fspot be the original spot image, to apply
version). If the adequate vertical size of filtering canthe following steps according to the spot typology:
be considered as independent from the spot diameter,
the choice for the horizontal one well-adapted to ond- Obtain the hole imageie. & = WM fspoy);
spot is obviously associated to an estimate of its radius,  fI%¢ = Y fspoy) — fspot
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2. Obtain the enhanced spot image and the peakowever, using these examples the potential of the
image, i.e., fgggtdual = (ych-dual fspot); fspggk — apprc_)ach cannot be appreciated sinpe all 'ghe spots in
fspot— LlJch—duaI( fspot)- both images are very regulgr. In fact, in the first image,

only three spots are considered as fragmented spots

3. Compute the centroid for imagéspot (See and the rest are classified as regular spots. A criterion
Appendix B). Eventually, compute the centroid forbased on a minimal integral of intensity G0) after
corresponding hole or peak images. an area opening is used to consider an empty spot (as

4. Calculate main contour of spot by applying theprewously proposed in Angulo and Serra, 2003).

algorithm Up/Down GMP to the enhanced spot In Fig. 9 a more challenging example of spot
image f&hy vl classification and segmentation of a (“bad” quality)
. ._microarray image, including regular spots, doughnut-
5. Calculate hole conhtgl)éjr by applying the algorlthmIike spots and a majority of egg-like spots is given. To
Up/Down GMP tofgpy. evaluate the performance of the present GMP approach
6. Calculate peak contour by applying the algorithmin comparison with our previous method based on
Up/Down GMP tOfsppec?tk' watershed segmentation (Angulo anq Serra, 2003), we
have chosen two replicated blocks (with the same DNA
probes on each spot) from two different microarray
images. In the Polar GMP segmentation layer image,
RESULTS AND DISCUSSION the main contour of each spot appears in red, and
the second contour is drawn in green for doughnut-
The algorithms of spot classification andlike spots and in blue for egg-like spots. By a visual
segmentation have been evaluated on various cDNfomparison of the segmentations, one observes that the
microarray images. This section summarises theesults from the classical watershed-based approach
most significant results obtained. Fig. 8 depicts twaseem satisfactory and quite coherent between both
examples of spot segmentation using the present Polanages. The results obtained from the Polar GMP
GMP algorithm. As we can observe from these twaapproach are also coherent between both block images:
typical blocks of microarray images, the contoursmost of the spots are classified as egg-like spots,
obtained for the spots are very precise. and only four (in block 1) and two (in block 2) are
classified as doughnut-like spots; and these structured
spots are in most of cases correctly segmented in two
regions. It seems that only the (quasi-)empty spots
are segmented by a vague (or wrong) circular shortest
path.

Nevertheless, apart from the visual analysis, a
guantitative assessment of segmentation is needed
to compare the results. The plots provided in
Fig. 10 summarise the parameters computed from the
segmented images of Fig. 9.

L pooeoe0 Starting from the size and shape of the contours,
o Q0 coooooo it is evident that the spot regions of the watershed-
0o 00000QQ00 ©0MOOOOO ©0O0O0OO . - .
2090000000| ;5556600000000 0 based segmentation are a bit more uniform between
5 "00000000| [0°900ecec00 ooo both blocks: average area of 351108 pixels for
0 ©000000Q 00006000 oo ' .
©600000000| 0000000000000 Block 1 and 328 112 for Block 2, with an average
a o] | .
¥ S oCodonon| [|$a0000020900 00 error of area between equivalent spots of4687;
500060000 [2°9goec0e000o00 instead of 340t 118, 309+ 170 and 130t 155
a0 o] O 0C O o . .
St el [y e g respectively for the main contour of the polar GMP-
©00000000] (020009900 based segmentation.

However, the spot contours obtained with the new
Fig. 8. Two examples of spot segmentation usingpproach present a more regular form factor (defined
the present polar GMP algorithm: Top, original as perimetef/4rmared): 1.03+0.20 for Block 1 and
microarrays (for visualisation purposes, the intensityl.02+ 0.17 for Block 2 (the values for the watershed-
has been modified by a gamma functign= 2). based approach are respectivelyat-0.15 and 104+
Bottom, contours of segmented spots. 0.10), which involves a good fit with a circular shape.
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Table 1.Statistical summary of relationships between the measta#d of intensities RedGreen of both
segmented Block 1 and Block 2 of Fig. 9 (see the text for mdedisle

Ratio of integrals Mean of error  Std.dev. of error  Coeff. of correlation
Watershed-based single contour 0.24 0.46 0.55
Polar GMP-based main contour 0.22 0.37 0.62

Polar GMP-based secondary contour 0.23 0.36 0.66
Polar GMP-based integrated contours 0.18 0.27 0.76
Ratio of medians Mean of error  Std.dev. of error  Coeff. of correlation
Watershed-based single contour 0.34 0.52 0.54
Polar GMP-based main contour 0.06 0.11 0.62

Polar GMP-based secondary contour 0.08 0.11 0.66
Polar GMP-based integrated contours 0.11 0.08 0.77

But the most important value measured from thesegmentation, the ratio based on the median is more
DNA microarray experiments is the ratio between thecoherent between both Blocks. In the case of the
intensities of the red and the green images in eaclatershed segmentation, the difference between both
spot. Two main parameters can be defined as thends of ratio is not significant. Clearly, for any of
“intensity” of the spot in each colour: the integral of the three alternative contours from the new approach,
image intensities inside the spot contour or the mediathe ratio of median intensities is more robust (lower
(more robust than the mean) of intensities of the spagrrors between both Blocks) and more coherent (higher
contour; and then, the ratio of integrals or the ratio otorrelation between both Blocks) than the one of the
medians could be considered. single contour of the watershed-based approach.

These two different ratios have been computed The last point to discuss is the pertinence of
for the various segmentations. In Fig. 10 thehaving the structured spots segmented in two regions,
corresponding values for the first column of spots arend consequently two ratios of intensities describing
givenand in Table 1itis provided a statistical summarygeach spot. From the analysis of results of the current
of relationships of two ratios between Block 1 andexample, we can state that (even if globally the
Block 2 for the various segmentations. The error iSntegrated ratio, defined as the average of the ratio of
defined as the difference between the ratio of Blocknain contour and the ratio of secondary contour, seems
1 and the same ratio of Block 1. We have comparegy |ead to a better correlation) the most appropriate is

the ratios associated to the single watershed-basgglconsider two separated ratios for the subsequent data
contour with those associated to the main contoupnalysis steps.

the secondary contour and the average ratio of main _ _ - ]

and secondary contours (named ratio of integrated e consider that this empirical demonstration of
contour) for the polar GMP segmentation. It is evidenoetter segmentation models and algorithms validates
that, for the three possible cases of the polar GM@he contributions of this paper.
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; middle left, segmentation using classical watershededbapproach (by Angulo and Serra

Fig. 9. Comparison of spot segmentation on replicated blocks (#mesDNA probes on each spot from two
different microarray images): Top, original blocks of spdfor visualisation purposes, the intensity has been
(2003)) of Block 1, bottom left, segmented spots accorditiggt the present polar GMP algorithms (main contour

in red, “peak contour” in blue and “hole contour” in green);ight, idem. for Block 2.

multiplied by10)
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CONCLUSION (Mathematical methods for the analysis of biochip
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morphological spot modelling allows calculating Mines.
quality control parameters to eventually detect the
preparation accidents. The proposed models can
also be used to define distances between spots and REFERENCES
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Simulation of DNA array hybridization experiments —
and evaluation of critical parameters during subsequent
image and data analysis. BMC Bioinformatics 3:1-17.
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If v1 < 4 the spot is very homogeneous (regular or
saturated spot).

If 4 <v; <15 andv, > 30 the spot belongs
typically to a cracking-like category.

Comparison of methods for image analysis on cDNA

microarray data. J Comput Graph Stat 11:108-36. — 1he doughnut-like and egg-like spots are

associated to values of > 15 and 2< v, < 30.
Ring-like spots have moreover valuesrgf< 20,

and the egg-like spots have ZOrg’ < 30.
APPENDIX A: COMPLEMENT ON

MODEL-BASED SPOT
CLASSIFICATION

— Fragmented spots are characterised by very
opposite values of; and v,, e.g, v1 > 20 and
Vo < 2 orvy < 5 andv, > 30.

The aim of this appendix is to complement the
section on model-based spot classification in order to
provide the definitions of the features used for the spot
classification into the different typologies as well as
a short analysis of performances of these features by
means of a series of examples.

APPENDIX B: IMAGE CENTROID
USING GENERALIZED DISTANCE
FUNCTION

Working in polar coordinates involves the selection

By means of a typical example the definition ©f the centexx.,yc) for each spot, and this is a critical
of all the descriptive parameters &% (p) and for choice because if the selected center point is displaced
PS(n,,Py(p)), which are the final 1D curves used to from the “real” spot centeri.e. the spot represented

analyse the spot typology is given in Fig. 11. in polar coordinates is very “curved”) it is possible
that the minimal path obtained by Up/Down GMP

The value of all these parameters has beewill not be circular as well as to obtain a wrong spot
computed for a small selection of representative spotsassification €.g, to consider a regular spot as a
of each typology. In Tables 2 and 3 the correspondinfragmented spot or to miss an egg-like or a doughnut-
values are given. like spot).
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Fa(p) B microarray image, the spots are placed in blocks within

1 ey = Card[Fo(P) =11 an orthogonal arrangement. Using morphological

B0, &, = StdDev(P,(p), p <10, pos D operators, it is possible to build a rough estimate of the

B &, = StDeV(Py(P), p €1 pos po]) orthogonal grid of each de_ztecteq block (AngL_JIo and

ACEY: o _ Serra, 2003): the block grid defines a bounding box
r, =resid _linregress(P,(p), p €10, P D

for each spot. Then, after computing the GDF in the
whole image block to the set composed by the grid, a
threshold at the maximal value in each bounding box
p leads to the center of the corresponding spot.

r, =resid _linregress(Py(p), P €[ P> £

O pus ] P 10 _ _
In Fig. 13 an example of computation of the
spot centers is depicted. Note the advantage of this
approach which allows determining the optimal center
even for partially overlapped spots or for spots
PP bounded by a non precise grid.

Prin
PS(n,, Py(p)

max” —

7
o1 _
Vps,(p,(,,))—ZP (

7,0

- W
e < 17 7] &
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T

Fig. 11. Descriptive parameters foPg(p) (top) and
for PS(ny,Py(p)) (bottom).

We propose to compute the optimelc,y:) by
means of the generalized distance function, reminded
above in the paper. The idea is to compute in imége
the GDF to the image bord&B and then, to consider
that the maximum of the corresponding function
includes the grey-level centroid of the image. Being
precise, we can proceed as follows:

— Compute GDF to seBB in image f: for each pixelp, fa=yN(fp) — f2 dr,(BB) cent( f3)
computeds (BB);

—  Find Umax the maximal value ofl; (BB) and threshold Fig. 12. Examples of computation of image centroid
the result in order to keep only the pixels which valuesusing generalized distance function (GDF). The first
in d (BB) are equal taimax. these pixels define set column corresponds to the original images; second

olumn, to the GDF to the border BB; third column,

o the detected centroid (in red, and superimposed on

original image). The third image corresponds to the

In Fig. 12 various examples of computation ofresidue of the close-holes operator.

centroid for grey-level images using this algorithm
b) (c) (d)

are given. As we can observe, the method is very
robust and it allows detecting the optimal center for
embedded structures. Note also that the GDF distanc
function only takes into account the bright structures.

o ) Fig. 13.Example of computation of spot centers in a
Application to optimally compute spot microarray image: (a) original image, (b) orthogonal
centers in a microarray grid superimposed on spots, (c) GDF of original image
eto grid, (d) associated center for each bounding box.

— If C has more than one pixel, compute the centroi
(using binary moments) of sét

Consequently, if we are interested in the centroid of
an object with a large hole, a close-holes operator can
be used to compute either the centroid of the object
without hole or the centroid of the hole.

(@) (

We have used a similar algorithm based on th
GDF for computing the centroid of the spots. In a
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Table 2.Values of parameters froRy (p) for a selection of examples of each typology.

Typical Cracking
ol 040 018 040 024 022 017 022 020
Pg(0) 086 097 100 090 052 092 049 100
Prmax 55 44 1 27 48 57 63 1
00 100 74 100 56 72 80 80 78
Prin 12 1 1 1 1 26 15 1
Po(Pmin) 0.81 097 100 090 052 08 045 100
Nmax 9 12 51 12 13 9 5 13
o1 0.04 000 000 003 017 006 016 Q00
o) 041 038 042 038 038 038 038 027
r 1.76 010 000 045 349 266 457 000
r 706 329 198 321 359 252 135 744
P 81 73 55 55 71 79 79 26
Po(pm,) 005 001 096 001 002 001 004 068
Prax 82 74 56 56 72 80 80 48
Po(Pma) 0.05 001 096 001 002 001 004 071

Doughnut Egg
ol 035 024 025 026 044 032 049 029
Pg(0) 027 031 012 021 10 10 043 10
Prmax 41 57 49 39 1 1 60 1
00 100 81 75 71 75 99 100 79
Prin 1 1 1 1 1 1 1 1
Po(Ppmin) 027 031 011 021 10 10 043 10
Nmax 11 8 11 9 9 7 3 17
o1 025 023 033 028 Q0 00 012 O
o) 044 038 037 037 035 035 034 039
r 1.87 517 356 236 O 0 572 0
r 7.85 215 289 269 743 148 756 114
Prin 56 80 74 70 11 34 79 39
Po(pm,) 090 001 001 001 097 013 001 014
Prax 57 81 75 71 12 35 80 40
Po(Pma) 0.90 001 001 001 097 013 001 014

Fragmented Ring Saturated
ol 029 027 021 019 045 026 020 Q18
Pg(0) 1.0 10 097 091 015 018 10 10
Pmax 1 1 6 32 63 63 1 1
0o 91 99 82 75 100 82 68 71
Prin 1 1 1 1 1 1 1 1
Po(Ppmin) 1.0 10 097 091 014 018 10 10
Nmasx 9 21 9 17 6 6 37 49
o1 00 00 001 003 022 026 00 00
o) 037 042 035 038 039 038 035 031
r 0O 00 004 041 833 618 00 00
r 915 154 665 441 669 216 1063 1262
Prin 67 64 27 74 8 8 67 70
Po(pm,) 003 001 084 00 002 002 00 001
Prax 68 65 28 75 83 82 68 71
Po(Pma) 0.03 001 084 00 002 002 00 001
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Table 3.Values of parameters from P, Py (p)) for a selection of examples of each typology.

Typical Cracking
rl 60 52 108 24 44 60 48 56
rEV} 132 112 124 80 128 136 148 120
ot 160 160 156 124 152 160 160 160
ylara 722 243 299 320 1425 920 1440 1106
PS/(P3(0))
vggy’z;‘;"(‘]p)) 4610 5699 6003 3867 3197 5302 3103 3891
rd ¢ 24 36 32 20 8 28 28 20
[4,|’a]
Vedm(p) 108 112 093 055 004 315 163 113
Doughnut Egg
ry 68 60 68 60 64 84 64 76
ré 144 148 144 128 112 132 132 124
Mot 160 160 160 160 148 156 156 160
Y
Veaia) 3200 1938 3135 2528 1991 2201 1508 2199
Yy
Vel 1515 1985 791 1326 1525 371 2325 948
r? ¢ 92 12 108 84 28 28 28 24
vg,ge;;e(p)) 2056 003 2649 2004 314 173 667 059
Fragmented Ring Saturated
ry 136 140 52 40 68 72 8 4
rEV} 148 148 72 100 152 156 52 84
1ot 160 160 160 160 160 160 160 160
4
ylarel 3028 3361 278 411 1555 2412 003 003
PS/(P3(0))
vgg;z;‘;"fp)) 0.92 046 4465 5084 523 1112 5125 5848
r ¢ 16 12 16 28 16 20 16 4
[4,|’a]
Vo) 010 015 054 156 032 099 000 000
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