
Image Anal Stereol 2009;28:45-61
Original Research Paper

LABELING OF N-DIMENSIONAL IMAGES WITH CHOOSABLE
ADJACENCY OF THE PIXELS

KAI SANDFORT1 AND JOACHIM OHSER2

1University of Karlsruhe, IWRMM, Engesserstraße 6, 76131 Karlsruhe, Germany;2University of Applied
Sciences, Darmstadt, Schöfferstraße 3, 46295 Darmstadt,Germany
e-mail: sandfort@math.uni-karlsruhe.de, jo@h-da.de
(Accepted February 18, 2009)

ABSTRACT

The labeling of discretized image data is one of the most essential operations in digital image processing. The
notions of an adjacency system of pixels and the complementarity of two such systems are crucial to guarantee
consistency of any labeling routine. In to date’s publications, this complementarity usually is defined using
discrete versions of the Jordan-Veblen curve theorem and the Jordan-Brouwer surface theorem for 2D and
3D images, respectively. In contrast, we follow here an alternative concept, which relies on a consistency
relation for the Euler number. This relation and all necessary definitions are easily stated in a uniform manner
for the n-dimensional case. For this, we present identification and convergence results for complementary
adjacency systems, supplemented by examples for the 3D case. Next, we develop a pseudo-code for a general
labeling algorithm. The application of such an algorithm should be assessed with regard to our preceding
considerations. A benchmark and a thorough discussion finish our article.

Keywords: adjacency of lattice points, complementarity, connectivity, labeling, run length encoding.

INTRODUCTION

Labeling of connected components (‘objects’) is
one of the most important tools of image processing.
It is the basis for the generation of object features as
well as of some kind of filtering,i.e., removing of noisy
objects or holes in objects. The criteria for removing
an object or a hole can be chosen extremely flexible
based on the object features. The task of labeling
(object filling, region detection) is to assign labels
(mostly unsigned integers) to the pixels in such a way
that all pixels belonging to a connected component
of the image are assigned the same label, and pixels
belonging to different components get different labels.
Due to its importance in image processing, there is
plenty of literature about labeling and techniques to
control (and improve) the processing and memory
demands. These can be tremendous for large images,
which frequently arise in practice. Once again, the
challenge lies in finding a compromise between
usability, flexibility, and efficiency.

The prototype of labeling algorithms is the simple
and well-known Rosenfeld-Pfaltz method (Rosenfeld
and Pfaltz, 1966; Klette and Rosenfeld, 2004). Here,
the image is scanned until a pixelxk is found that
has not yet been labeled. If there is no neighboring
pixel labeled w. r. t. the chosen adjacency system, a
new label is chosen forxk. Otherwise, if there is a
neighboring pixelx j with the labelℓ j , the labelℓ j
is assigned also toxk. In the case of more than one
neighboring pixels which have different labels, this

is noted in a table of pairs of equivalent labels. A
connected component is finally identified as the set
of pixels belonging to the same equivalence class
of labels. The table of pairs can become very large
and may lead to problems in finding the equivalence
classes; the time complexity of a corresponding
algorithm isO(m logm) with m being the number of
pairs. Thus, several variants of the Rosenfeld-Pfaltz
method have been developed which employ techniques
to keepm as small as possible.

However, a reduction in complexity is achieved
also by other strategies. For example, in Dillencourt
et al. (1992) the authors start their analysis with
describing a combination of theUnion-Find method
with weight-balancing and path-compression, which
yields O(m̃α(m̃)); here, α is the inverse of
Ackermann’s function and ˜m denotes the number of
Find andUnionoperations and is related to the variable
m above. On the one hand, the functionα grows
extremely slowly, and on the other hand, the quantity
m̃ does not necessarily evolve on pixel level (asm)
since theUnion-Find method can be equally applied
to other image representations withe.g., bintrees or
run lengths (instead of pixels) as modules. The same
holds for extensions ofUnion-Find(Dillencourtet al.,
1992) and related algorithms. The fact that some image
representations, in particular run length encodings, are
compatible with and facilitate the labeling w. r. t. an
adjacency system provides the basis for our algorithm.
Given the input image as a pixel array, a conversion
into a different representation might be done as a

45

SANDFORT K ET AL : Labeling of n-dimensional images

preprocessing in a labeling scheme. Its purpose could
be a decomposition (Aguileraet al., 2002) or a more
compact representation (our method) of the image to
allow an efficient data access and/or to reduce memory
demands.

Many classical labeling methods, including the
one by Rosenfeld and Pfaltz, are two-pass-techniques.
Here, in the first pass preliminary labels are assigned
and equivalences between labels are registered, and in
the second pass these correspondences are resolved
into equivalence classes. Either representatives of
these classes (e.g., their smallest elements) or
consecutive integers assigned to them are then set
as the final labels. The resolving step is a critical
issue, and several methods have been proposed to
handle it. An efficient solution is explained in Thurfjell
et al. (1992). However, the basic idea to maintain
and merge equivalences in a 1D array originated in
a work by Hoshen and Koppelman (1976). Hoshen
(1998) later on examined its use in image processing.
An alternative and general solution, with special
consideration of dismissing and reusing preliminary
labels, is given in Dillencourtet al. (1992) (integrated
in a Union-Find method), along with a detailed proof
of correctness. While in the latter the final label is
determined only in a second run, the methods cited
before can be used to merge label classes on-the-fly,
i.e., as soon as an equivalence is detected, and by that
allow a direct mapping of a preliminary label to the
corresponding final one right after the first run through
the input image.

A very different concept is followed by recursive
labeling methods. Such methods completely avoid
the setup of a mapping between preliminary
and final labels and identify a complete object
(connected component) at once. The information about
connectedness is usually carried in the algorithms by
design, rather than provided as a parameter or data
structure. An early account of recursive detection
of connected components is given in Hopcroft and
Tarjan (1973). The underlying principle resembles
that of filling algorithms. Recursive techniques can
achieve an excellent performance as they often are
accessible to the optimization potential of a compiler
and a CPU. However, since the recursion depth heavily
depends on the contents of the input image and so
can not be predicted, they have to tackle the risk of a
stack overflow. A smart approach to this is described
by Martı́n-Herrero in Martı́n-Herrero (2004), see
also Martı́n-Herrero (2007). It relies on a quasi-run
length encoding in one dimension and recursion in the
remaining dimensions of the input image, which gains
a significant decrease of the recursion depth compared
to recursion in all dimensions. The resulting algorithm

yields performance values which seem to be (among)
the best of today’s labeling algorithms and will serve
as a benchmark in our paper.

We now explain what we mean by quasi-run
length encoding above and put the bridge to our
labeling method. We assume a binary input image and
consider the labeling of its foreground pixels. In the
code by Martı́n-Herrero, starting with a single pixel
P, all foreground pixels which are consecutive in a
given direction and trivially connected toP are found
by iterative scanning and assigned a label differing
from the foreground value. Afterwards, the same is
recursively performed for all foreground neighbors
(according to the notion of connectedness) of all pixels
of the run. Each neighbor acts as the starting pixelP of
the next stage of the recursion. In this way, all pixels of
a connected component are reached and every pixel is
assigned a label only once. However, in searching for
the foreground neighbors of all members of a run, a
lot of pixels are accessed more than once. Although
the query of a label is a simple and fast operation,
this could be seen as a (small) shortcoming. It is not
possible here to restrict the check of the neighbors to a
few of the pixels of a run since otherwise not all pixels
of an object might be captured by recursion. Anyway,
this hybrid method is a single-pass-technique in the
sense that the input image as a whole has to be passed
only once in order to labelc orrectly all connected
components.

For our algorithm, we take a perspective which is
somehow complementary to the one just described.
We start with an iterative run length encoding
of all foreground pixels in the input image. This
preprocessing has been mentioned before as a
conversion from one image representation into
another. It guarantees that all foreground pixels are
registered a priori and makes it possible to detect
all correspondences by checking only the boundaries,
i.e., the start and end point of each run. The overall
labeling algorithm permits a proper control of the
stack and memory demands. We also believe that
the representation of the image as an array of run
lengths is advantageous for a further image processing
as well as analysis,e.g. a fast extraction of object
features. On the flipside, however, it lacks some of
the parallel processing and real time features of the
method by Martı́n-Herrero if the image is given as a
pixel array. Both methods exploit a property of any
reasonable definition of adjacency, namely that pixels
which are consecutive in a direction are connected.
This is reflected below in the inclusion Eq. 3. Here,
all admissible directions are implicitly defined by the
lattice or the pixel array, respectively.

46

Image Anal Stereol 2009;28:45-61

Finally, we remark that the introduction in
Thurfjell et al. (1992) contains a short survey of
different labeling algorithms, and Chapter 6 in Ritter
and Wilson (2001) formalizes labeling operations on
the basis of image algebra.

The outline of the paper is as follows. First we
give a short introduction to lattices (point lattices,
grids). For a general definition of pixel neighborhood,
we follow the approaches of Ohseret al. (2002;
2003); Schladitzet al. (2006) and state the concept
of adjacency onn-dimensional lattices and pairs of
complementary adjacency systems in. An important
insight is that, in 3D, complementarity according to
a consistency relation for the Euler number differs
from the complementarity as conventionally defined
by the discrete Jordan-Brouwer theorem. Furthermore,
we recall the notion of connectedness in the continuous
case and give a definition of connected components
in a lattice (discrete case) w. r. t. to a given adjacency
system. This finishes our theoretical investigation.
Before explaining the labeling algorithm, we introduce
some basic mathematical objects to handle images and
intend to clarify the link between the background from
the previous sections and a practical implementation.
Afterwards, we explain a run length encoding and
a labeling procedure by means of pseudo-codes. For
a convenient illustration, important and frequently
used functionality is encapsulated here in auxiliary
routines. A further section is devoted to a benchmark
and a test of our algorithm on application data from
material testing. We finally address some applications
and possible extensions of the algorithm in a short
conclusion.

ADJACENCY OF HOMOGENEOUS
LATTICES AND EULER NUMBER

An n-dimensional homogeneous lattice is a subset
L

n of then-dimensional Euclidean spaceR
n with

L
n = {x∈ R

n : x =
n

∑
i=1

λiui, λi ∈ Z} = UZ
n , (1)

where u1, . . . ,un ∈ R
n form a basis ofRn, U =

(u1, . . . ,un) is the matrix of column vectors, andZ ist
the set of integers. ByC = U · [0,1]n we denote the
unit cell of L

n. Let F 0 be the set of vertices of a
polyhedron, in particularF 0(C) = U · {0,1}n.

In the literature, the adjacency of lattice points
(or pixels) is usually characterized by aneighborhood
graph Γ, and the complementarity of adjacencies
is defined via the Jordan-Brouwer surface theorem
(Lachaud and Montanvert, 2000). Here we use an

alternative concept of adjacency systems based on
the Euler number of a discretization, thoroughly
introduced in Nagelet al. (2000) and Ohseret al.
(2002; 2003).

DISCRETIZATION WITH RESPECT TO
AN ADJACENCY SYSTEM

Let L
n be a lattice with the basis{u1, . . . ,un} and

the unit cellC. The vertices ofC are indexed, and
we write x j = ∑n

i=1λiui , λi ∈ {0,1}, with the index
j = ∑n

i=12i−1λi . Clearly, the unit cellC has 2n vertices,
xi ∈ F 0(C), i = 0, . . . ,2n − 1. In a similar way we
introduce the index of a subsetξ ⊆ F 0(C). Let 1
denote the indicator function of a set,i. e.1(x∈ ξ) = 1
if x ∈ ξ and 1(x ∈ ξ) = 0 otherwise. The indexℓ is
assigned, and we writeξℓ if

ℓ =
2n−1

∑
j=0

2 j ·1(x j ∈ ξ) , (2)

for all ξ ⊆ F 0(C), whereℓ takes the integer values
between 0 andν = 22n

− 1. The ξℓ are local pixel
configuration of the foreground of a binary image, and
ν +1 is the number of different configurations.

We introduce the convex hullsFℓ = convξℓ

forming convex polytopes withFℓ ⊆C andF 0(Fℓ) ⊆
F 0(C), ℓ = 1, . . . ,ν . Let F j(F) denote the set of all
j-dimensional faces of a convex polytopeF . For a set
F of convex polytopes we setF j(F) =

⋃

{F j(F) :
F ∈ F}. Now we are able to equip the latticeLn

with a (homogeneous) adjacency system defining the
neighborhood of lattice points.

Definition 1 Let F0 ⊆ {F0, . . . ,Fν} be a set of convex
polytopes Fℓ = convξℓ, and letF be the union over all
lattice translations ofF0, that isF =

⋃

x∈Ln F0 +x. If

(i) /0∈ F0, C∈ F0,

(ii) if F ∈ F0 thenF i(F) ⊂ F0 for i = 0, . . . ,dimF,

(iii)if F i,Fj ∈ F0 and conv(Fi ∪Fj) /∈ F0 then Fi ∩Fj ,
Fi \Fj , Fj \Fi ∈ F0 (where the bar denotes the
topological closure),

(iv) if Fi1, . . . ,Fim ∈ F0 and F=
⋃m

j=1Fi j is convex then
F ∈ F0, m= 2, . . . ,ν ,

then the systemF0 is called alocal adjacency system
and F is said to be anadjacency systemof the
latticeL

n.

The pairΓ = (F 0(F),F 1(F)) is theneighborhood
graph of F consisting of the setF 0(F) of nodes and
the setF 1(F) of edges. The order of the nodes is
called theconnectivityof L

n.

47

SANDFORT K ET AL : Labeling of n-dimensional images

In the simplest case, where the adjacency system is
generated from the unit cellC, the order of the nodes
is 2n, and we writeF2n =

⋃

x∈Ln
⋃n

j=0F j(C+x). The
maximum adjacency system consisting of the convex
hulls of all point configurations provides aκ-adjacency
with κ = 3n − 1, Fκ =

⋃

x∈Ln{F0 + x, . . . ,Fν + x}.
Notice that for all adjacency systemsF on L

n the
inclusion

F2n ⊆ F ⊆ Fκ (3)

holds. Now we recall the adjacency systems onL
3

considered in detail in Ohseret al. (2002; 2003).

– 6-adjacency.The 6-adjacency is used as a standard
in image processing. It is generated from the unit
cellC, F6 =

⋃

x∈L3
⋃3

j=0F j(C+x).

– 14.1-adjacency. This adjacency system is
generated from the tessellation ofC into the 6
tetrahedraF139, F141, F163, F177, F197, and F209
being the convex hulls of the configurations

, , , , , .

That isF0, consists of allj-faces of the tetrahedra,
j = 0, . . . ,3, and their convex unions. The edges of
the corresponding neighborhood graphΓ are the
edges ofC, the face diagonals ofC containing the
origin 0, the space diagonal ofC containing 0, and
all their lattice translations. The order of the nodes
of Γ is 14.

– 14.2-adjacency.The 14.2-adjacency system is
generated from the tetrahedraF43, F141, F147, F169,
F177, andF212, which are the convex hulls of

, , , , , .

The corresponding neighborhood graphΓ differs
from that one for 14.1 in the choice of one face
diagonal ofC such that it does not contain 0.

– 26-adjacency.The systemF26 is the maximum
adjaceny system onL3, F26 = Fκ .

Based on the definition of adjacency we introduce
theF-discretization of a set.

Definition 2 The discretization X⊓ F of a compact
subset X⊂ R

n w. r. t. a given adjacency systemF is
defined as the union of all j-faces of the elements ofF

for which all the vertices hit X, i.e.,

X⊓F =
⋃

{F ∈ F : F
0(F) ⊆ X} . (4)

It is important to realize that in particular for
higher-dimensional images the connectivity of the
pixels and, hence, the labeling can heavily depend on

the choice of the adjacency system. The number of
neighbors of a pixel in ann-dimensional image can
range from 2n to 3n−1. For the 2d case the conectivity
ranges from 4 to 8 while in the 3d case the extremal
choices are 6- and 26-connectivity. As a consequence
of the wide range of the number of neighbors,
the neighborhood of pixels should be chosen very
carefully in dependence of the dimensionality of the
image, the lateral resolution, the image data, and the
aims of processing and analysis (Schladitzet al.,
2006).

EULER NUMBER AND
COMPLEMENTARITY OF ADJACENCY
SYSTEMS

Since the setX ⊓ F forms a (not necessarily
convex) polyhedron, the number♯F j(X ⊓ F) of
elements ofF j(X ⊓ F) is finite and, therefore, the
Euler numberχ(X⊓F) can be computed via the Euler-
Poincaré formula,

χ(X⊓F) =
n

∑
j=0

(−1) j ♯F j(X⊓F) . (5)

A local version of Eq. 5 is given in Schladitzet al.
(2006).

It is well-known from image processing that if one
chooses an adjacency systemF on the discretization of
X, then there is implicitly chosen a systemFc on the
discretization of the complementary setXc. In other
words, if the ‘foreground’X ∩L

n is connected w. r. t.
F, then the ‘background’Xc ∩L

n must be connected
w. r. t. Fc. For n > 2 it is not sufficient to consider
connectivity, and further criteria have to be regarded.
In the following we introduce ‘complementarity’ by
means of the Euler number of the discretizationX⊓F.

Notice that the complementXc of X is unbounded.
Thus, the Euler numberχ

(

Xc
)

of its topological
closure may be defined by Hadwiger’s recursive
definition (Schneider, 1993, p. 175).

Definition 3 The pair (F,Fc) is called a pair of
complementary adjacency systems if(X ⊓ F)∩ (Xc⊓
Fc) = /0 and

χ(X⊓F) = (−1)n+1χ(Xc⊓Fc) (6)

holds for all compact X⊂ R
n. An adjacency

systemF is called self-complementary ifχ(X ⊓F) =
(−1)n+1χ(Xc⊓F) holds for all compact X.

48

Image Anal Stereol 2009;28:45-61

For n = 3 there exist 3 pairs of complementary
adjacency systems:(F6,F26), (F14.1,F14.1) and
(F14.2,F14.2). That is, the 6-adjacency is
complementary to the 26-adjacency and there are
known two self-complementary adjacency systems,
the 14.1-adjacency and the 14.2-adjacency, see Ohser
et al. (2002; 2003).

Consider a lattice L
3 equipped with a

neighborhood graphΓ′ = (L3,F 1) where the system
of edgesF 1 may consist of all edges and face
diagonals of the cells ofL3. The order of the nodes
of Γ′ is 18 and, hence, the adjacency is called
the 18-adjacency (which is widely used in image
processing). The 18-adjacency is ‘Jordan-Brouwer-
complementary’ to the 6-adjacency generated solely
from the edges of the lattice cells (Lachaud and
Montanvert, 2000). However, Eq. 6 does not hold for
the pair(F18,F6) and hence it is not complementary
in the sense of Definition 3 (Schladitzet al., 2006).
This shows that in higher dimensions (n > 2) the
‘Jordan-Brouwer-complementarity’ differs from that
of Definition 3. The criteria in Definition 3 seam
to be stronger than that of the ‘Jordan-Brouwer-
complementarity’.

MULTIGRID CONVERGENCE

Now we consider the relationship between the
Euler number of a compact setX ⊂ R

n and the Euler
number of its discretization. It can not be expected
that χ(X) = χ(X ⊓ F) for all compact setsX, but if
X has a sufficiently smooth surface, the Euler number
of X ⊓ F converges to the Euler number ofX for
increasing lateral resolution. Here ‘smooth’ is defined
by morphological opening and morphological closure.
The setX is called morphologically open w. r. t. a set
A⊂ R

n if X is invariant w. r. t. opening withA, X ◦A=
X. Here the opening is defined byX ◦A= (X⊖ Ǎ)⊕A,
andX ⊖A = (Xc⊕A)c is the Minkowski subtraction.
Analogously, the setX is called morphologically
closed w. r. t.A if X •A= X whereX•A= (X⊕ Ǎ)⊖A
is the morphological closure withA. Morphological
regularity ofX means that there is anε > 0 such that
X is morphologically open as well as morphologically
closed w. r. t. a ballBε of radiusε .

Theorem 1 Let (F,Fc) be a pair of complementary
adjacency systems onL

n. If X ⊂ Rn is
morphologically closed w. r. t. all edges F∈ F 1(F)
and morphologically open w. r. t. all F∈ F 1(Fc), then

χ(X) = χ(X⊓F) and χ(Xc) = χ(Xc⊓Fc) .

A proof is given in Ohseret al.(2002). Notice that a set
X fulfilling the last condition is polyconvex and, hence,

its Euler number exists. However, this condition forX
is very strong, it depends onF and, hence, it will not
be fulfilled in most applications. Thus, we consider a
more natural condition forX. Let Bε be a (small) ball
of radiusε . From Theorem 1 we obtain the following
lemma.

Lemma 1 Let (F,Fc) be a pair of complementary
adjacency systems onLn. Then aF is an adjacency
system on aLn, a> 0, and it is

lim
a→0

χ(X⊓aF) = χ(X) (7)

for all compact and morphologically regular sets X.

This means that the Euler number is convergent for
morphologically regular sets (multigrid convergence).
The proof of this lemma follows from the fact that ifX
is morphologically regular, there exists ana > 0 such
that χ(X •F) = χ(X) for all F ∈ aF andχ(X ◦F) =
χ(X) for F ∈ aFc, and choose ana > 0 such that
F ⊂ Bε for all F ∈ aF∪aFc.

CONNECTEDNESS

In order to describe a labeling algorithm, it is
necessary to introduce the notions of ‘connectivity’
and ‘connected component’. These are provided
by topology. Azriel Rosenfeld introduced a digital
topology on L

2 (Rosenfeld, 1970). He defined
connectedness on lattices and stated a discrete Jordan-
Veblen curve theorem. The definition of connectedness
can simply be extended ton-dimensional lattices
(Lachaud and Montanvert, 2000). Here we introduce
connectedness based on adjacency of lattice points.

CONTINUOUS CASE

Firstly we consider the continuous case and
introduce connectivity for the Euclidean spaceR

n. The
connected components of a bounded setX ⊂R

n can be
considered as the equivalence classes ofX ⊆ R

n w. r. t.
an appropriately chosen equivalence relation∼ defined
for point pairs inR

n.

Definition 4 A set X⊂ R
n is said to be connected if

for all subsets X1,X2 ⊆ X with X1∪X2 = X it follows
thatX1∩X2 6= /0 or X1∩X2 6= /0.

This definition of connectivity is closely related
to path-connectivity. A path inRn is a continuous
mapping f : [0,1] 7→ R

n. If f (0) = x and f (1) = y,
x,y∈ R

n, then f is called a path fromx to y.

49

SANDFORT K ET AL : Labeling of n-dimensional images

Definition 5 A non-empty set X is called path-
connected if for every x,y ∈ X there exists a path f
from x to y such that f(·) ⊆ X.

It is well-known that every path-connected set
X is also connected. Furthermore, ifX is open and
connected, it is also path-connected. Obviously, a
connected setX is not necessarily path-connected.
For example, the curve of the function sin(1/t) is
connected, but not path-connected. More precisely, the
setX = {(t,sin1

t) : t ∈ R\{0}}∪{(0,t) : t ∈ [−1,1]}
is connected, but not path-connected (Schmitt, 1998).

We write x ∼ y for path-connected pointsx,y ∈
R

n. It can be shown that the binary relation∼ is an
equivalence relation,i. e. ∼ is reflexive, symmetric,
and transitive. The equivalence classesX1, . . . ,Xm of
X under∼ are called path components ofX. For more
details see,e.g., Armstrong (1997) and Rotman (1993).

DISCRETE CASE

Connectedness in a discretization is closely related
to adjacency of lattice points. Hence, we consider
a homogeneous latticeLn equipped with a pair of
complementary adjacency systems(F,Fc). Let x and
y be lattice points,x,y∈ L

n. A discrete path fromx to
y w. r. t. the adjacency systemF is a sequence of lattice
points(xi)

m
i=0 ⊂ L

n, m∈ N, with x0 = x, xm = y, and
[xi−1,xi] ∈ F, i = 1, . . . ,m.

A non-empty discrete setY ⊆ L
n is called path-

connected w. r. t.F if ♯Y = 1 or if for all pairs(x,y) ∈
Y2 with x 6= y there exists a discrete path w. r. t.F from
x to y. Connectedness w. r. t.F in Y is an equivalence
relation.

Definition 6 Let L
n be a homogeneous lattice

equipped with an adjacency systemF, and let Y⊆ L
n

be a discrete set. The equivalence classes Y1, . . . ,Ym ⊆
Y, m≥ 1, defined through the connectedness w. r. t.F

are called the connected components of Y .

We will use the notationYF = {Y1, . . . ,Ym} for the set
of equivalence classes ofY w. r. t. F. The following
Lemma links the equivalence classes of a setX ⊂ R

n

to the equivalence classes of its digitisationX∩L
n.

Lemma 2 Let (F,Fc) be a pair of complementary
adjacency systems onLn, and let X be a compact and
morphologically regular subset ofRn with the set of
equivalence classes{X1, . . . ,Xm} under∼. Then there
is a constant b> 0 such that

(X∩aL
n)aF = {X1∩aL

n, . . . ,Xm∩aL
n} (8)

for all a with 0 < a < b.

Proof. If X is morphologically closed w. r. t.Bε , ε > 0,
thenXi ∩Xj = /0 implies that

inf{‖xi −x j‖ : xi ∈ Xi , x j ∈ Xj} > ε .

Now we chooseb such thatb2(C⊕Č) ⊂ Bε , whereC is
the unit cell ofLn. ThenXi⊓aF andXj ⊓aF are disjoint
and, thus, there is no discrete path w. r. t.F connecting
Xi ∩aL

n andXj ∩aL
n.

On the other hand, sinceXi is morphologically
open w. r. t.Bε , then for each pathf in Xi exists a path
g with f ⊂ g⊕Bε ⊆ Xi. Since(g⊕Bε)∩aL

n is path-
connected w. r. t.aF, it follows that Xi ∩ aL

n is path-
connected w. r. t.aF, too. �

From Lemma 2 it follows that for sufficiently
high lateral lattice resolution the equivalence classes
of (X ∩ aL

n) are independent of the choice of the
adjacency system. However, this holds only for sets
X with sufficiently smooth surface. In general, the
equivalence classes ofX∩L

n depend on(F,Fc).

LABELING WITH CHOOSABLE
ADJACENCY

In this section, we consider an implementation of a
general and customizable labeling algorithm. Essential
for this and its performance is the exploitation of the
fact that runs are naturally connected and as such
part of the same component,cf. the inclusion Eq. 3.
In particular, this complies with all local adjacency
systems given above for the casen = 3. We begin with
a short description of the labeling procedure. Then
we explain the necessary variables and data structures
and present the procedures as easy-to-translate C-style
pseudo-codes.

BASICS

We anticipate that an imageI ⊂ L
n is a

finite discrete set of lattice points (pixels) with
an associated binary-valued color mappingv : I 7→
{BG COL,FG COL}, where BGCOL≤ 0 stands for
the value of a background color, and FGCOL is the
value of a foreground color. We simply speak about
foreground and background pixels (ofI) and by that
mean those elementsx of I for which v(x) = FG COL
and v(x) = BG COL, respectively. LetY = {x ∈ I :
v(x) = FG COL} denote the set of foreground pixels.

Preceding the labeling, our algorithm does a
run length encoding of the foreground pixels ofI

to identify Y beforehand and to allow a compact
representation. As arun we consider a set of

50

Image Anal Stereol 2009;28:45-61

consecutive pixels in a certain direction ofI. All
admissible directions are indicated here by the vectors
u1, . . . ,un of the underlying latticeLn, see Eq. 1. The
run length encoding assigns either a single placeholder
label to all runs or a unique preliminary label to
each run. This depends on whether, in a subsequent
labeling, labels should be propagated to adjacent
runs or not. During the labeling, these labels are
systematically overwritten in a way which allows to
find the connected components inY.

Using the notation introduced above, in formal
terms a labeling w. r. t. an adjacency systemF is a
mappingLF : I 7→ N0 defined by

LF(x) =

{

f (i) for x∈Yi ,

0 otherwise,i. e. x∈ I\Y ,

where f : {1, . . . ,m} 7→ N is a fixed function with
f (i) 6= f (j) for i 6= j. For simplicity, we letf = id in
the following.

To ‘cluster’ the runs which belong to the same
connected component, equivalences between their
preliminary labels with regard toF (also called
‘correspondences’) have to be registered and processed
such that finally all runs making up thei-th connected
component are assigned the unique integerf (i) =
i as a final label. The central factor in finding all
correspondences in an efficient way is the relation of
Eq. 3, which implies that the foreground neighbors
of only the start and endpoint of each run have to be
examined.

Now, we consider some basic mathematical
objects to handle images. LetX ⊂ R

n be as in Lemma
2, M ⊆ M̄ = {1, . . . ,n} andUM be a matrix consisting
of the column vectorsu j with j ∈ M. In particular, it
holdsUZ

n = UM̄Z
n. For a vectorv, let v j denote its

j-th element. We define

the window: W= URn with Rn = {r ∈ R
n : 0≤ r(j) ≤

d(j) for 1≤ j ≤ n} for a fixedd ∈ N
n,

the image:I = L
n∩W =U(Zn∩Rn) whereL

n =UZ
n,

the color mapping: v: I 7→ {BG COL,FG COL} with

v(x) =

{

FG COL for x∈ I∩X
BG COL for x∈ I\X

,

the set of foreground pixels: Y= I∩X,

projections: PM(Ln) = UMZ
♯M ⊆ L

n, and

a subimage: SM,x = (x+PM(Ln))∩W ⊆ I for x∈ I.

Here, ♯M denotes the number of elements inM.
Associated with any setA⊆ I is the color mappingv|A.
As special cases, we mention that asliceis a subimage
SM,x with ♯M = 2, and aline is a subimageSM,x with
♯M = 1. Clearly, every line is the intersection of two
slicesSM1,x andSM2,x with ♯(M1∩M2) = 1. Note that
SM,x = SM,y for x−y∈ PM(Ln).

The following aspects will be important:

– For a n-dimensional imageI there are 2nn!
possibilities to scan throughI along itsn lattice
directions. The factorial in this term originates
from the scanning order of the direction indices,
and the factor 2n accounts for the orientations of
passing the directions. From now on, we assume
that these orientations coincide with those of the
basis vectorsu1, . . . ,un such thatn! possibilities
remain. The scanning order is given by theranks
of the directions, where the first scanning direction
has rank 0, the second one rank 1,etc.

– Runs of pixels are detected and coded in the rank
0-direction. For an anisotropic setX ∩W (with
discrete analogonY), the processing speed of our
labeling algorithm depends on the choice of the
rank 0-direction since it determines the number of
runs.

Now we describe the main data structures which
we use in our pseudo-codes for the run length encoding
and the labeling. To simplify understanding the code,
scalar variables begin with a small letter and data
structures including vectors begin with a capital letter.
All vectors are assumed to provide the methods
add() to add an element,at() to access the element
with the index given by the argument (starting from
0), init() to set all elements to the value of the
argument,resize() to resize the vector to the length
given by the argument andsize() to query the
number of elements. Thei + 1-th element can be
accessed alternatively by the[i]-operator, following
the name of the vector.

The main vectors, arrays and structures used in
our run length encoding and labeling procedures
are Image, ImgSize, Rank, Index, RleRun,
RleLine andNeighbors.

By Image we denote the pixel array for the image
data {(x,v(x)) : x ∈ I}, precisely the entry for the
pixel x ∈ I has the valuev(x). We assume that the
entry is accessed byImage[x1]. . .[xn] where here
(x1, . . . ,xn) is the coordinate vector forx w. r. t. the
basis{u1, . . . ,un}, i. e. x = x1u1 + . . . + xnun. In an
implementation of an algorithm capable to handle
images of an arbitrary dimensionalityn which is
unknown initially, the addressing of pixels is a bit

51

SANDFORT K ET AL : Labeling of n-dimensional images

more complex since the above style is inappropriate
for unknown n. However, this is not an issue of
interest here, so for illustration we choose the simple
form. The vectorImgSize stores the dimensions
of Image. It is the pendant of the vectord in the
definition of the window from the model.Rank is a
vector of lengthn and stores the ranks of the lattice
directions. The valueRank[i]with i ∈ {0, . . . ,n−1}
is the rank of the direction with indexi (indicated by
ui). The scanning order isRank[0],. . .,Rank[n-1].
Index is the complementary vector (of lengthn)
of Rank, which maps the rank of a direction
to its index, i. e. Index[Rank[i]] = i and
Rank[Index[r]] = r for 0 ≤ i, r < n. The
structureRleRun, holding the data of a single run,
consists of the attributelabel and the two-element
vectorPos. The valuePos[0] is the coordinate of
the start pixel of the run in the rank 0-direction, and
Pos[1] is the corresponding coordinate of its end
pixel. The procedure for the run length encoding writes
a preliminary label intolabel. Finally, RleLine
is a vector ofRleRuns and represents a run length
encoded lineS{i0},x of the imageI. Here,i0 denotes the
index of the rank 0-direction. The size ofRleLine
depends on the contents of the image, the indexi0
and the line with representativex ∈ I. The array
Neighbors represents a vector of relative coordinate
vectors for the neighbors of a pixel according to
the governing notion of connectedness. This means
that the neighbors of a pixelx ∈ I have coordinate
vectors of the form(x1, . . . ,xn)+ Neighbors[j],
where j ∈ {0, . . . ,κ −1}, κ is the number of neighbors
andNeighbors[j] is a coordinate vector of length
n with Neighbors[j][k] ∈ {−1,0,1} for k ∈
{0, . . . ,n− 1}. The order in which the neighbors are
stored inNeighbors does not matter. This array
represents the neighborhood graph of an adjacency
system accordinge to Definition 1. Due to the Eq. 3,
Neighbors is expected to contain the 2n vectors
(0, . . . ,vk, . . . ,0) with k ∈ {1, . . . ,n} andvk ∈ {−1,1}

being thek-th element.

THE RUN LENGTH ENCODING
ALGORITHM

Besides the data structures from above, the
implementation of our run length encoding needs the
following. Entities marked as ‘global’ are available in
all routines. The variablesn, FG_COL andBG_COL as
well as the vectorsRank andIndex are global.

IND – Boolean variable which indicates whether a
run of foreground pixels is active (true) or not
(false)

LABEL_PROP [global] – Boolean variable which
indicates whether label propagation is switched on
(true) or off (false)

totNumLin – the total number of lines

prelLabel – variable for assigning a
unique preliminary label to each run if
LABEL_PROP == false

CurPixCs – vector holding the coordinates
of the current pixel (w. r. t. the original
order of directions), i. e. the current pixel is
Image[CurPixCs[n-1]]..[CurPixCs[0]].

LinePos – vector storing the position of the current
line in the image w. r. t. the scanning order,i. e.
CurPixCs[Index[r]] = LinePos[r-1]
for 0 < r < n

RleData [global] – a n − 1-dimensional
array of RleLines with dimensions
(ImgSize[Index[n-1]], . . . ,
ImgSize[Index[1]]), stores the run length
encoded version ofImage

We are now prepared to turn to the pseudo-code
for the procedureDoEncoding(), which performs
the run length encoding.

void DoEncoding()
{

bool IND;
int i, r, totNumLin, prelLabel;
vector<int> CurPixCs(n), LinePos(n-1);
RleRun Run;
RleLine *pLine;

// set variables
CurPixCs.init(0);
LinePos.init(0);
totNumLin = 1;
Index[Rank[0]] = 0;
FOR i FROM 1 TO n-1 DO
{

Index[Rank[i]] = i;

52

Image Anal Stereol 2009;28:45-61

totNumLin *= ImgSize[i];
}

// allocate memory for the array RleData
// The size of the i-th dimension (i = 1,...,n-1) of RleData is the
// image size in the direction with rank n-i.
RleData = new RleLine[ImgSize[Index[n-1]]]..[ImgSize[Index[1]]];

// main loop
DO
{

pLine = &RleData[LinePos[n-2]]..[LinePos[0]];

// set the coordinates of the current pixel
FOR r FROM 1 TO n-1 DO

CurPixCs[Index[r]] = LinePos[r-1];
CurPixCs[Index[0]] = 0;

// check whether a run starts at the first pixel in the current line
IF Image[CurPixCs[n-1]]..[CurPixCs[0]] == FG_COL THEN
{

IND = true;
Run.Pos[0] = 0;

}
ELSE

IND = false;

FOR i FROM 1 TO ImgSize[Index[0]]-1 DO
{

CurPixCs[Index[0]]++;

IF Image[CurPixCs[n-1]]..[CurPixCs[0]] == FG_COL THEN
{

// if IND == true, then current run continues, nothing to do

// a new run starts
IF !IND THEN
{

IND = true;
Run.Pos[0] = i;

}
}
ELSE
{

// current run ends
IF IND THEN
{

IND = false;
Run.Pos[1] = i-1;
prelLabel++;
Run.label = LABEL_PROP? -999:prelLabel;
pLine->add(Run);

}

// if IND == false, then BG_COL-run continues, nothing to do
}

}

// the end of the current line in the rank 0-direction is reached
// check whether some run is active and end it
IF Image[CurPixCs[n-1]]..[CurPixCs[0]] == FG_COL THEN
{

53

SANDFORT K ET AL : Labeling of n-dimensional images

IF !IND THEN
Run.Pos[0] = ImgSize[Index[0]]-1;

Run.Pos[1] = ImgSize[Index[0]]-1;
prelLabel++;
Run.label = LABEL_PROP? -999:prelLabel;
pLine->add(Run);

}

// update the line position, according to the scanning order
r = 0;
WHILE r < n-1 AND ++LinePos[r] >= ImgSize[Index[r+1]] DO

LinePos[r++] = 0;
}
WHILE LinePos[n-2] < ImgSize[Index[n-1]]

}

THE LABELING ALGORITHM

Next, we consider the actual labeling of the
image data, which is based on a preceding run
length encoding. We have already stated that all
correspondences between preliminary labels can be
found by testing only the start and the endpoint of
runs with their respective neighbors according to the
chosen adjacency. The number of correspondences can
be kept very small if not a unique preliminary label is
assigned to each run beforehand (during the run length
encoding), but instead labels are propagated to all
adjacent, non-labeled runs (having still the placeholder
label -999), and a new preliminary label is given only
to a run which has not already received one, while
scanning the image in the specified order. If labels
are propagated, only correspondences between a new
preliminary label and a previously propagated one
have to be registered and resolved later on. Otherwise,
the number of preliminary labels and the number of
arising correspondences usually is much higher. A
recursive labeling approach like that from Martı́n-
Herrero (2004) is based on an extremal form of label
propagation in the sense that the propagation may
emerge from every point of a run and is started
again in every line which received a propagated label.
In our algorithm, it is restricted to the start and
endpoint of a run and stopped at the adjacent runs. The
number of preliminary labels determines the size of
the vectorLabelMap, whose entry indices represent
the preliminary labels. This vector is processed by
means of the correspondences (in the procedures
Associate() andResetLabelMap()) such that
each entry is assigned the value of the associated final
label. Subsequently, the labels of the runs are updated

using thisLabelMap. At last, the labeled image can
be written as a pixel array by decoding the run length
representationRleData.

In the pseudo-code for the labeling method
DoLabeling(), variables which are not described
below have the same meaning as inDoEncoding().

NB_VALID – Boolean variable which indicates
whether a neighbor pixel lies inside the image
(true) or not (false)

newPrelLabel – variable for assigning a unique
preliminary label to each non-labeled run (with
placeholder label) ifLABEL_PROP == true

prelLabel – stores the preliminary label of a run;
if LABEL_PROP == false, thenprelLabel
has the same meaning as inDoEncoding(),
otherwise prelLabel does not necessarily
increase while passing through the image but
might hold a propagated label

CurNbCs – vector holding the coordinates of the
current neighbor pixel (w. r. t. the original order of
directions)

LabelMap [global] – vector mapping the preliminary
labels (as the indices of the entries) to the
associated final labels (as their values)

The labeling procedureDoLabeling() returns
the number of objects inImage corresponding to
the adjacency deducible from the predefined array
Neighbors. In the following pseudo-code, code
passages enclosed by ‘###’ should be regarded as
present only if the condition in the###-header is
fulfilled.

int DoLabeling()
{

bool NB_VALID;
int i, j, k, m, r, newPrelLabel, prelLabel, objects;
vector<int> CurPixCs(n), CurNbCs(n), LinePos(n-1), LabelMap;
RleLine *pLine;

54

Image Anal Stereol 2009;28:45-61

RleRun *pRun, *pNbRun;

// set variables
newPrelLabel = 0;
CurPixCs.init(0);
LinePos.init(0);

IF LABEL_PROP THEN
LabelMap.resize(1);

ELSE
LabelMap.resize(prelLabel+1);

LabelMap.init(BG_COL);

// main loop
DO
{

pLine = &RleData[LinePos[n-2]]..[LinePos[0]];

// set the coordinates of the current pixel
FOR r FROM 1 TO n-1 DO

CurPixCs[Index[r]] = LinePos[r-1];

// test all runs in the current line addressed by pLine
FOR i FROM 0 TO pLine->size()-1 DO
{

pRun = &(pLine->at(i));

LABEL_PROP == true
// check whether run has yet received a propagated label
// otherwise assign a new preliminary label and register it
IF pRun->label == -999 THEN
{

pRun->label = ++newPrelLabel;
LabelMap.add(BG_COL);

}
###

prelLabel = pRun->label;

// examine the start and endpoint of the current run
FOR j FROM 0 TO 1 DO
{

IF j == 0 OR (j == 1 AND pRun->Pos[0] != pRun->Pos[1]) THEN
{

CurPixCs[Index[0]] = pRun->Pos[j];

// test the valid neighbors for label correspondences
FOR k FROM 0 TO Neighbors.size()-1 DO
{

NB_VALID = true;

FOR m FROM 0 TO n-1 WHILE NB_VALID DO
{

CurNbCs[m] = CurPixCs[m] + Neighbors[k][m];

IF CurNbCs[m] < 0 OR CurNbCs[m] >= ImgSize[m] THEN
NB_VALID = false;

}

// neighbor is valid, i.e. lies inside the image
IF NB_VALID THEN
{

55

SANDFORT K ET AL : Labeling of n-dimensional images

// query the address of the current neighbor
// this is NULL if the neighbor is a background pixel
pNbRun = QueryPtr(CurNbCs);

IF pNbRun != NULL AND pNbRun->label != prelLabel THEN
{

LABEL_PROP == true
IF pNbRun->label != -999 THEN

Associate(prelLabel, pNbRun->label, LabelMap);
ELSE

pNbRun->label = prelLabel;
###

LABEL_PROP == false
Associate(prelLabel, pNbRun->label, LabelMap);
###

}
}

}
}

}
}

// update the line position, according to the scanning order
r = 0;
WHILE r < n-1 AND ++LinePos[r] >= ImgSize[Index[r+1]] DO

LinePos[r++] = 0;
}
WHILE LinePos[n-2] < ImgSize[Index[n-1]]

// setup the final LabelMap
objects = ResetLabelMap(LabelMap);

// update the run labels
LinePos.init(0);

DO
{

pLine = &RleData[LinePos[n-2]]..[LinePos[0]];

FOR i FROM 0 TO pLine->size()-1 DO
pLine->at(i).label = LabelMap.at(pLine->at(i).label);

r = 0;
WHILE r < n-1 AND ++LinePos[r] >= ImgSize[Index[r+1]] DO

LinePos[r++] = 0;
}
WHILE LinePos[n-2] < ImgSize[Index[n-1]]

// return the number of objects in the image
return objects;

}

The arrayRleData now contains all information
on the labeled image. The next routine decompresses

this information and writes an image in pixel format.

void WriteLabeledImage()
{

int i, r;
vector<int> CurPixCs(n), LinePos(n-1);
RleLine *pLine;
RleRun *pRun;

56

Image Anal Stereol 2009;28:45-61

LinePos.init(0);

DO
{

pLine = &RleData[LinePos[n-2]]..[LinePos[0]];

FOR r FROM 1 TO n-1 DO
CurPixCs[Index[r]] = LinePos[r-1];

FOR i FROM 0 TO pLine->size()-1 DO
{

pRun = &(pLine->at(i));

FOR CurPixCs[Index[0]] FROM pRun->Pos[0] TO pRun->Pos[1] DO
Image[CurPixCs[0]]..[CurPixCs[n-1]] = pRun->label;

}

r = 0;
WHILE r < n-1 AND ++LinePos[r] >= ImgSize[Index[r+1]] DO

LinePos[r++] = 0;
}
WHILE LinePos[n-2] < ImgSize[Index[n-1]]

}

The overall calling sequence isDoEncoding()
- DoLabeling() - WriteLabeledImage().
We now explain shortly the auxiliary routines
QueryPtr(), Associate(), as well as
ResetLabelMap().

The methodQueryPtr() returns a pointer to the
run which contains the pixel with coordinate vectorCs
if this is not a background pixel. Otherwise, the pixel
is not contained in any run, and theNULL-pointer is
returned.

RleRun* QueryPtr(vector<int>& Cs)
{

int i, pos;
vector<int> LinePos(n-1);
RleLine *pLine;

pos = Cs[Index[0]];
FOR i FROM 1 TO n-1 DO

LinePos[i-1] = Cs[Index[i]];

pLine =
&RleData[LinePos[n-2]]..[LinePos[0]];

FOR i FROM 0 TO pLine->size()-1 DO
{

IF pLine->at(i).Pos[1] >= pos THEN
{

IF pLine->at(i).Pos[0] <= pos THEN
return &(pLine->at(i));

ELSE
return NULL;

}
}
return NULL;

}

The recursive methodAssociate() relates
equivalent preliminary labelsa and b with the
smallest equivalent label inLabelMap. After calling
this routine, traversingLabelMap via repeated
substitution ofindex by LabelMap[index] as
long as the latter is non-zero, starting from either
index = a or index = b, leads to the smallest
equivalent label as the lastindex.

void Associate(int a, int b,
vector<int>& LabelMap)

{
int c;

IF a < b THEN
{ c = a; a = b; b = c; }

IF LabelMap[a] == BG_COL THEN
LabelMap[a] = b;

ELSE IF LabelMap[a] != b THEN
Associate(LabelMap[a], b, LabelMap);

}

Finally, ResetLabelMap() assigns unique
and minimal final labels to the preliminary ones
which have no smaller counterparts and resolves the
connections made up byAssociate(). This means
that afterwards each preliminary labeli is mapped
to the smallest integerj = LabelMap[i] which
preserves the equivalence relations. The return value
of ResetLabelMap() is the number of objects in
Image.

int ResetLabelMap(vector<int>& LabelMap)
{

int i, objects;

57

SANDFORT K ET AL : Labeling of n-dimensional images

objects = 0;

FOR i FROM 0 TO LabelMap.size()-1 DO
{

IF LabelMap[i] == BG_COL THEN
LabelMap[i] = ++objects;

ELSE
LabelMap[i] = LabelMap[LabelMap[i]];

}

return objects;
}

The latter both routines have been proposed
and discussed in Martı́n-Herrero and Peón-Fernández
(2000). The algorithm presented in this section
is the basis for the current labeling function in
the commercial software MAVI (Fraunhofer ITWM,
Department of Image Processing, 2005).

EXAMPLE AND DISCUSSION

In this final section, we look at an exemplary
application of our algorithm as well as of the
alternative recursive algorithm by Martı́n-Herrero,
cf. Martı́n-Herrero (2004). The test data are two
binarized 3D microtomography images of materials.
Their visualizations are shown in Figs. 1 and 2.

Fig. 1.3D image (660×660×660 pixels, 0.7 µm pixel
size) showing a specimen of a metallic foam in early
extension stage.

In Fig.1 the metallic matrix is transparent while the
pore space appears opaque. In Fig.2 the solid matter is
opaque and the pore space is transparent. Both images

are at hand in RAW format with 8 Bit per pixel. The
first image has a size of 274 MB and 5.7 % foreground
pixels. The second one needs 26 MB and has 86.4 %
foreground pixels. For details about the materials and
imaging methods see Helfenet al. (2002; 2003).

Our test system is a PC with AMD Athlon(tm) 64
Processor 3800+, 1 GB RAM, running SuSE Linux
10.0 (kernel v2.6.13). We compiled the source codes
with the GCC v4.0.2, using the optimization switch
‘-O3’. The performance data are listed in the tables
below (‘S./O.’ denotes our algorithm, ‘M.-H.’ the one
from Martı́n-Herrero).

Fig. 2.3D image (299×300×300 pixels, 0.75 µm pixel
size) showing a specimen of the Fontainebleau sand
stone.

At first, we want to make clear what the
times listed in Tables 1 and 2 refer to. For our
algorithm, we note that after calling the procedures
DoEncoding() and DoLabeling() the run
length arrayRleData with the correct run labels is
obtained. It might be sufficient or even beneficial to do
any further processing of the image on this structure.
Otherwise, it remains to write the labeled image as
a pixel array usingWriteLabeledImage(). The
processing time for this has not been considered in
Tables 1 and 2. Since the algorithm by Martı́n-Herrero
identifies non-labeled foreground pixels by a negative
value, it usually necessitates a preprocessing of the
source pixel arrayImage to change the foreground
label FG_COL to this value (if the values inImage
are non-negative). In principle, the identification value
can be any value which does not coincide with the

58

Image Anal Stereol 2009;28:45-61

background colorBG_COL (mostly chosen to be 0)
and any valid final label. However, the number of
objects inImage is not predicted, and we require the
final labels to be consecutive integers starting from 1.
If one agrees to drop this restriction, a substitution of
FG_COL can be avoided. Anyway, the time possibly
needed for this is not recorded above. We also want
to emphasize that the times have been obtained with
variants of both algorithms optimized for 3D data and
a fixed scanning order.

In comparison with the second image, the first
one has only few foreground pixels and a pixels per
object ratio of 59. By contrast, the second image
contains mainly foreground pixels, which are multiply
connected, and has 704 926 pixels per object in
average. On the first dataset, the recursive algorithm
by Martı́n-Herrero is more efficient than ours and
takes clear advantage of extremal label propagation.
Nevertheless, it appears that our method with activated
label propagation can serve as an alternative. Since
the algorithms rely on different image representations
(pixel array vs. RLE structure), it is not appropriate
to compare the times for the labeling only. In this
respect, we remark that it could be valuable for both
algorithms to inspect how they can be adapted to
different image representations. For this question, the
fundamental work Dillencourtet al. (1992) should be
consulted.

On the dataset for Fig. 2, our approach combined
with label propagation shows some superiority
compared to the recursive one. For the latter, we
note here the relatively high recursion depth along
with the fact that many pixels are queried which
have already received a propagated label. The label
propagation in our method significantly reduces the
number of preliminary labels for this image and makes
the labeling procedure including the computation
of LabelMap very fast. For the evaluation and

comparison, it is also important that the runs for the
second image contain 39 pixels in average, while for
the first one this number is 4. Roughly speaking,
it appears that a setting in which many pixels are
captured in few runs overlapping in adjacent lines is
more amenable to our method than to the other. Also
in view of the above times, it should be carefully
observed whether a preprocessing such as RLE leads
to an overall improvement in the processing needs
(the processing time, in particular). Although for
the worst case of a ‘salt and pepper’ image (with
a large amount of small objects) also the recursive
and probably almost every other labeling algorithm
can not fully deploy its potential, a run length
encoding surely will spoil the total performance of the
procedure. Martı́n-Herrero’s algorithm from Martı́n-
Herrero (2004) and the enhanced Hoshen-Kopelman
algorithm from Hoshen (1998) offer an on-the-fly
analysis of objects. This feature could be added to
our algorithm by collecting information during the
run length encoding and processing it subject to the
label correspondences (and propagations) during the
labeling.

Two other important impact factors for the labeling
are the adjacency system and the scanning order.
The above results concern the labeling w. r. t. the 6-
adjacency. Since neighbors in the direction of the
(quasi-)run length encoding need not to be checked
for correspondences, aκ-adjacency requires a test of
only κ − 2 neighbors inDoLabeling() and the
recursion part of the algorithm from Martı́n-Herrero
(2004), respectively. When switching toe. g.the 14.x-
adjacency, in our method the ratio(14− 2)/(6−
2) = 3 of tested neighbors is roughly reflected in
the times needed for the labeling. Although described
only for the 6-adjacency in Martı́n-Herrero (2007), the
recursive method can be straightforwardly extended to
other adjacencies. A test and comparison for these has
not yet been done.

Table 1.Performance data for Fig. 1 and the 6-adjacency, 275536 objects.

algorithm
S./O.:♯ preliminary labels

M.-H.: max. recursion depth
execution time

RLE Labeling total
S./O.,LABEL_PROP = false 3 856 027 2.73 s 5.93 s 8.66 s
S./O.,LABEL_PROP = true 738 601 2.72 s 3.70 s 6.42 s

M.-H. 504 706 — 4.37 s 4.37 s

Table 2.Performance data for Fig. 2 and the 6-adjacency, 33 objects.

algorithm
S./O.:♯ preliminary labels

M.-H.: max. recursion depth
execution time

RLE Labeling total
S./O.,LABEL_PROP = false 590 753 0.34 s 2.96 s 3.3 s
S./O.,LABEL_PROP = true 28 176 0.33 s 0.58 s 0.91 s

M.-H. 590 649 — 1.83 s 1.83 s

59

SANDFORT K ET AL : Labeling of n-dimensional images

Regarding the theoretical foundation from section
“Connectedness”, we want to remark the following.
Both algorithms clearly work for arbitrary adjacency
systems including the 18-adjacency. However, one
should be aware that further processing and analysis
of images labeled w. r. t. the 18-adjacency can
lead to conflicts. Since there does not exist an
adjacency system for the background which is
complementary to the 18-adjacency according to
Definition 3, the topology of the foreground pixels
does not fit the topology of the background pixels.
In particular, the Euler number of the background
differs from the sum of the Euler numbers of the
obtained equivalence classes. Thus, whenever further
processing and analysis of the label image is necessary,
we recommend a labeling w. r. t. an adjacency system
F with existingFc according to Definition 3.

A change in the scanning order can have
significant impact on the processing time, depending
on the anisotropy of the image. Using the general
implementations of the algorithms (not optimized for a
specific scanning order), the change in processing time
for the 6-adjacency is as follows: For the algorithm
from Martı́n-Herrero (2004), it is up to 11 % for the
first image and up to 13 % for the second one. For
our algorithm with label propagation, it is up to 19 %
for the first image and up to 7 % for the second
one. However, one should regard the short times
and a possible amplification of marginal variations.
Moreover, the second image is nearly isotropic. The
impact of the choice of the scanning order is expected
to become obvious for strongly anisotropic images.
For the datasets used in this benchmark and further
details see the webpage at http://www.itwm.fhg.de/bv/
projects/BA/RLE.

CONCLUSION

In the first part of our paper, we discussed the
discretization and labeling of ann-dimensional set
w. r. t. to a given adjacency system. We suggest here
to define the complementarity of adjacency systems
by a relation for the Euler number instead of by the
Jordan-Veblen and Jordan-Brouwer theorem in 2D and
3D, respectively. This appears natural from a practical
point of view and is relevant for the consistency of the
labeling results. In the second part, we proposed a new
and flexible labeling algorithm based on a preceding
run length encoding of the input image. We shortly
address here the applications of this preprocessing and
a few possible extensions of the algorithm.

If the image or its objects are to be further
processed after the labeling, then a compact and easy-
manageable representation of the image as given in a

simple form by a run length array can be desirable. We
only mention the morphological filtering of objects,
noise removal and geometric transforms as operations
which can take advantage of this. For further uses
of the run length encoding we refer to the papers
Di Zenzo et al. (1996) and Messomet al. (2002).
Since the recursive method of Martı́n-Herrero and ours
follow in a way complementary ideas, a combination
of both methods could be worth considering.

Moreover, the tasks of run length encoding and
labeling are well-suited for parallelization. A simple
step towards this would be to separate big images into
blocks and process first their interiors independently
and then gather correspondences in the border areas.
Using label offsets after the block computations to
avoid a false coincidence of labels, a label map for the
whole image can be computed.

ACKNOWLEDGMENTS

The authors very much appreciate the comments
and suggestions by the referees. We also thank Björn
Wagner and Michael Godehardt from the Fraunhofer
Institute for Industrial Mathematics (ITWM) for
software support and fruitful discussions about
implementation of algorithms. The research of the
second author was supported by the FH3-programme
of the German Federal Ministry of Education and
Research under project grant 1711B06.

REFERENCES

Aguilera A, Rodrı́guez J, Ayala D (2002). Fast connected
component labeling algorithm: A non voxel-based
approach. Tech. Rep. LSI-02-26-R, Universitat
Politècnica, Catalunya. http://www.lsi.upc.edu/dept/
techreps/.

Armstrong MA (1997). Basic Topology. Berlin: Springer.

Di Zenzo S, Cinque L, Levialdi S (1996). Run-based
algorithms for binary image analysis and processing.
IEEE Trans Pattern Anal 18:83–9.

Dillencourt MB, Samet H, Tamminen M (1992). A general
approach to connected-component labeling for arbitrary
image representations. J ACM 39:253–80.

Fraunhofer ITWM, Department of Image Processing
(2005). MAVI – Modular Algorithms for Volume
Images. http://www.itwm.fhg.de/mab/projects/MAVI/.

Helfen L, Baumbach T, Schladitz K, Ohser J (2003).
Determination of structural properties of light materials
by three-dimensional synchrotron-radiation imaging.
Imaging Microsc 5:55–7.

Helfen L, Baumbach T, Stanzick H, Banhart J,
Elmoutaouakkil A, Cloetens P (2002). Viewing
the early stage of metal foam formation by computed

60

Image Anal Stereol 2009;28:45-61

tomography using synchrotron radiation. Adv Eng
Mater 4:808–13.

Hopcroft J, Tarjan RE (1973). Efficient algorithms for graph
manipulation. Comm ACM 16(6):372–8.

Hoshen J (1998). On the application of the enhanced
Hoshen-Kopelman algorithm for image analysis.
Pattern Recogn Lett 19:575–84.

Hoshen J, Koppelman R (1976). Percolation and cluster
distribution. I. cluster multiple labeling technique and
critical concentration algorithm. Phys Rev B 14:575–
84.

Klette R, Rosenfeld A (2004). Digital Geometry.
Amsterdam: Morgan & Kaufman Publ.

Lachaud JO, Montanvert A (2000). Continuous analogs
of digital boundaries: A topological approach to iso-
surfaces. Graphical Models 62:129–64.

Martı́n-Herrero M (2004). Hybrid cluster identification. J
Phys A Math Gen 37:9377–86.

Martı́n-Herrero M (2007). Hybrid object labelling in digital
images. Machine Vision Appl 18:1–15.

Martı́n-Herrero M, Peón-Fernández J (2000). Alternative
techniques for cluster labelling on percolation theory. J
Phys A Math Gen 33:1827–40.

Messom CH, Demidenko S, Subramaniam K, Gupta GS
(2002). Size/position identification in real-time image
processing using run length encoding. Proc 19th IEEE
Instrum Meas Tech Conf 2:1055–9 vol. 2.

Nagel W, Ohser J, Pischang K (2000). An integral-
geometric approach for the Euler-Poincaré
characteristic of spatial images. J Microsc 198:54–62.

Ohser J, Nagel W, Schladitz K (2002). The Euler number
of discretized sets – on the choice of adjacency in

homogeneous lattices. In: Mecke KR, Stoyan D, eds.,
Morphology of Condensed Matter, Lect Notes Phys.
Berlin: Springer.

Ohser J, Nagel W, Schladitz K (2003). The Euler number of
discretised sets – surprising results in three dimensions.
Image Anal Stereol 22:11–9.

Ritter GX, Wilson JN (2001). Handbook of computer
vision algorithms in image algebra, chap. 6, Connected
Component Algorithms. Boca Raton, Florida: CRC
Press, 173–86.

Rosenfeld A (1970). Digital topology. Amer Math Monthly
86:621–30.

Rosenfeld A, Pfaltz JL (1966). Sequential operations in
digital picture processing. J ACM 13:471–94.

Rotman JJ (1993). An Introduction to Algebraic Topology.
Berlin: Springer-Verlag.

Schladitz K, Ohser J, Nagel W (2006). Measurement of
intrinsic volumes of sets observed on lattices. In:
Kuba A, Nyul LG, Palagyi K, eds., Proc 13th Int
Conf Discrete Geom Comput Imagery, LNCS. DGCI,
Szeged, Hungary, Berlin: Springer.

Schmitt M (1998). Digitization and connectivity. In:
Heijmans HJAM, Roerdnik JBTM, eds., Mathematical
morphology and its application to image and signal
processing. Dortrecht: Kluwer Academic Publishers.

Schneider R (1993). Convex Bodies: The Brunn-Minkowski
Theory. Cambridge: Encyclopedia of Mathematics and
Its Application Vol. 44, Cambridge University Press.

Thurfjell L, Bengtsson E, Nordin B (1992). A new three-
dimensional connected components labeling algorithm
with simultaneous object feature extraction capability.
Comput Vision Graph 54:357–64.

61

