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ABSTRACT

When the mitochondrial network within the cell is in a fragmented state, it resembles a spatial distribution of
prolate spheroids of various shapes, sizes and orientations. This paper presents a maximum-likelihood scheme
for inferring the distribution of spheroidal shapes, sizes and orientations from the observed distribution of
elliptical sections. We also present a parametric bootstrap suitable for inferring confidence intervals for the
parameters describing the shape and size distribution of the spheroids.
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INTRODUCTION

The motivation for this paper comes from the study
of conformational changes in mitochondria associated
with cell death. During a late stage of apoptosis
(programmed cell death) the cell’s mitochondrial
network fragments into individual mitochondria.
Cross-sections of these particles observed in electron
micrographs suggest that they have an oblong shape.
The particles originate in a process that is reminiscent
of the way sausage is made, in that the fragments
apparently result from the pinching off (fissioning)
the cylindrical tubes that make up the mitochondrial
network. Since the tubes are cylindrical, we expect the
fragments, being sacks of fluid, to adjust to a roughly
spheroid shape. In our study we approximate these
particles by prolate spheroids. Low resolution visual
evidence from three-dimensional confocal microscopy
(Frank et al., 2001) argues against the presence of
oblate structures. Moreover, in section “A sample
application to mitochondria” we show that the
sectioned data itself argues similarly.

These particles are believed to undergo changes
over time in shape and size due to disruption
of inner membrane function and possible resultant
swelling. While confocal light microscopy is able
to partially document this process, the resolution is
limited to values comparable to the particle size.
Quantitative information on size and shape is obtained
from electron micrographs, which usually show
only 2-dimensional cross-sections of the particles.

Nevertheless, assuming the particles are prolate
spheroids, it is possible to infer 3-dimensional
information from the statistics of the 2-dimensional
sections.

It is this stereological problem that we propose to
address here. Wicksell (1925; 1926) dubbed this “the
corpuscle problem.” He was motivated by the study of
secondary follicles embedded in the lymphatic tissue
of the spleen. More recently the problem has become
known as the “unfolding problem.” An excellent
history and set of references can be found in Stoyan
et al. (1987). A complete treatment of stereological
methods with an emphasis on practical problems can
be found in the two volumes of Weibel (1979; 1980).
Most recently, the general problem, involving 3D size,
shape and orientation, was treated by Sato et al. (1996).

The basic mathematical problem is to relate the
distributions of observable quantities in 2D cross-
sections to the distributions of desired quantities that
are descriptive of the 3D particles. Typically this
takes the form of an integral transform expressing,
for example, the distribution Ψ of cross-sectional
diameters in terms of the distribution Φ of particle
diameters. The practical problem is then to use this
machinery to work from data in the form of a sample
from Ψ to a description of Φ. Two approaches were
proposed in Wicksell’s original papers and have been
taken up by subsequent authors (De Hoff, 1962; Cruz-
orive, 1976; Franklin, 1977; Sato et al., 1996). First,
the integral transform can be used to derive a recursive
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scheme that expresses the moments of Φ in terms of
those of Ψ. Secondly, in some cases, it is possible
to invert analytically the transform and to solve for
Φ in terms of Ψ and its derivatives. Both of these
approaches suffer when the data set is not large enough
to provide a clear picture of Ψ. In the first approach,
statistical moments from the data are only estimates of
Ψ’s true moments, and the associated statistical error
is propagated through the transform. Similarly, in the
second approach, estimates of the derivatives of Ψ by
finite difference methods introduce uncertainties that
are difficult to quantify.

Four distinct additional approaches have been
identified (Blödner et al., 1984); among these is the
parametric method that we propose to apply. The
parametric approach has been used to predict a very
precise distribution of sphere diameters from circular
cross-sections (Keiding and Jensen, 1972). In the
present paper we describe a parametric approach,
which does not seem to have been used by previous
authors in the context of the full unfolding problem
described by Sato, involving simultaneous predictions
of the distributions of size, shape and orientation. We
propose parametric models for desired distributions
for Φ, and use a maximum-likelihood approach to
optimize the parameters. The method o f parametric
bootstrap (Efron and Tibshirani, 1993) was used to
determine confidence regions for the parameters.

In the next section we set out the geometrical
framework, define the quantities studied, and state
the relations among them. In the section following
that we apply the method of Sato to derive the
machinery expressing the distributions of cross-
sectional size and shape in terms of the hypothetical
or desired distributions of particle size, shape, and
orientation. The three sections beginning with the
Maximum-likelihood Scheme present a description of
our method. We describe the parametric models used
for the hypothetical distributions and the maximum-
likelihood scheme used to determine values for
the parameters. We also describe how to set up
a parametric bootstrap for determining confidence
regions for the values of the parameters. The last
section presents the results of applying the method to
a set of data derived from electron micrographs.

GEOMETRICAL PRELIMINARIES

In this section we summarize the geometrical
relations among the slicing plane, the spheroid, and the
elliptical cross-section. See Fig. 1.
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Fig. 1.Drawing of sliced spheroid: 1) Axis of spheroid.
2) Prolate spheroid. 3) Slicing plane. 4) Tangent plane.
5) Elliptical cross section.
We take the slicing plane to be horizontal, a

distance s from the center of the spheroid. We take θ to
be the angle between the axis of the spheroid and the
vertical. The spheroid is described by its semi-minor
axis r, its semi-major axis c, and its eccentricity e0.
Similarly, the elliptical section, is described by axes b
and a, and eccentricity e. The axes and eccentricities
are related by e20 = 1− r2/c2 and e2 = 1− b2/a2. The
figure shows a cross-section through the spheroid’s
axis. The following equations are easily established
and summarize the relationships among the variables
required for the analysis in the next section.

e= e0 sinθ , (1)

b= r
√
1− s

2

h2
, (2)

h= r

√
1− e20 sin2θ√
1− e20

. (3)

Geometrically θ can be considered to vary from 0 to π ,
and s, from −∞ to +∞1. Nevertheless, the distribution
of θ is understood to be symmetric about the value
π/2. Similarly, s is distributed symmetrically about
0. These symmetry considerations allow us, in the
following analysis, to restrict θ to [0,π/2] and s to
[0,∞).

RELATIONS AMONG THE
DISTRIBUTIONS

Our goal is to extract information on the
distributions of e0, r, and θ from observed distributions

1Of course an elliptical slice is obtained only when |s| < h.
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of e and b. To that end we propose a model for the
joint density function Ω(b,e,s,θ ,r,e0) from which a
marginal distribution

Ψ(b,e) =∫ 1

0

∫ ∞

0

∫ π/2

0

∫ ∞

0
Ω(b,e,s,θ ,r,e0)dsdθ drde0 . (4)

Apart from the geometrical constraints given in
Eqs. 1-3, the principal element of our statistical model
is the assumption that the variables e0, r, and θ are
distributed independently. This allows us to factor Ω
as follows:

Φ0(θ ) Φ1(r) Φ2(e0) Σ(s |θ ,r,e0) Λ(b,e |s,θ ,r,e0) ,
(5)

where Σ and Λ are conditional densities. We will
eventually propose simple parametric models for Φ0,
Φ1, and Φ2. See Eqs. 18-21.

Some remarks are in order to justify the
assumptions of independence. First, there are a priori
reasons for believing that r and e0 are independent.
The mitochondrial fragments arise as a result of
the fissioning of long tubular networks of roughly
constant width or diameter. Consequently, the resulting
fragments would be expected to have roughly the same
minor axis, or, equivalently, that the distribution of
the minor axis would be relatively sharply peaked.
Any correlation that might exist between this size
parameter and shape would be very small and difficult
to tease out of the data by the indirect methods we are
proposing. Secondly, a consequence of the assumption
of independence of r and e0 is Eq. 14 below, which
says that b and e should also be uncorrelated. This
was found to be true of the data before any substantive
analysis was attempted. It seemed likely that if our data
showed no discernable correlation between b and e,
then, even if there were a slight correlation between
r and e0, our maximum-likelihood scheme applied to
our data was not likely to reveal it.

It is difficult to imagine what mechanism would
correlate orientation with size or shape. In any case,
the assumption of independence here is made, frankly,
as a matter of convenience.

Returning now to the analysis of Eq. 4, it is
convenient to separate out the integration over s and
θ to obtain

Ψ(b,e) =∫ 1

0

∫ ∞

0
I(b,e,r,e0)Φ1(r)Φ2(e0)drde0 , (6)

where

I(b,e,r,e0) =∫ π/2

0

∫ ∞

0
Φ0(θ )Σ(s |θ ,r,e0) Λ(b,e |s,θ ,r,e0)dsdθ .

(7)

The integral I can now be simplified. Geometrical
considerations will dictate the form of the conditional
densities Σ and Λ. Consider Σ first. We consider
equally likely all positions s that actually result in an
intersection, so we may take

Σ(s |θ ,r,e0) ∝
{
1 , 0≤ s≤ h(θ ,r,e0) ,
0 , else. (8)

Next considerΛ. Once s, e0, r, and θ are specified,
Eqs. 1-3 show that the values of e and b are determined,
so we may write, using Dirac’s delta function

Λ(b,e |s,θ ,r,e0) =

δ (e− e0 sin(θ )) ·δ
(
b− r

√
1− s

2

h2

)
. (9)

Incorporating Eqs. 8 and 9 into Eq. 7, we have

I(b,e,r,e0) =
∫ π/2

0
Φ0(θ )δ (e− e0 sin(θ ))×

∫ h

0
δ

(
b− r

√
1− s

2

h2

)
dsdθ . (10)

The integration over s can be carried out explicitly.
For 0< b< r the result is

∫ h

0
δ

(
b− r

√
1− s

2

h2

)
ds=

bh(θ ,r,e0)
r
√
r2−b2

=
b
√
1− e20 sin2(θ )

√
r2−b2

√
1− e20

.

(11)

For r≤ b the integral is zero. The last equality uses
Eq. 3. Eq. 10 becomes

I(b,e,r,e0) =
b√
r2−b2

∫ π/2

0
Φ0(θ )δ (e−e0sin(θ ))×√
1− e20 sin2(θ )√
1− e20

dθ , (12)
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for 0 < b < r, and zero for r ≤ b. Finally, the
integration over θ can be carried out, producing, for
r > b and e0 > e,

I(b,e,r,e0) =
b
√
1− e2 Φ0(sin−1(e/e0))√
r2−b2

√
1− e20

√
e20− e2

, (13)

and the value zero for all other values of r and e0.

This result, together with the limits on the variables
r and e0, can be substituted into Eq. 6 and the resulting
double integral factored to give

Ψ(b,e) ∝ Ψ1(b) · Ψ2(e) , (14)

where
Ψ1(b) =

∫ ∞

b

bΦ1(r)√
r2−b2 dr , (15)

and

Ψ2(e) =
∫ 1

e

√
1− e2 Φ0(sin−1(e/e0)) Φ2(e0)√

1− e20
√
e20− e2

de0 .

(16)

We caution the reader that Ψ1 and Ψ2 are not
probability densities, because they have not been
normalized. Normalization is not required to set up
the likelihood functions described in the next section.
However, as we will see later, these functions are the
basic tools for simulating a slicing experiment. In that
case they must be normalized before they can play that
role.

THE MAXIMUM-LIKELIHOOD
SCHEME AND PARAMETRIC
MODELS

We have yet to assign statistical models for
the densities Φ0(θ ), Φ1(r), and Φ2(e0). Once that
is done the parameters in those models become
the basis for varying the hypothetical distribution
of spheroids so as to optimally fit the 2D data.
In this section we first formulate the likelihood of
a dataset given the hypothetical set of parameter-
dependent Φ’s. Maximizing the likelihood optimizes
the fit and completes the prediction. We then turn to a
description of and rationale for the statistical models
recommended for the Φ’s. These were chosen for the
application described in the last section.

Suppose we have collected data in the form of
m elliptical cross-sections. For each section we have

recorded the semi-minor axis b and the eccentricity
e: (b1,e1),(b2,e2), . . . ,(bm,em). The data is separated
into D1 = {b1,b2, . . . ,bm} and D2 = {e1,e2, . . . ,em}2.
D1 will be used to infer Φ1(r) through Eq. 15, and
D2 will be used separately to infer Φ0(θ ) and Φ2(e0)
through Eq. 16.
If the distributions Φ0, Φ1, and Φ2 in Eqs. 15

and 16 were a true description of the population
of spheroids, then D1 would be a collection of m
independent choices from the distribution Ψ1(b), and,
similarly, D2, a collection from Ψ2(e). Therefore, we
can formulate the likelihood of each data set as a
product:

L1(D1) =
m

∏
j=1

Ψ1(b j), L2(D2) =
m

∏
j=1

Ψ2(e j).

(17)
Maximizing these likelihoods over the space of
parameters on which the densities Φ0(θ ), Φ1(r), and
Φ2(e0) depend determines values of those parameters
that optimally fit the observed data. This completes the
algorithm by which predictions for the distribution of
spheroids is made. For example, Φ1 will be modelled
by a normal distribution with the usual parameters
μ and σ . Then, for the given data D1, L1 becomes
a function of μ and σ . The values μ∗ and σ∗ that
maximize L1 then describe the most likely normal
model for Φ1 that is consistent with the data D1. A
similar process with L2 is used to obtain predictions of
Φ0(θ ) and Φ2(e0) from the data D2.
We now describe and discuss the parameter-

dependent statistical models recommended for the
Φ’s. In each case the simplest appropriate model was
chosen. We do not regard these models as strictly
valid, or as having been justified by some independent
experiment. Rather, they should be regarded as probes
of the first- and second-order features of the statistics
we are trying to study.
The statistical model suitable for probing the first

two moments of an unknown statistics is the normal
or Gaussian density; we find that appropriate for
Φ1(r). The usual 2-parameter choice for modelling
the statistics of a naturally bounded variable is the
beta distribution or density; we find that appropriate
for both Φ0(θ ) and Φ2(e0), since theta is confined to
the interval [0,π] and e0 is confined to the interval
[0, 1]. Φ0 requires further comments, given below.
There is a symmetry that sets the mean of θ at π/2.
As a result Φ0 becomes a 1-parameter density. The
remaining parameter characterizes the spread, which,
as explained below, can be interpreted as a measure of
the deviation from isotropic orientation.

2As we have remarked, for the data we collected, there was no discernable correlation between b and e. That result is consistent with
equation (14), and, thus, with our assumption that r and e0 for the spheroids are independent. Hence, the separation of the data.
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Concretely, the models that we propose are as
follows. Φ1 is modeled by a normal density.

Φ1(r|μ ,σ) =
1√
2πσ

exp
(
−1
2

(r−μ)2

σ2

)
. (18)

Φ2 is modelled by a beta density,

Φ2(e0|p,q) =
Γ(p+q)
Γ(p)Γ(q)

ep−10 (1− e0)q−1, (19)

for which the mean and variance are given by

μ =
p
p+q

, σ2 =
pq

(p+q)2(p+q+1)
. (20)

For the density Φ0, describing the orientations of the
spheroids, we use a simple 1-parameter beta density
scaled to the interval [0,π]:

Φ0(θ |α) =
2Γ(2α +2)

Γ(α +1)2π2α+1θ α(π −θ )α. (21)

The case of θ , the angle between the spheroid’s
major axis and the vertical, requires more discussion
because of the special role it plays in the type of
data we are studying. First of all, the mitochondrial
spheroids are presumably floating freely in the
cytoplasm, so why assume anything other than a
purely isotropic orientation for their major axes? The
micrographs are horizontal sections through a cell that
is adsorbed to a horizontal plane surface. Therefore we
have no reason to expect anisotropy in the horizontal
plane. However, there is reason to expect anisotropy in
the vertical orientation. The basis of this expectation
is related to the origin of the spheroids. The spheroids
result from the fragmentation of an extensive tubular
network as explained in the introduction. Since the cell
is strongly attached to a horizontal surface, there is a
flattening of the cell from its normal state. Confocal
microscopy, our own as well as that of Frank et al.
(2001), demonstrate the flattening and indicate that
the tubes in the network show some preference for
the horizontal. As a result the tubes in the network
may show some preference for the horizontal. When
the tubes fission, producing the spheroids, a trace of
that preference may linger in the orientation of the
spheroids. For that reason we structure our model so
that it has the potential to detect and quantify any
anisotropy that might exist.

The ability to quantify this anisotropy is not the
most important reason for including the distribution
of spheroid orientation in our scheme. If anisotropy is
present and we do not account for it in our likelihood
machinery, our results on the distribution of spheroid
shape will be distorted. Eq. 1 reveals the intimate

connection between the shape of the elliptical section
and the shape and orientation of the spheroid. Eq. 16
shows how their distributions are intertwined in the
unfolding process from 2D to 3D.
We now explain our choice of Φ0 and how we

propose to quantify the anisotropy. For a purely
isotropic distribution of points on a sphere, the
colatitudes (corresponding to the angle θ ) of the points
have the density functionΦ(θ )= 1

2 sinθ on [0,π]. This
density has an easily calculated variance of (π2−8)/4.
A variance smaller than this is indicative of something
called a “girdle” or “equatorial” distribution. As
presented in the literature (Selby, 1964;Watson, 1965),
it is a distribution of points with a higher concentration
near the equator, and one that is symmetric about
the equator. This is the situation we find when
considering the orientation of spheroid particles with
a slight preference for the horizontal. In our case, the
symmetry is a built-in artifice, i.e., a spheroid whose
axis is not perfectly horizontal is represented both by
the angle θ and π −θ .
We expect our modelΦ0 to quantify the anisotropy

in the following way. Let σ2 be the variance of the
particular Φ0 determined by our maximum-likelihood
algorithm. We define an index of isotropy:

Iiso =
σ

σiso
=

2σ√
π2−8 . (22)

This has a ready interpretation as the ratio of the
observed spread in the polar angle to the isotropic
spread. It has a value ranging from 0 to 1 for equatorial
distributions.
All one needs in order to capture this anisotropy

is a fairly all-purpose, 1-parameter, symmetric density.
As reported above our choice was a beta distribution.
Other 1-parameter models for equatorial distributions
have been proposed, and would probably serve equally
well as models for Φ0. For example, one prominent
choice among these is the Dimroth-Watson model
(Mardia, 1972; Batschelet, 1981):

Φ(θ ) =Ce−κ cos2 θ sinθ , (23)

where C is a suitable normalization constant For
κ ≥ 0 it represents equatorial distributions. Here
the parameter κ can be regarded as a measure
of anisotropy. However, except for κ = 0, which
corresponds to isotropic, its numerical value has
no compelling interpretation. One could claim that
this model has the advantage that the isotropic case
is included in the family. However, that is not a
practical advantage over Eq. 21. Remarkably, for α =
1.16072, Eq. 21 is virtually indistinguishable from
sinθ , uniformly over the interval [0,π], and, hence
includes the isotropic case as well.
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THE PREDICTOR AND THE
SIMULATOR

In the first three paragraphs of the previous section
we have described an algorithm for which the input
is data (b1,e1), . . . ,(bm,em) in the form of observed
elliptical sizes and shapes, and for which the out put
is a set of predicted values (μ∗,σ∗, p∗,q∗,α∗) for the
parameters that describe the most likely population of
spheroids to have produced the input data in a slicing
experiment. Let us call this algorithm the PREDICTOR.
As a result of the factorization in Eq. 14, there are
actually two algorithms: PREDICTOR1 that predicts
the parameters (μ∗,σ∗) for the size distribution of
prolate spheroids from the data D1 = (b1, . . . ,bm), and
PREDICTOR2 that predicts the parameters (p∗,q∗,α∗)
for the shape and orientation distributions from the
data D2 = (e1, . . . ,em).

Note that the statistical role of the PREDICTOR is to
provide a most likely point estimate for the unknown
parameters consistent with a given set of data. A
complete statistical analysis requires, in addition, some
measure of the uncertainty of the method in the form
of a region, containing the point estimate, within
which the true values of the parameters are believed
to fall with some specified level of confidence. For
that purpose it will be important to define a second
algorithm, the SIMULATOR, which uses the same
apparatus as the PREDICTOR, but which, in a sense,
reverses the process.

The geometry and statistics of the ideal slicing
experiment has already been formulated in the
mathematical machinery of the two previous sections.
Suppose that we know (or hypothesize) that the
spheroid population is described by the parameter
values (μ0,σ0, p0,q0,α0)3. These values specify the
distributionsΦ0(θ ),Φ1(r), andΦ2(e0) by way of Eqs.
18-21. Eqs. 15 and 16 then uniquely determine the
distributions Ψ1(b) and Ψ2(e), which describe how
we expect any data obtained from the hypothesized
population to be distributed. As remarked earlier, Ψ1
and Ψ2 are presented in non-normalized form, which
makes them suitable for a likelihood function, but
not suitable as probability densities. Let Ψ̂1(b) and
Ψ̂2(e) represent these distributions after they have
been normalized so that their integrals are unity.
These densities are the tools by which the ideal
slicing experiment can be simulated. A simulation
producing m elliptical sections is effected by choosing
numbers (b1, . . . ,bm) according to the distribution
Ψ̂1(b), and numbers (e1, . . . ,em) from the distribution

Ψ̂2(e). Thus, the SIMULATOR is the algorithm whose
input is a set of hypothetical values (μ0,σ0, p0,q0,α0)
and whose output is a set of data (b1, . . . ,bm)
and (e1, . . . ,em) representing the result of an ideal
slicing experiment with the population of spheroids
whose distribution is described by the parameters
(μ0,σ0, p0,q0,α0).

To see how the SIMULATOR bears on the problems
of reliability and the accuracy of our method, consider
the following. Suppose the SIMULATOR is applied
to the hypothetical values (μ0,σ0, p0,q0,α0) N
times (a large number) in a Monte Carlo scheme.
Each of the N simulated data sets can be fed to
the PREDICTOR to produce N different predictions
(μ1,σ1, p1,q1,α1), . . . ,(μN ,σN , pN ,qN ,αN). If our
method is highly accurate we would expect the
points (μ1,σ1, p1,q1,α1), . . . , (μN ,σN , pN ,qN ,αN)
to be closely clustered about the point (μ0,σ0, p0,
q0,α0) representing the “true” distribution. Indeed,
the uncertainty of our method will be measured by
quantifying this clustering.

We will address this uncertainty in the next section,
but first, let us point out that, just as the PREDICTOR
splits into two algorithms, the same is true of the
SIMULATOR. That is, SIMULATOR1 takes as input
hypothetical values (μ0,σ0) for the size distribution
of spheroids, and, in a Monte Carlo scheme, produces
a large number N of new sets of data, which in turn
produce N predictions (μ1,σ1), . . . ,(μN ,σN). This can
be pictured as a two-dimensional scattergram of points
whose center of mass should closely approximate the
point (μ0,σ0). Fig. 8 shows that scattergram for the
example in the last section. Similarly, SIMULATOR2 in
a Monte Carlo scheme produces a three-dimensional
scatter of points (p1,q1,α1), . . . ,(pN ,qN ,αN) from the
hypothetical description (p0,q0,α0) of the distribution
of shapes and orientations of the spheroids.

QUANTIFYING THE
UNCERTAINTY

As remarked above, we must establish a region
within which we believe the true values of the
parameters will fall with some specified level of
confidence. The method described here is called a
parametric bootstrap (Efron and Tibshirani, 1993);
the essential idea is as follows. Numerous samples
(of size m) are simulated from the ideal distribution
represented by our point estimates, μ∗, σ∗, etc., of the
parameters. Maximum-likelihood estimates for μ and

3In the next section we will take these hypothetical values to be the maximum-likelihood values μ∗, σ∗, etc., predicted from the
observed data.
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σ , etc. are then calculated for each of these samples.
The statistics of these estimates provide a basis for
determining approximate confidence regions for the
original point estimates.

An ordinary variant of bootstrapping may also
be used to obtain robust confidence regions. In that
case, the numerous samples required are obtained
not from the ideal distribution, but by sampling with
replacement many times from the original empirical
sample. We chose to use the parametric variant
outlined above and described below.

Although the method can be applied to any
confidence level, for the sake of definiteness, we take
that level to be 90% confidence for this discussion and
for the example presented in the last section.

Also, for purposes of describing the method we
will focus on the size problem, using PREDICTOR1
and SIMULATOR1 in a Monte Carlo scheme to
describe the two-dimensional confidence region in the
space (μ ,σ). The case of shape and orientation is
conceptually similar, but the discussion in the example
will reflect the three-dimensional character of the
region.

Now the only tool we have for assessing a given
prediction is the likelihood function L1 in Eq. 17
obtained from our real set of data (b1, . . . ,bm). L1 is
regarded as a function of the parameters (μ ,σ) of
the prediction. It is convenient to standardize this as
a likelihood ratio L1(μ∗,σ∗)/L1(μ ,σ), where (μ∗,σ∗)
is the maximum-likelihood prediction. As a practical
matter in the implementation of the method we use the
logarithm of the likelihood function, so we define the
log-likelihood-difference (LLD) by

LLD(μ ,σ) = ln
(
L1(μ∗,σ∗)
L1(μ ,σ)

)
= ln(L1(μ∗,σ∗))− ln(L1(μ ,σ)) . (24)

We can now define the 90% confidence region in
the (μ ,σ)-plane. Our analysis is of a single data set
(b1, . . . ,bm) for which we have a single maximum-
likelihood prediction (μ∗,σ∗). We consider that the
experiment of collecting this data set is a relatively
expensive affair. Nevertheless, suppose, contrary to
fact, that we were able to collect many, say N,
real data sets, all of the same size m, collectively
producingmany predictions (μ1,σ1), . . . ,(μN ,σN). Let
x represent the 90th percentile of all the numbers
LLD(μ1,σ1), . . . ,LLD(μN ,σN). Clearly, the inequality
LLD(μ ,σ) ≤ x establishes a region R of the (μ ,σ)-
plane with the property that, with probability 0.90, any
repetition of our experiment will result in a prediction

that falls within the region R. This is precisely what we
mean by a 90% confidence region.

Unfortunately, x, as defined above, is not
accessible without repeating our expensive experiment
N times. Nevertheless, we can simulate the experiment
as many times as we like by taking the most likely
prediction (μ∗,σ∗) from our single experiment as the
input to SIMULATOR1. Since in this case we are taking
only our most likely prediction (μ∗,σ∗) as our estimate
of the “true” values — (μ0,σ0), this will produce only
an approximation of the confidence region.

To summarize, our approximation to the 90%
confidence region is determined as follows. The
maximum-likelihood prediction (μ∗,σ∗) from the data
is supplied as input to SIMULATOR1 to produce N
sets of simulated data. PREDICTOR1 then produces
a prediction for each of those sets of data:
(μ1,σ1), . . . ,(μN ,σN). The 90% confidence region
is then determined by the inequality LLD(μ ,σ) ≤
x, where x is the 90th percentile of the numbers
LLD(μ1,σ1), . . . ,LLD(μN ,σN).

A SAMPLE APPLICATION TO
MITOCHONDRIA

In the section on the Maximum-likelihood Scheme
we discussed our reasons for believing that the
3D structures we are studying exhibit anisotropy
in vertical orientation. However our evidence for it
comes from three-dimensional confocal microscopy
and is visual rather that quantitative. It would have
been desirable to have sectioning from a number of
different angles (besides just horizontal) in order to
quantify the anisotropy directly from the sectioned
data. However, the cells whose mitochondria are being
sectioned are grown on a flat surface and are very
thin. Non-horizontal sectioning in this circumstance is
technically difficult; in fact for this study, prohibited.
Nevertheless, the parameter α in our statistical model
provides us with an indirect confirmation of the
presence of anisotropy as well as a quantitative
measure.

In the introduction we promised a direct empirical
argument in favor of the prolate hypothesis for the
shape of the spheroid particles. Weibel (1979) states
two rough empirical tests that can be performed on the
sectioned data to decide between prolate and oblate.
As a first test, consider the diameter, d, of the profile
of largest area among the 5% most circular profiles.
For comparison, consider the largest diameter, 2a, and
the smallest diameter, 2b, of the profile of largest area
among the 5% most elongated profiles. Weibel agrues
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that if d ≈ 2b, the 3D structures are most likely prolate;
if d ≈ 2a, they are most likely oblate. In our case, d =
340 nm, 2a = 890 nm, and 2b = 270 nm, pointing to
the prolate hypothesis. As a second test, Weibel points
out that, in the case of prolate spheroids, we expect
the near circular profiles to be more numerous than the
highly elliptical profiles. This can be checked using the
axis ratio, r, of an elliptical profile, which is defined
as the ratio of the largest diameter to the smallest. In
our case, for the sectioned data, the median value of
r is 1.52. When this is compared with the minimum
(1.02) and maximum (5.70) values of r, the test again
confirms the prolate hypothesis.

As discussed in the introduction, the motivation
for this research derives from the desire to analyze
conformational changes, particularly changes in shape
of mitochondria undergoing apoptosis. The motivation
is to construct a tool for quantifying the progression
of shapes after the tubular mitochondrion splits into
fragments which eventually become spherical. Our
method could be used to monitor those changes
quantitatively. We apply our method to a group of
HeLa cells in H2O2-induced apoptosis.

As it turns out, the “proof of concept” presented
here is not an idle exercise. Some remarks are in
order concerning the a priori feasibility of the task
that we have set out. There is a sense in which
the mathematical problem we have formulated has a
fundamental ambiguity that may rear its ugly head in
certain contexts. Consider two extreme populations of
prolate spheroids: (i) a distribution of nearly perfect
spheres with their major axes oriented horizontally,
and (ii) a distibution of highly elongated spheroids
with all of their major axes nearly vertical. In both
cases (since our sectioning plane is defined to be
horizontal) the 2D sections are nearly perfect circles.
There is thus no information in the shape of the
sections that can be used to infer the 3D shape of the
spheroids. This example illustrates the type of problem
that can arise when trying to unfold 3D information
on both shape and orientation from 2D sections. The
presence of such an ambiguity is revealed in the
behavior of the likelihood function that is computed
from the data. The likelihood function could have
several peaks that are not well separated and/or that
are of roughly the same height, or it may have
an ill defined peak. In these cases this method as
it is formulated cannot be applied without bringing
in additional information about the population of
spheroids that would permit a resolution of the
ambiguity.

For the data that we analyzed, a simple constraint
of α ≤ 5 for the parameter in Φ0(θ |α) was found
sufficient to guarantee a single well-defined interior
peak for the likelihood functions L1 and L2. This
constraint rules out any spheroid population with a
standard deviation of θ less than 25.0 degrees. That
is, if more than about 68% of the spheroids are so
flattened that their axes rise no more than 25.0 degrees
above horizontal, then the results we have obtained
may not be valid. While we consider this highly
unlikely, it has to be recognized as a limitation of this
method.

We generated a set of micrographs of the group of
cells described above and in the Ph.D. thesis of one
of the authors (Sun, 2007). The outer membranes of
a total of 231 mitochondrial sections were traced in
these micrographs using the program ImageJ, which
ellipticized each trace yielding minor and major axes,
from which a semi-minor axis b and an eccentricity e
could be determined4. Fig. 2 shows a typical electron
micrograph used in our tracings.

1000 nm

Fig. 2. Typical electron micrograph of a HeLa cell
having undergone H202 induced apoptosis.

Sun et al. (2007) contains a description of how
the thin sections were prepared. The thickness of
the sections, 80 nm, represents about 15% of a
typical particle diameter. Any thoroughgoing effort
to use our method would need to address the
standard stereological problems of “lost caps” and
overprojection associated with the finite thickness of
the sections (Weibel, 1979; 1980). We did not do so
in this study for two reasons. First, we anticipate that

4ImageJ, (Image Processing and Analysis in Java, http://rsb.info.nih.gov/ij/) uses the “best fit ellipse” algorithm to match the moment
of inertia of the region traced to determine an equivalent ellipse.
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in our case the corrections would have a minor effect
on the results. Secondly, the scope of our enterprise
did not extend beyond laying out the theoretical
apparatus and testing the feasibility of the full-scale
unfolding problem of size, shape and orientation
of spheroids. Handling the corrections above for
nonspherical particles is not well developed and would
have been, for us in this effort, a theoretical distraction.

We now recall in outline the procedure described
in the previous three sections for handling the data, and
we summarize the results as applied to the data derived
from our micrographs. The predicted size distribution
Φ1(r) of the prolate spheroids is dependent on the
parameters μr,σr, which describe the most likely
normal distribution of the semi-minor axis, r. To
produce a likelihood in terms of μr, σr, Eqs. 15 and
17 are combined to give

L1(D1|μr,σr) =
231

∏
j=1

∫ ∞

b j

b j Φ1(r|μr,σr)√
r2−b2j

dr (25)

in terms of the 231 semi-minor elliptical axes
b1, . . . ,b231 obtained from the micrographs.

Fig. 3 shows the contour of L1 that surrounds
the 90% confidence region for μr, σr, as well as the
point marking the maximum-likelihood values. Fig. 4
displays the maximum-likelihood distribution in black.
The 90% confidence region is suggested by the green
region surrounding the black curve. It is the result of
superimposing all of the distributions whose parameter
values lie in the 90% confidence region shown in
Fig. 3.
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Fig. 3. The maximum likelihood point and the 90%
confidence region for the mean and standard deviation
of the semi-minor axis, r, of the spheroid.

0 100 200 300 400 500
0

0.002

0.004

0.006

0.008

0.01

r  [nm]

Φ
1(r

)

Fig. 4. The maximum likelihood spheroid size
distribution (black) and the 90% confidence region
(green).
The predicted spheroid shape and orientation are

found in a similar manner. Eqs. 16, 17, 19, and 21
are combined to produce the likelihood L2(D2|p,q,α),
which is then optimized over p,q and α . The
parameters p and q describe a Beta distribution,
while α determines the orientation distribution. By
applying Eq. 20 the optimal p, q yield the eccentricity
statistics μe0 = 0.875 and σe0 = 0.091. Fig. 5 shows
the projection of the 90% confidence region. Fig. 6
illustrates the optimal Beta distribution (in black) as
well as the continuum of Beta distributions found
within the 90% confidence region (in green).
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Fig. 5. The maximum likelihood point and the 90%
confidence region for the mean and standard deviation
of the spheroid eccentricity, e0.

Fig. 6. The maximum likelihood spheroid eccentricity
distribution (black) and the 90% confidence region
(green).
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Fig. 7. The maximum likelihood spheroid orientation
distribution (black), a uniform distribution (dashed-
blue) and the 90% confidence region (green).

The predicted orientation distribution Φ0(θ |α)

occurred for α = 2.26. This value of α corresponds to
σθ =32.82 degrees and an isotropy index, from Eq. 22,
of Iiso = .838. The predicted distribution of orientation
is seen in Fig. 7. Also shown for comparison is the
distribution corresponding to perfect isotropy. The
90% confidence analysis shows that our measured
anisotropy is statistically significant.

The 90% confidence regions shown in Figs. 3 and 5
were determined by performing a parametric bootstrap
as described in the previous section. Explicitly, in
the case of spheroid size (semi-minor axis, r, Fig.
3) the maximum-likelihood values μ∗ = 244 nm and
σ∗ = 52.4 nm were taken to determine the model
distribution Φ1(r) from Eq. 18 and the associated
predicted distribution for elliptical cross-section size,
Ψ̂1(b) after normalizing Eq. 15. A Monte Carlo
scheme to simulate the slicing experiment was iterated
5000 times (N = 5000). Each iteration involved
sampling 231 (m = 231) values of b from the
distribution Ψ̂1(b) and interpreting that sample as
data for a new prediction of μ and σ . These 5000
predictions were then processed as explained in the
previous section. Fig. 8 shows the raw collection of
predictions in the (μ ,σ)-plane, clustering nicely about
the original maximum-likelihood prediction (shown in
the center).

The blue curve in Fig. 9 is an empirical plot, for
all 5000 iterations, of LLD versus rank in the form of
percentile. As explained in Sec. 6, the value of LLD (=
3.3) determines the boundary of the 90% confidence
region. This is the contour shown in Fig. 3.
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Fig. 8. Graphical depiction of uncertainty in the
method, showing predictions of μr and σr obtained
from 5000 simulations of the sampling experiment (231
sections each) based on a population of spheroids
with parameters corresponding to the data-based,
maximum-likelihood prediction (shown in center).
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Fig. 9. The log likelihood difference as a function of
the confidence level. The dashed red curve is obtained
from the likelihood ratio test. The solid blue curve is
obtained from the parametric bootstrap.

The second curve in Fig. 9 (red, dashed) is
shown for comparison. If we had chosen not to
perform the bootstrap, i.e. not to collect statistics
on the performance of our method, we could have
used the so-called Likelihood Ratio Test to establish
confidence regions (Kendall and Stuart, 1983; Hilborn
and Mangel, 1997). This is an asymptotic result (large
m) stating that under certain conditions LLD/2 is
distributed like a chi-square statistic of one degree
of freedom. The associated percentile curve is shown
in red. The discrepancy between these two curves
illustrates the necessity, in the case of our method,
to base uncertainty results on actual performance
statistics, rather than assuming the conditions required
for the Likelihood Ratio Test.

A similar parametric bootstrap was performed for
results on spheroid eccentricity and orientation. In
this case the parameter space (μe0 , σe0 , α) is three-
dimensional and so is the 90% confidence region.
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Again, 5000 simulations based on the maximum-
likelihood parameters were carried out and the LLD
values ranked in an empirical curve. This curve
fixed the LLD value, and, hence, the contour for the
bounding level surface of the confidence region. Fig. 5
shows the projection of this region onto the (μe0 , σe0)-
plane, this projection giving the 90% confidence region
for those parameters.

The results from our method may be summarized
as follows. At the apoptotic state measured, the
mitochondria exhibited a mean eccentricity of 0.875
with a standard deviation of 0.091. In addition the
semi-minor axis, r, of the spheroid had a mean value
of 244 nm with a standard deviation of 52.4 nm. This
corresponds to a semi-major axis of 504 nm. Our
most likely prolate spheroid is depicted in Fig. 10.
Finally, the principal axes of the mitochondria showed
a statistically significant directional anisotropy. Their
directions showed an isotropic index of 0.838. That is,
their spread about the horizontal was only 84% of that
expected in an isotropic distribution.

Fig. 10. Spheroid with mean dimensions predicted by
the method: semi-minor axis 244 nm, semi-major axis
504 nm, eccentricity 0.875.

CONCLUSION

We developed a novel stereological method
that utilizes a maximum-likelihood scheme to infer
the distribution of spheroidal shapes, sizes and
orientations from the observed distribution of elliptical
sections. The maximum-likelihood method is applied
to a parametrized set of distributions appropriate
for studying the shape of mitochondria undergoing
apoptosis. A parametric bootstrap for estimating
confidence intervals for the parameters in our
distributions is described and illustrated for an
example. We expect that future applications to
resolving time variations of apoptotic mitochondria
will provide insights into apoptosis. We also expect
our method, with possible modifications of the
parametrization, to serve as a useful template for other
specialized applications of the unfolding problem.
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