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ABSTRACT

An image analysis method has been developed in order to compute the velocity field of a granular medium
(sand grains, mean diameter 600 µm) submitted to different kinds of mechanical stresses. The differential
method based on optical flow conservation consists in describing a dense motion field with vectors associated
to each pixel. A multiscale, coarse-to-fine, analytical approach through tailor sized windows yields the best
compromise between accuracy and robustness of the results,while enabling an acceptable computation time.
The corresponding algorithm is presented and its validation discussed through different tests. The results of the
validation tests of the proposed approach show that the method is satisfactory when attributing specific values
to parameters in association with the size of the image analysis window. An application in the case of vibrated
sand has been studied. An instrumented laboratory device provides sinusoidal vibrations and enables external
optical observations of sand motion in 3D transparent boxes. At 50 Hz, by increasing the relative acceleration
Γ, the onset and development of two convective rolls can be observed. An ultra fast camera records the grain
avalanches, and several pairs of images are analysed by the proposed method. The vertical velocity profiles
are deduced and allow to precisely quantify the dimensions of the fluidized region as a function ofΓ.

Keywords: grain motion, granular media, horizontal vibrations, multiscale image analysis, optical flow,
velocity field.

INTRODUCTION

The aim of this work is to compute the velocity
field of a granular medium submitted to different
kinds of mechanical stresses. In particular, it focuses
on the velocity field in a vibrated granular medium
of sand grains (mean diameter 600 µm) and allows
assessing the dimensions of its fluidized region, which
corresponds to specific physical properties required in
process engineering for industrial applications.

For this purpose, an image analysis method
has been developed. 2D image sequences of the
granular medium are firstly acquired with an ultra-
rapid CCD camera. The optical flow (dense velocity
field) between two images is then computed using
a differential method. This technique is based on
two assumptions. The first one is the light intensity
conservation, implying that the luminance of the
grains does not change significantly between two
successive image frames at time valuest and t + dt.

The second one requires that each velocity vector
remains constant within a small spatial window.
The size of the analyzing window is related to the
accuracy of the method. In order to handle small
and large displacements, the optical flow is computed
with an iterative and multiscale approach (pyramidal
decomposition) using a coarse-to-fine analysis. The
level of the pyramid multiscale analysis is related to
the robustness of the method. In order to get the best
compromise between accuracy and robustness, several
validation tests are achieved. For a given numerical or
physical motion (translation, rotation), pairs of images
before and after the displacement are compared. Using
the optimal parameters, the image analysis method
is performed in the framework of a study of an
horizontally vibrated granular medium submitted to
different accelerations. The vertical velocity profiles
are then deduced and allow to precisely quantify the
dimensions of the fluidized region as a function of the
vibration acceleration.
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MATERIALS, EXPERIMENTAL
SETUPS AND IMAGE
ACQUISITION

MATERIALS

The granular medium is made of sand grains
(more than 99% ofα-quartz) without internal close
porosity (2660 kg/m3). The size distribution given on
Fig. 1 shows a moderate polydisperse material with
a span of(d90%− d10%)/d50% = 0.75 and a volume
mean diameter, denotedd4,3 (the ratio of the fourth
to the third moments of the grain size distribution),
of 600 µm. The grains are approximately spherical
(Fig. 2).

Fig. 1. Volumetric grain size distribution. The mean
diameter is d4,3 = 600 µm with a span of(d90%−

d10%)/d50% = 0.75 where n% in mass of the grains
have diameter lower than dn%.

Fig. 2.Optical microscope image showing the rounded
shapes of the sand grains.

EXPERIMENTAL SETUPS

Three experimental setups have been used.

Translation bench. The translation bench is
composed of a parallelepipedic open box (container)
filled with sand. This container is fixed on an
horizontal linear motion guide, allowing translational
motion exclusively. The camera is placed above the
setup.

Rotation bench. This setup is composed of a
plastic cap of 3.3 cm inner diameter with the open-
side up. A pushpin goes through it center and fixes
it on an horizontal plank, allowing rotational motion
exclusively. The container is filled with sand grains and
the camera is placed above the setup, aligned with the
pushpin’s vertical axis (Fig. 3).

Fig. 3. Rotation bench: a plastic cap filled with
granular material can undergo a rotational motion
around its center where a pushpin is nailed.

Vibration bench. This experimental setup
(Raihaneet al., in press) is mainly composed of
a mobile table, a transparent container and sand
grains. The horizontal table is linked to a marble
stand by four horizontal linear motion guides (THK,
EPF7M16+55LM). A sinusoidal motion is transmitted
to the table by an electromagnetic shaker (TIRA,
S513) driven by a signal generator (LING DYNAMIC
SYSTEMS, DSC4) coupled with a power amplifier
(TIRA, BAA120). The motion is driven with an
accelerometer (BRUEL & KJAER, 4371 V). The
direction of the vibrations is referred to asx-axis.
The parallelepipedic container fixed on the table
is composed of 8 mm thick glued plexiglas plates
(Fig. 4).

Fig. 4. Vibration bench: an electromagnetic shaker
delivers a sinusoidal vibration at a controled
frequency f . It drives an horizontal table mounted on
four bearings guided by four rails. The vibration
amplitude A is controlled by a piezoelectric
accelerometer.
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The longitudinal, transverse and vertical
dimensionsLx, Ly, Lz of the container are respectively
40, 80 and 80 mm. The initial height of the granular
packing is 60 mm and the camera observes the vertical
face orthogonal to the vibrationx-axis.

IMAGE ACQUISITION

An ultra-fast CCD camera (JAI, CMOS CV-A33)
with a maximal frequency of 5400 frames/s and a
maximal field of 494×660 pixels allow us to follow
the movements of the grains along the walls of the
box. The analysis of the images sequences is described
below.

VELOCITY FIELD COMPUTATION

This section is devoted to an image analysis
method allowing the computation of a dense velocity
field from an image sequence of vibrated granular
structures. For that, an optical flow multiscale method
is proposed.

OPTICAL FLOW BASED IMAGE
ANALYSIS METHOD

Optical flow (Horn and Schunck, 1981) is an
estimation of the apparent motion (velocity) of objects
within an image sequence. It is closely related to
motion estimation. Nevertheless, the termoptical flow
is specifically used to describe a dense 2D apparent
motion field from the projection of a 3D scene onto
the image plane. Different methods have been reported
for determining optical flow such as:

– phase-based methods (Fleet and Jepson, 1990;
Fleet, 1992): the velocity is defined in terms of the
phase behavior of band-pass filter outputs. They
provide a high accuracy but are generally less
efficient for large displacements;

– differential methods (Horn and Schunck, 1981;
Lucas and Kanade, 1981; Uraset al., 1988):
velocity is computed from spatio-temporal
derivatives of image intensities. These techniques
offer a good trade-off between robustness under
noise and density of the flow fields;

– region-based matching methods (Burtet al., 1983;
Anandan, 1989; Little and Verri, 1989): the
velocity is defined as the shift yielding the best
fit between image regions, according to some
similarity measure. These methods provide more
robustness with respect to differentiation and are
generally quicker but they are less successful for
sub-pixel velocities;

– energy-based methods (Adelson and Bergen, 1986;
Heeger, 1988; Barmanet al., 1991): optical flow
is computed using the output from the energy of
velocity tuned filters in the Fourier domain. It
has been shown that certain energy-based methods
are equivalent to region-based or differentiation
methods.

In review papers, Barronet al. (1994) and Galvin
et al. (1998) have evaluated different methods and
concluded that the differential method proposed by
Lucas and Kanade (1981) yields the best results.

Other numerous methods combining local (using
spatial constancy assumptions) and global (using
smoothness assumptions) techniques have also been
developed so as to propose an accurate smooth and
dense optical flow field (Broxet al., 2004; Bruhn and
Weickert, 2005; Le Besnerais and Champagnat, 2005).
For the proposed application, a dense optical flow is
not absolutely necessary and a raw velocity field is first
required. Therefore, the computation of the velocity
field in this paper is based on the differential method
proposed by Lucas and Kanade (1981).

The Lucas and Kanade (1981) method, as many
differential techniques, is based on the assumption of
intensity conservation (i.e., assuming that the intensity
of the objects within the image sequenceI does not
change significantly between two successive image
frames at timest andt +dt), that is to say:

I(x,y,t) = I(x+dx,y+dy,t +dt) , (1)

where t(x,y) and t(dx,dt) are vectors of the pixel
location and displacement respectively;t denoting the
matrix (vector) transposition.

For small displacements, a first order Taylor
expansion can be applied:

I(x+dx,y+dy,t +dt) = I(x,y,t) +

∂ I
∂x

(x,y,t)dx+
∂ I
∂y

(x,y,t)dy+
∂ I
∂ t

(x,y,t)dt . (2)

Combining Eq. 1 and Eq. 2, the optical flow
constraint is then given as:

∂ I
∂x

(x,y,t)dx+
∂ I
∂y

(x,y,t)dy+
∂ I
∂ t

(x,y,t)dt = 0 , (3)

which results in:

∂ I
∂x

(x,y,t)vx +
∂ I
∂y

(x,y,t)vy+
∂ I
∂ t

(x,y,t) = 0 , (4)

wherev= t(vx,vy) is the velocity vector at location and
time (x,y,t).

37



DEBAYLE J ET AL : Velocity field computation in vibrated granular media

Thus, Eq. 4 could be written as the differential
system:

(Ix, Iy)
t(vx,vy)+ It = 0 , (5)

where Ix, Iy and It denote the space and time partial
derivative ofI(x,y,t), respectively.

This is a system of one equation with two
unknowns vx,vy ant this it can not be solved as
such. This is known as the aperture problem of the
optical flow algorithms. Consequently, another set
of equations is needed, given by some additional
constraints (Horn and Schunck, 1981).

To solve the aperture problem, Lucas and Kanade
(1981) assume a locally constant velocity in the
neighborhood of the considered pixel. Assuming that
the velocity vectorv = t(vx,vy) is constant within a
small windowW of sizen pixels centered at(x,y) and
ordering the pixels within as 1, . . . ,n, yields an over-
determined system:
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This system can be written in the following
matricial form:

Av+b = 0 , (7)

whereA,v,b denote the space partial derivative matrix,
the velocity vector and the time partial derivative
vector, respectively.

To solve this system of equations, the least squares
method is used in the Lucas-Kanade optical flow
estimation:

v = (tAA)−1[tA.(−b)] , (8)

that is to say:
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(9)

This estimation is reliable if the matrixtAA is
invertible,i.e., with no zero eigenvalues. Consequently,
the Lucas and Kanade (1981) method computes the
vectorv at a pixel(x,y) only if both eigenvaluesλ1,λ2
of tAA are greater than a predefined threshold value
λ . Note that ifλ1, λ2 are both large, the point(x,y)
corresponds to a corner point (Harris and Stephens,
1988). Therefore, in the proposed method, the velocity
vectors are computed at corner points.

MULTISCALE APPROACH

The two key components of an optical flow method
are accuracy and robustness. These components relate
to the size of the windowW:

– a small window is preferable for accuracy in order
not to “smooth out” the details contained in the
images,

– a large window is preferable for robustness to
handle large motions.

There is therefore a compromise between accuracy
and robustness when choosing the window size. In
this way, a multiscale and iterative implementation
(Bouguet, 2000) is proposed for providing both a
robust and accurate method.

The multiscale representation is given by a
Gaussian pyramid (Burt and Adelson, 1983). In this
way, the optical flow is computed in a coarse-to-
fine analysis. The velocity is first computed at a low
resolution (i.e., at a high level of the pyramid), in an
iterative way so as to ensure the stabilization of the
solution, before advancing to the next level. Then, the
field is warped and upsampled at the next level of the
pyramid and the optical flow is computed again. This
loop estimation is performed until the highest image
resolution (i.e., at the lowest level of the pyramid).

This iterative multiscale algorithm, denoted
Motion-2D (Belhaoua, 2007), for estimating the
optical flow between two image frames is therefore
decomposed in the steps presented in Alg. 1.

Note that all computations are achieved at a
subpixel accuracy level, using bilinear interpolation.

REGULARIZATION

Despite that velocity vectors are only computed
for large eigenvalues oftAA (see section about optical
flow), some outliers could appear. So, in order to have
a smoothed optical flow (i.e., to discard outliers), a
median filtering could be applied on the dense motion
field (using either the norm or the angle of the vectors).

In the proposed algorithm, the median filtering
is only performed if the norm or the angle of the
considered vectorv = t(vx,vy) is far from the median
value of those within a 3×3 window centered on the
pixel located at(x,y).

This regularization process has been added to
Motion-2Das an option.
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input : ImagesI andJ
output: Velocity field between imagesI andJ

pyramidal decomposition inL+1 levels of the
two image framesI andJ: I0 = I , I1, ..., IL and
J0 = J,J1, ...,JL;

initialization of the optical flow:vL+1 = 0;

for l ← L to 0 do
imageI+

l : warping of the imageIl with the
upsampled optical flowv∗l+1:
I+
l = Il +v∗l+1;

loop estimation of the optical flow between
imagesI+

l andJ:
for k← 1 to K do

ηk
l ≡ iterative Lucas-Kanade.ηk

l is the
optical flow at levell for iterationk.

end
optical flow at levell between imagesI+

l
andJ: ηl ;
final optical flow at levell between images
Il andJ: vl = v∗l+1 +ηl ;

end

estimation of the final optical flow between
imagesI andJ:

v = v0 =
L

∑
l=0

η∗l

η∗l is the optical flowηl+1 upsampled at levell ;

Algorithm 1 : Algorithm Motion-2D. The
velocity field is computed using an iterative
multiscale image analysis method.

VALIDATION

In general, the performance of the optical flow
methods are evaluated on real sequences and synthetic
sequences for which motion fields are known. Some
common evaluation criteria are average angular error,
standard deviation and density of measurements
(Barronet al., 1994).

GENERATION OF TEST IMAGES

In order to validate the implementation of
the proposed algorithm in terms of accuracy and
robustness, several tests have been performed on
images of granular structures with imposed motion.
Four pairs of images have been built:

• A−B (numerical test / translation): A pictureA of
a sand packing is shifted by exactlyp pixels with
Aphelion™ software to give a pictureB.

• C−D (numerical test / differential translation): A
pictureC of a sand packing is split into different
zonesCi which are shifted bypi pixels each to give
a pictureD.

• E − F (physical test / translation): The sand
packing is shifted byd mm with the translation
bench. The pictures of the initial and final states
are labeledE andF respectively.

• G−H (physical test / rotation): The sand packing
is rotated by an angle ofα degrees with the rotation
bench. The pictures of the initial and final states are
labeledG andH respectively.

VELOCITY FIELD COMPUTATION
FOR TEST IMAGES

A−B : Various pairs of imagesA−B were created
corresponding to translations between one and
ten pixels. Several analyses were performed on
these images by varying the level of pyramid
L from 0 to 4 and the window sizeW from
3 to 25 pixels. Results of these analyzes are
presented on Fig. 5. They show that there exists
conditions for a displacement ofp pixels to be
accurately estimated. In fact, when using small
window (W < p), analyzes should be carried
out for high pyramid levels. For instance, for a
displacement of ten pixels, one shall useL = 3
(pyramid level) andW = 3 (window size). Let
us notice that in these experiments, a mean grain
diameter is equal to about eight pixels. So, the
width of the largest windowW is about three mean
diameters. Computation time is an other important
parameter especially for quantitative analyses.
This parameter is almost constant when increasing
pyramid level for small windows (W < 9) and
increases dramatically for large windows (W > 9).
Results obtained for pyramid levelL = 2 are
satisfactory for all the investigated window sizes.
For the following analyzes, the pyramid levelL
is kept equal to two and the window widthW is
chosen to be equal to three grain’s mean diameter
d4,3. The latter choice will be justified in the
section Results.
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Fig. 5.Numerical test: the computed displacement
(in pixels) between two images A and B (for
different numerical translations) is plotted versus
the pyramid level L for different window sizes W.

C−D : Using a pyramid levelL=2 and a window
width W ≈ 3d4,3, the displacement field between
images C and D was calculated. For each z,
the displacement is averaged along thex− axis.
The resulting profile is plotted on Fig. 6. The
different regions corresponding to different values
of displacementp pixels are well detected and
separated.

Fig. 6. Differential numerical test: the mean
computed and real displacements between two
images C and D are plotted versus the vertical
position z. The thick (resp. thin) line represents
the computed (resp. real) displacement. The inset
shows the different translations performed on
image C to obtain image D.

E−F : Several translation tests, from 0.1 mm to
1.5 mm, were performed. The resulting images
were analyzed with parametersL = 2 andW ≈
3d4,3. Table 1 shows the experimental results and
calculated results.

Table 1. Physical translation: Comparison
between real and pcalculateddisplacement of a sand
packing. The image analysis method is performed
with parameters L= 2 and W= 15.

d [mm] d [pixel] pcalculated
0.1 0.82 0.83± 0.02
0.3 2.46 2.49± 0.02
0.4 3.28 3.41± 0.03
0.5 4.1 4.2 ± 0.09
0.8 6.56 6.63± 0.04
1. 8.2 8.29± 0.09
1.5 12.3 12.08± 0.3

G−H : Fig. 7 shows the result of the rotation
test analysis byMotion-2D. By going away
from the center of rotation (pushpin center), the
displacement increases according to the lawd =
α× r (r: radius).

Fig. 7. Displacement field from rotation: the cup
filled with granular material was rotated around
the pushpin. The resulting images were analyzed
with parameters L= 2 and W= 15≡ 3D4,3.

Following these validation experiments, the
algorithm is parameterized with a pyramidal level
L = 2 levels, a number of 100 iterations and a window
sizeW of approximately three mean grain diameters.

RESULTS

EXPERIMENTAL OBSERVATIONS

In vibration experiments, a typical run consists
in increasing the value of the relative accelerationΓ
from zero at a fixed frequencyf = 50 Hz. Different
behaviors were observed as a function ofΓ. To
facilitate the discussion, the vertical faces orthogonal
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(resp. parallel) to the vibrations direction are labeled
“North/South” (resp. “East/West”). The observations
are the following ones (Raihaneet al., in press):

0 < Γ < Γ1 ∼ 0.3 : The whole granular packing
behaves like a compact solid which follows the
motion of the box (at rest in the box frame).

Γ1 < Γ < Γ2∼ 0.9: Grains simmering at the free
surface; the other regions are at rest in the box
frame.

Γ2 < Γ < 4.5: At Γ2, a transition occurs from a solid-
like behavior of the whole packing to a fluid-
like one in the upper region, the lower region
remaining unchanged. At the free surface, grains
move towards the walls from the middle of the
granular medium and then, avalanche into the
gap created between the granular packing and
the North/South walls. On the East/West faces,
two convective counter-rotating rolls are observed
(Fig. 8). Only the upper region of the packing is
fluidized. By increasing the relative accelerationΓ,
the thickness of the fluidized regionEf increases.

Fig. 8. Convective rolls: sketch of convective
motion in a granular packing submitted to
horizontal and sinusoidal vibrations with
acceleration Γ > 1. In the west/east faces,
two counter rotating convective rolls are observed.
At the north/south walls, grains avalanche to a
distance Ef from the top.

QUANTITATIVE DESCRIPTION

In vibration experiments, the aim is to measure the
velocity field of grains at the North/South faces and
the fluidized region thicknessEf . For this purpose, a
CCD camera records the grain avalanches at the north
face at the rate of one frame per oscillation period (50
frames per second). For each acceleration, several pairs
of images are analyzed byMotion-2D(10 pairs forΓ≤
1.8, 30 pairs else). The resulting displacement fields
are averaged and then, for each acceleration, a vertical
velocity profile is deduced (Fig. 9). For all these
analyses, the pyramid level isL = 2 and the window

width W ≈ 3d4,3. The choice of such window width is
justified by the fact that, during their fall, grains can
undergo simultaneously rotation motions. Hence, the
algorithm would meet difficulties to recognize them if
the window recovers only one grain. A window width
of three grain mean diameters seems to be a good
compromise to avoid chaotic behavior of granular
movements and to take into account the displacement
gradient (Medved, 2002).

Fig. 9. Velocity profiles of grains at the North
wall for a granular packing of initial height
Hi = 60 mm horizontally vibrated at three different
accelerations. Profiles show a flat zone and a large
peak corresponding respectively to the solid lower
zone and the fluidized upper zone of the packing.

To determine the thickness of the fluidized region
for each acceleration, a fluidization velocity threshold
is defined (inset of Fig. 9). Here, when the threshold of
0.06 mm/s is exceeded, the granular medium is said to
be fluidized.

Fig. 10 shows the evolution of the fluidized
thicknessEf versus the relative accelerationΓ for a
granular packing vibrated at frequencyf = 50 Hz.

Fig. 10. Evolution of the fluidized thickness with
relative accelerationΓ of a granular packing of
initial height Hi = 60 mm. An onset of fluidization
is observed forΓ = 1 and a saturation for high
accelerations.

41



DEBAYLE J ET AL : Velocity field computation in vibrated granular media

The phenomena occuring on East and West faces
can be described in the same way withMotion-2D.

Fig. 11 shows the computed displacement field for
an image sequence during 20 s.

(a) image att = 20s

(b) velocity vector field

(c) velocity streamlines

Fig. 11.Computed velocity field of a granular medium
vibrated during 20 s. The vector velocity field (b) is
computed between images from t= 0 s to t = 20 s
(a). The streamlines (c) shows the direction and the
magnitude of the flow velocity.

The velocity field shows two convective rolls in
the left and right upper corners of the image. This
numerical result is in accordance with the experimental
observations (Fig. 8).

Finally, this quantitative description usingMotion-
2D provides the velocity field in a vibrated sand
granular packing and therefore enables to estimate its
fluidized thickness.

CONCLUSION

An optical flow based multiscale image analysis
method has been developed in order to compute the
velocity field in vibrated granular media constituted of
sand grains. This method provides a good compromise
between accuracy and robustness for acceptable
computation time, using specific parameters assessed
from several validation tests. The velocity vectors
are computed both using tailor sized windows and
a coarse-to-fine analysis on 2D image sequences.
The results provide a quantification of the fluidized
thickness of the granular medium versus the relative
acceleration of the vibration (using a fixed frequency).
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vibrations. MSc Thesis, ENSM-SE, Saint-Etienne,
France.

Bouguet JY (2000). Pyramidal implementation of the lucas-
kanade feature tracker. Tech. rep., Intel Corporation,
Microprocessor Research Labs.

Brox T, Bruhn A, Papenberg N, Weickert J (2004). High
Accuracy Optical Flow Estimation Based on a theory
for warping. In: Proc 8th Eur Conf Comput Vision.
Prague, Czech Republic; May, 25-36, vol. 4.

42



Image Anal Stereol 2009;28:35-43

Bruhn A, Weickert J (2005). Lucas/Kanade Meets
Horn/Schunck: Combining Local and Global Optic
Flow Methods. Int J Comput Vision 61:211–31.

Burt P, Yen C, Xu X (1983). Multiresolution flow-through
motion analysis. In: Proc IEEE Int Conf Comput Vision
Pattern Recogn. Washington, DC, USA; June, 246-52.

Burt PJ, Adelson EH (1983). The laplacian pyramid as a
compact image code. IEEE Trans Commun 31:532–40.

Fleet D, Jepson A (1990). Computation of component image
velocity from local phase information. Int J Comput
Vision 5:77–104.

Fleet DJ (1992). Measurement of Image Velocity. Kluwer
Academic Publishers, Norwell.

Galvin B, McCane B, Novins K, Mills S (1998). Recovering
motion fields: An evaluation of eight optical flow
algorithms. In: Proc Brit Machine Vision Conf.
Southampton, UK; September, 195-204.

Harris C, Stephens MJ (1988). A combined corner and edge
detector. In: Proc Alvey Vision Conf. Manchester, UK;
September, 147-52.

Heeger DJ (1988). Optical flow using spatiotemporal filters.
Int J Comput Vision 1:279–306.

Horn BKP, Schunck BG (1981). Determinig optical flow.
Artif Intel 17:185–203.

Le Besnerais G, Champagnat F (2005). Dense optical flow
by iterative local window registration. In: Proc IEEE Int
Conf Image Proc. Genova, Italy. September, 137-40.

Little JJ, Verri A (1989). Analysis of differential and
matching methods for optical flow. In: IEEE Worksh
Visual Motion. Irvine, CA, USA; March, 173-180.

Lucas BD, Kanade T (1981). An iterative image registration
technique with an application to stereo vision. In:
Proc Int Joint Conf Artif Intel. Vancouver, BC, Canada;
August, 674-9.

Medved M (2002). Connections between response modes
in a horizontally driven granular material. Phys Rev E
65:021305.

Uras S, Girosi F, Verri A, Torre V (1988). A computational
approach to motion perception. Biol Cybern 60:79–97.

43


