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ABSTRACT

The labeling of discretized image data is one of the mostgisgé®@perations in digital image processing. The

notions of an adjacency system of pixels and the complemgntétwo such systems are crucial to guarantee
consistency of any labeling routine. In to date’s publimas, this complementarity usually is defined using
discrete versions of the Jordan-Veblen curve theorem amddhdan-Brouwer surface theorem for 2D and
3D images, respectively. In contrast, we follow here anra#téve concept, which relies on a consistency
relation for the Euler number. This relation and all necssdafinitions are easily stated in a uniform manner
for the n-dimensional case. For this, we present identification am/ergence results for complementary

adjacency systems, supplemented by examples for the 3DNaxt we develop a pseudo-code for a general
labeling algorithm. The application of such an algorithnowld be assessed with regard to our preceding
considerations. A benchmark and a thorough discussiorfmis article.

Keywords: adjacency of lattice points, complementaribyyrectivity, labeling, run length encoding.

INTRODUCTION is noted in a table of pairs of equivalent labels. A
connected component is finally identified as the set
Labeling of connected components (‘objects’) isof pixels belonging to the same equivalence class
one of the most important tools of image processingof labels. The table of pairs can become very large
It is the basis for the generation of object features aand may lead to problems in finding the equivalence
well as of some kind of filtering,e., removing of noisy  classes; the time complexity of a corresponding
objects or holes in objects. The criteria for removingalgorithm is & (mlogm) with m being the number of
an object or a hole can be chosen extremely flexiblgairs. Thus, several variants of the Rosenfeld-Pfaltz
based on the object features. The task of labelinghethod have been developed which employ techniques
(object filling, region detection) is to assign labelsto keepmas small as possible.
(mostly unsigned integers) to the pixels in such a way L N .
) > However, a reduction in complexity is achieved
that all pixels belonging to a connected componentlso by other strategies. For example, in Dillencourt
of the image are assigned the same label, and pixe y gies. Pe,

belonging to different components get different Iabels?esag;iéilnggi) c?ribﬁwuaf'[i]grzso?ttﬁéntigilrFiigar?\/giﬁo\(ljwth

Due to its importance in image processing, there is . ng ; . .
lenty of literature about labeling and techniques toW'th weight-balancing and path-compression, which

plenty 9 9 ields o(ma(m)); here, a is the inverse of

control (and improve) the processing and memorAckermann’s function anan denotes the number of

der_nands. These can b‘? tremer_1dous for Iarge_lmagermd andUnionoperations and is related to the variable
which frequently arise in practice. Once again, the

challenge lies in finding a compromise between." above. On the one hand, the functian grows .
usability, flexibility, and efficiency extremely slowly, and_on the other hgnd, the guantity
’ ’ ' M does not necessarily evolve on pixel level (ap
The prototype of labeling algorithms is the simplesince theUnion-Find method can be equally applied
and well-known Rosenfeld-Pfaltz method (Rosenfeldo other image representations wighg, bintrees or
and Pfaltz, 1966; Klette and Rosenfeld, 2004). Hererun lengths (instead of pixels) as modules. The same
the image is scanned until a pixg} is found that holds for extensions dfnion-Find (Dillencourtet al,,
has not yet been labeled. If there is no neighborind992) and related algorithms. The fact that some image
pixel labeled w.r.t. the chosen adjacency system, eepresentations, in particular run length encodings, are
new label is chosen fox,. Otherwise, if there is a compatible with and facilitate the labeling w.r.t. an
neighboring pixelx; with the label/j, the label?;  adjacency system provides the basis for our algorithm.
is assigned also ta. In the case of more than one Given the input image as a pixel array, a conversion
neighboring pixels which have different labels, thisinto a different representation might be done as a
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preprocessing in a labeling scheme. Its purpose couldelds performance values which seem to be (among)
be a decomposition (Aguilerat al, 2002) or a more the best of today’s labeling algorithms and will serve
compact representation (our method) of the image tas a benchmark in our paper.

allow an efficient data access and/or to reduce memory . )
demands We now explain what we mean by quasi-run

length encoding above and put the bridge to our
Many classical labeling methods, including thejabeling method. We assume a binary input image and
one by Rosenfeld and Pfaltz, are two-pass-techniquegensider the labeling of its foreground pixels. In the
Here, in the first pass preliminary labels are assignegode by Martin-Herrero, starting with a single pixel
and equivalences between labels are registered, andpii] all foreground pixels which are consecutive in a
the second pass these correspondences are resolygkn direction and trivially connected ®are found
into equivalence classgs. Either representatives qgfy iterative scanning and assigned a label differing
these classese(g, their smallest elements) or from the foreground value. Afterwards, the same is

consecutive integers assigned to them are then sglcyrsively performed for all foreground neighbors

as the final labels. The resolving step is a Criticagaccording to the notion of connectedness) of all pixels

issue, and several methods have been proposed d@ihe run. Each neighbor acts as the starting pixef
handle it. An efficient solution is e>_<p|z_:1|ned in Thu_rfJeI_I the next stage of the recursion. In this way, all pixels of
et al. (1992). However, the basic idea to maintaing connected component are reached and every pixel is
and mkerge equr;valences Ina 1|D array orlglnateﬂ Rssigned a label only once. However, in searching for
a work by Hoshen and Koppelman (1976). Hosheny, foreqround neighbors of all members of a run, a
(1998) Iater_on examined its use IN IMage ProcessiNgy; ot nixels are accessed more than once. Although
An alterngtlve anq g.en.eral SOIUt'On.’ with _spgmalthe guery of a label is a simple and fast operation,
conS|dgrat|_on O.f d|§m|35|ng and reusing prellmlnarythis could be seen as a (small) shortcoming. It is not
!abebs, 1S gll\:/_er& in Dtglegcmfret al. (tlh9923 (;nyle%ratedf possible here to restrict the check of the neighbors to a
In anion-rindmetno ) along with a detalled proot ¢o,, ot the pixels of a run since otherwise not all pixels
of correctness. While in the latter the final label is f an object might be captured by recursion. Anyway
determined only in a second run, the methods C|te§1iS hybrid method is a single-pass-technique in the

before can be used to merge label classes on-the-fl . .
. . ; nse that the input image as a whole has to be passed
i.e., as soon as an equivalence is detected, and by tha .
. . L only once in order to labelc orrectly all connected
allow a direct mapping of a preliminary label to the
components.

corresponding final one right after the first run through
the input image. For our algorithm, we take a perspective which is

A very different concept is followed by recursive somehow co_mpleme_ntary_ to the one just descri'bed.
labeling methods. Such methods completely avoidV/e Start with an iterative run length encoding
the setup of a mapping between preIiminaryOf all foreground pixels in the !nput image. This
and final labels and identify a complete objectPréprocessing has been mentioned before as a
(connected component) at once. The information abo®nversion from one image representation into
connectedness is usually carried in the algorithms bgnother. It guarantees that all foreground pixels are
design, rather than provided as a parameter or dafggistered a priori and makes it possible to detect
structure. An early account of recursive detectiorpll correspondences by checking only the boundaries,
of connected components is given in Hopcroft and-€. the start and end point of each run. The overall
Tarjan (1973). The underlying principle resembledabeling algorithm permits a proper control of the
that of filling algorithms. Recursive techniques canstack and memory demands. We also believe that
achieve an excellent performance as they often af@e representation of the image as an array of run
accessible to the optimization potential of a compilefengths is advantageous for a further image processing
and a CPU. However, since the recursion depth heavilgs well as analysise.g. a fast extraction of object
depends on the contents of the input image and deatures. On the flipside, however, it lacks some of
can not be predicted, they have to tackle the risk of he parallel processing and real time features of the
stack overflow. A smart approach to this is describednethod by Martin-Herrero if the image is given as a
by Martin-Herrero in Martin-Herrero (2004), seepixel array. Both methods exploit a property of any
also Martin-Herrero (2007). It relies on a quasi-runreasonable definition of adjacency, namely that pixels
length encoding in one dimension and recursion in tha&vhich are consecutive in a direction are connected.
remaining dimensions of the input image, which gainsThis is reflected below in the inclusion Eq. 3. Here,
a significant decrease of the recursion depth comparedl admissible directions are implicitly defined by the
to recursion in all dimensions. The resulting algorithmlattice or the pixel array, respectively.
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Finally, we remark that the introduction in alternative concept of adjacency systems based on
Thurfjell et al. (1992) contains a short survey of the Euler number of a discretization, thoroughly
different labeling algorithms, and Chapter 6 in Ritterintroduced in Nagekt al. (2000) and Ohseet al.
and Wilson (2001) formalizes labeling operations on2002; 2003).
the basis of image algebra.

The outline of the paper is as follows. First we DISCRETIZATION WITH RESPECT TO
give a short introduction to lattices (point lattices, AN ADJACENCY SYSTEM

grids). For a general definition of pixel neighborhood, Let L" be a lattice with the basiguy, ..., un} and

we follow the approaches of Ohset al. (2002; the unit cellC. The vertices ofC are indexed, and
2003); Schladitzet al. (2006) and state the concept, o \write xi = " Ati, A € {0,1}, with the ir’ldex

of adjacency om-dimensional lattices and pairs of .~ _n i’1, . .
complementary adjacency systems in. An importan{ =i 2 “Ai. Clearly, the unit celC has 2 vertices,

.~ g0 P n_ o
insight is that, in 3D, complementarity according toXi € 7 (€),i=0...,2"~1.1In a similar way we

i 0
a consistency relation for the Euler number differsntroduce the index of a subsétc .7°(C). Let 1

from the complementarity as conventionally defineodenOte the indicator function of a se. 1(x € §) =1

by the discrete Jordan-Brouwer theorem. Furthermoréf, X€e ¢ and Ixc E).: O otherwise. The index is
signed, and we writ§ if

we recall the notion of connectedness in the continuou@®

case and give a definition of connected components pA G
in a lattice (discrete case) w.r.t. to a given adjacency (= Z) 21-1(xj€8), 2
system. This finishes our theoretical investigation. =

Before explaining the labeling algorithm, we introduce 0 .
some basic mathematical objects to handle images affef @ll § € 7°(C), wherel takes the integer values
intend to clarify the link between the background frombetween 0 and/ = 22" — 1. The & are local pixel
the previous sections and a practical implementatiorzonfiguration of the foreground of a binary image, and
Afterwards, we explain a run length encoding angv + 1 is the number of different configurations.

a labeling procedure by means of pseudo-codes. For \We introduce the convex hulls, = convé,

a convenient illustration, important and frequentlyforming convex polytopes with, C C and.#°(F,) C
used functionality is encapsulated here in auxiliaryz9(C), ¢ = 1,...,v. Let.ZI(F) denote the set of all
routines. A further section is devoted to a benchmark-dimensional faces of a convex polytopeFor a set
and a test of our algorithm on application data fromr of convex polytopes we se#1(F) = J{.Z1(F) :
material testing. We finally address some applications < F}. Now we are able to equip the lattide"

and possible extensions of the algorithm in a shoryith a (homogeneous) adjacency system defining the
conclusion. neighborhood of lattice points.

Definition 1 LetFF C {Fy,...,F,} be a set of convex
ADJACENCY OF HOMOGENEOUS  polytopes F= convé,, and letF be the union over all

LATTICES AND EULER NUMBER lattice translations offg, that iSF = (Jycpn Fo+ X. If

. . . (i) ©€Fo,Ce Ty,
An n-dimensional homogeneous lattice is a subset

LL" of then-dimensional Euclidean spaf with (i) if F € Fo then.7'(F) C Fofori=0,....dimF,
N (ii)if Fi,Fj € Fo andconF UF;) ¢ Fo then FNFj,
L"={xeR":x= ZlAiui’ A€Zy=UzZ", (1) F\Fj, Fj\ R € Fo (where the bar denotes the
i= topological closure),
where u,...,up € R" form a basis ofR", U = (v)ifFi,...,F, € Foand F= L, F; is convex then
(Ug,...,Un) is the matrix of column vectors, arilist FelFom=2...,v,

the set of integers. B%: = U -[0,1]" we denote the hen the systerfiy is called alocal adjacency system
unit cell of L". Let 7~ be the set of vertices of a 5nq F js said to be anadjacency systenof the
polyhedron, in particulag?®(C) = U - {0, 1}". lattice M.

In the literature, the adjacency of lattice points
(or pixels) is usually characterized bynaighborhood The paill” = (F°(F),.#1(F)) is theneighborhood
graph I', and the complementarity of adjacenciesgraph of F consisting of the se#°(F) of nodes and
is defined via the Jordan-Brouwer surface theorerthe set.Z(F) of edges. The order of the nodes is
(Lachaud and Montanvert, 2000). Here we use awalled theconnectivityof IL".
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In the simplest case, where the adjacency systemthe choice of the adjacency system. The number of
generated from the unit céll, the order of the nodes neighbors of a pixel in am-dimensional image can
is 2n, and we writeFan = Uyepn U971 (C+x). The  range from Ato 3"— 1. For the 2d case the conectivity
maximum adjacency system consisting of the convexanges from 4 to 8 while in the 3d case the extremal
hulls of all point configurations provides@adjacency choices are 6- and 26-connectivity. As a consequence
with k = 3" -1, Fx = Uxern{Fo +X,...,Fy +X}.  of the wide range of the number of neighbors,
Notice that for all adjacency systeni&on 1" the the neighborhood of pixels should be chosen very

inclusion carefully in dependence of the dimensionality of the

Fon CF C Fy (3)  image, the lateral resolution, the image data, and the
holds. Now we recall the adjacency systemslgh @ms of processing and analysis (Schladéz al,
considered in detail in Ohset al.(2002; 2003). 2006).

— 6-adjacencyThe 6-adjacency is used as a standard
in image processing. It is generated from the unit EULER NUMBER AND
cellC, Fg = Uyeps Uj—0- 7! (C+X). COMPLEMENTARITY OF ADJACENCY

— 14.1-adjacency. This adjacency system is SYSTEMS
generated from the tessellation Gf into the 6
tetrahedraFi3o, F141, Fi63 F177, Fio7, and Foog
being the convex hulls of the configurations

Since the setX M F forms a (not necessarily
convex) polyhedron, the numbetZ!(X MTF) of
elements ofﬁj(XHF) is finite and, therefore, the

oo o N o 190 s 2N o D 58 Euler numbep (XMF) can be computed via the Euler-
Poincaré formula,
That isFg, consists of allj-faces of the tetrahedra, .
j =0,...,3, and their convex unions. The edges of _ CNiw g
the corresponding neighborhood graptare the X(XTF) = j;( DIFHXOE) . ©)
edges ofC, the face diagonals @ containing the
origin 0, the space diagonal 6fcontaining 0, and A |ocal version of Eq. 5 is given in Schladiet al.
all their lattice translations. The order of the nodes(2006)_
of I' is 14.

— 14.2-adjacency.The 14.2-adjacency system is
generated from the tetrahedts, Fi141, F147, Fis9,
F177, andF>1, which are the convex hulls of

It is well-known from image processing that if one
chooses an adjacency syst®ran the discretization of
X, then there is implicitly chosen a systdfg on the
discretization of the complementary 9¢€%. In other

words, if the ‘foregroundX N1L" is connected w.r. t.

oE i F, then the ‘backgroundX®NL" must be connected

The corresponding neighborhood graphdiffers  w.r.t. Fe. Forn > 2 it is not sufficient to consider
from that one for 14.1 in the choice of one faceconnectivity, and further criteria have to be regarded.

diagonal ofC such that it does not contain 0. In the following we introduce ‘complementarity’ by

_ 26-adjacencyThe systemiFg is the maximum means of the Euler number of the discretization F.

adjaceny system oh®, Fog = Fy. Notice that the compleme€ of X is unbounded.
Jhus, the Euler numbeg (X°) of its topological
closure may be defined by Hadwiger's recursive
definition (Schneider, 1993, p. 175).

Based on the definition of adjacency we introduc
theF-discretization of a set.

Definition 2 The discretization X1 of a compact
subset XC R" w.r.t. a given adjacency systefhis  Definition 3 The pair (F,Fc) is called a pair of

defined as the union of all j-faces of the elementg of complementary adjacency systemgXfriF) N (X¢r
for which all the vertices hit X, i.e., Fc) = 0 and

XMF =| J{F eF: #°F)CX}. (4) X(XMF) = (—1)™ 1y (XS M) (6)

It is important to realize that in particular for holds for all compact Xc R". An adjacency
higher-dimensional images the connectivity of thesystenF is called self-complementary jf(X 1 F) =
pixels and, hence, the labeling can heavily depend of+-1)"1x (X°rTF) holds for all compact X.
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For n = 3 there exist 3 pairs of complementaryits Euler number exists. However, this condition ¥or
adjacency systems:(Fg, Fos), (F141,F141) and is very strong, it depends dhand, hence, it will not
(F142,F142). That is, the 6-adjacency is be fulfilled in most applications. Thus, we consider a
complementary to the 26-adjacency and there ammore natural condition foX. Let B; be a (small) ball
known two self-complementary adjacency systemspf radiuse. From Theorem 1 we obtain the following
the 14.1-adjacency and the 14.2-adjacency, see Ohdemma.
et al.(2002; 2003).

Consider a lattice 1.3 equipped with a Lemmal Let (F,F.) be a pair of complementary
neighborhood graph’ = (IL3,.%#1) where the system adjacency systems db". Then & is an adjacency
of edges.#! may consist of all edges and facesystemonk", a> 0, and it is
diagonals of the cells of.3. The order of the nodes
of I’ is 18 and, hence, the adjacency is called lim x(XNakF) = x(X) @)
the 18-adjacency (which is widely used in image &
processing). The 18-adjacency is ‘Jordan-Brouwerfor all compact and morphologically regular sets X.
complementary’ to the 6-adjacency generated solely
from the edges of the lattice cells (Lachaud and

Montanvert, 2000). However, Eq. 6 does not hold for This means that the Euler number is convergent for
the pair(IE‘lé Fg) and hence i’t is not complementary morphologlcally regular sets (multigrid convergence).
in the sensé of Definition 3 (Schiadiét al, 2006). The proof of this lemma follows from the fact thaixf

is morphologically regular, there exists an- 0 such
thatx(XeF) = x(X) forall F € aF andx(XoF) =
X(X) for F € aFc, and choose am& > 0 such that
F C B forall F € aF Ual..

This shows that in higher dimensiona £ 2) the
‘Jordan-Brouwer-complementarity’ differs from that
of Definition 3. The criteria in Definition 3 seam
to be stronger than that of the ‘Jordan-Brouwer
complementarity’.

MULTIGRID CONVERGENCE CONNECTEDNESS

Now we consider the relationship between the |n order to describe a labeling algorithm, it is
Euler number of a compact s¥tC R" and the Euler npecessary to introduce the notions of ‘connectivity’
number of its discretization. It can not be eXpeCteChnd ‘connected component’. These are provided
that x (X) = x(XT1F) for all compact setX, but if by topology. Azriel Rosenfeld introduced a digital
X has a sufficiently smooth surface, the Euler numbefopology on L2 (Rosenfeld, 1970). He defined
of XMF converges to the Euler number &f for  connectedness on lattices and stated a discrete Jordan-
increasing lateral resolution. Here ‘smooth’ is definedy/eblen curve theorem. The definition of connectedness
by morphological opening and morphological closurecan simply be extended to-dimensional lattices
The setX is called morphologically open w.r.t. a set (Lachaud and Montanvert, 2000). Here we introduce

ACR"if Xis invariant w.r.t. opening with, XoA= " connectedness based on adjacency of lattice points.
X. Here the opening is defined byo A= (XS A) DA,

andX © A = (X°@ A)¢ is the Minkowski subtraction. CONTINUOUS CASE

Analogously, the setX is called morphologically

closedw.r.tAif Xe A= X whereXeA= (X®A)SA Firsty we consider the continuous case and

is the morphological closure witA. Morphological introduce connectivity for the Euclidean spde The

regularity of X means that there is an> 0 such that connected components of a bounded&etR" can be

X is morphologically open as well as morphologicallyconsidered as the equivalence classes afR" w.r. t.

closed w.r.t. a balB, of radiuse. an appropriately chosen equivalence relatiotefined
for point pairs inR".

Theorem 1 Let (F,F¢) be a pair of complementary

adjacency systems onL". If X c R is Definition 4 A set XC R" is said to be connected if

morphologically closed w.r.t. all edges € .#1(F) for all subsets XX; C X with X UX; = X it follows

and morphologically open w. r.t. all E .Z1(F.), then  thatXiNXz # 0 or X; N Xz # 0.

X(X)=x(X1F) and x(X®) = x(X°MFc). This definition of connectivity is closely related
to path-connectivity. A path iR" is a continuous
A proofis given in Ohseet al. (2002). Notice thata set mappingf : [0,1] — R". If f(0) =x and f(1) =y,
X fulfilling the last condition is polyconvex and, hence,x,y € R", thenf is called a path fronx toy.

49



SANDFORT K ET AL: Labeling of n-dimensional images

Definition 5 A non-empty set X is called path- Proof.If X is morphologically closed w.r. B, € > 0,
connected if for every,y € X there exists a path f thenX NX; =0 implies that
from x to y such that (f) C X.
inf{|[x —x;[| : % € X, Xj € Xj} > €.

It is well-known that every path-connected set 5
X is also connected. Furthermore, Xf is open and Now we choos® such thalg(CeBC) C B¢, whereCis
connected, it is also path-connected. Obviously, #e unitcell ofL". ThenX;MaF andX;MaF are disjoint
connected seKX is not necessarily path-connected.and, thus, there is no discrete path w.E tonnecting
For example, the curve of the function €lifit) is X NnalL" andX;NnalL".
connected, but not path-connected. More precisely, the
setX = {(t,sin}) : te R\ {0} }U{(O,t) : t € [-1,1]}
is connected, but not path-connected (Schmitt, 1998)

On the other hand, sinck; is morphologically
open w. . tBg, then for each patlh in X; exists a path
gwith f C g® B C X. Since(g® Be) Nnal" is path-
We write x ~ y for path-connected pointsy €  connected w.r. taF, it follows thatX; NnalL" is path-

R". It can be shown that the binary relatienis an  connected w.r. @F, too. O
equivalence relationi. e. ~ is reflexive, symmetric, ] o
and transitive. The equivalence clas3@s...,Xm of From Lemma 2 it follows that for sufficiently

X under~ are called path componentsf For more  Nigh lateral lattice resolution the equivalence classes

details seee.g, Armstrong (1997) and Rotman (1993). of (XNal") are independent of the choice of the
adjacency system. However, this holds only for sets

DISCRETE CASE X with sufficiently smooth surface. In general, the

equivalence classes ®¥fN1L" depend on(IF, F¢).
Connectedness in a discretization is closely related

to adjacency of lattice points. Hence, we consider

a homogeneous lattick" equipped with a pair of LABELING WITH CHOOSABLE

complementary adjacency syste(fi§F¢). Let x and

y be lattice pointsy,y € IL". A discrete path fronx to ADJACENCY

yw. r. t. the adjacency systelfis a sequence of lattice

points (X)), C L", me N, with Xg = X, Xm =y, and In this section, we consider an implementation of a
Xi—1,%] €F,i=1,...,m general and customizable labeling algorithm. Essential

for this and its performance is the exploitation of the
fact that runs are naturally connected and as such
part of the same componer, the inclusion Eq. 3.

In particular, this complies with all local adjacency
systems given above for the case 3. We begin with

a short description of the labeling procedure. Then
we explain the necessary variables and data structures

Definition 6 Let L." be a homogeneous lattice 5nq present the procedures as easy-to-translate C-style
equipped with an adjacency systé&mand let YC " pseudo-codes.

be a discrete set. The equivalence clasges Y, Yy C
Y, m> 1, defined through the connectedness wit. t.
are called the connected components of Y.

A non-empty discrete se&t C IL." is called path-
connected w. r. tF if §Y = 1 or if for all pairs(x,y) €
Y2 with x # y there exists a discrete path w. fFtfrom
x toy. Connectedness w.r.If. in Y is an equivalence
relation.

BASICS

We anticipate that an imagd c L" is a
We will use the notatioryy = {V1,...,Ym} for the set finite discrete set of lattice points (pixels) with
of equivalence classes &f w.r.t. F. The following an associated binary-valued color mappwngI —
Lemma links the equivalence classes of aXet R" {BG_COL,FG.COL}, where BGCOL < 0 stands for
to the equivalence classes of its digitisatlomIL". the value of a background color, and EX®L is the
value of a foreground color. We simply speak about

Lemma 2 Let (F,F.) be a pair of complementary foreground and background pixels (gfand by that
adjacency systems dif", and let X be a compact and mean those elememtsof I for whichv(x) = FG_COL
morphologically regular subset @&" with the set of andv(x) = BG_.COL, respectively. LeY = {x e I :
equivalence classg, ..., Xm} under~. Then there V(X) = FG.COL} denote the set of foreground pixels.

is a constant b> 0 such that Preceding the labeling, our algorithm does a

(XNalMar = { X nal",... XnNal"}  (8) run Iength encoding of the foreground pixels bf
to identify Y beforehand and to allow a compact

forallawithO<a<b. representation. As aun we consider a set of
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consecutive pixels in a certain direction of All

Here, M denotes the number of elementshh

admissible directions are indicated here by the vector&ssociated with any sét C I is the color mapping/|,.
up,...,Un of the underlying latticdL.", see Eq. 1. The As special cases, we mention thall@eis a subimage
run length encoding assigns either a single placehold&iy x with tM = 2, and aline is a subimag&y x with
label to all runs or a unique preliminary label tofM = 1. Clearly, every line is the intersection of two
each run. This depends on whether, in a subsequeslicesSy, x and Sy, x with §(M1NMz) = 1. Note that
labeling, labels should be propagated to adjacerfivx = Suy forx—ye Ru(L").

runs or not. During the labeling,
systematically overwritten in a way which allows to
find the connected componentsvn

Using the notation introduced above, in formal
terms a labeling w.r.t. an adjacency systémis a
mapping.%s : I — Ng defined by

forxe;,
otherwisej.e. xe I\Y

where f : {1,....m} — N is a fixed function with
f(i) # f(j) fori # j. For simplicity, we letf =id in
the following.

To ‘cluster’ the runs which belong to the same
connected component, equivalences between their
preliminary labels with regard tdF (also called
‘correspondences’) have to be registered and processed
such that finally all runs making up théh connected
component are assigned the unique inte§éy =

these labels arerq fo)10wing aspects will be important:

For a n-dimensional imagel there are 2n!
possibilities to scan through along itsn lattice
directions. The factorial in this term originates
from the scanning order of the direction indices,
and the factor 2 accounts for the orientations of
passing the directions. From now on, we assume
that these orientations coincide with those of the
basis vectoral,...,u, such thatn! possibilities
remain. The scanning order is given by ttamks

of the directions, where the first scanning direction
has rank 0, the second one ranlefc.

Runs of pixels are detected and coded in the rank
O-direction. For an anisotropic s&¢NW (with
discrete analogol), the processing speed of our
labeling algorithm depends on the choice of the
rank O-direction since it determines the number of
runs.

Now we describe the main data structures which

i as a final label. The central factor in finding all we use in our pseudo-codes for the run length encoding
correspondences in an efficient way is the relation oand the labeling. To simplify understanding the code,
Eg. 3, which implies that the foreground neighborsscalar variables begin with a small letter and data
of only the start and endpoint of each run have to bestructures including vectors begin with a capital letter.

examined.

Now, we consider some basic mathematica,

objects to handle images. L¥tC R" be as in Lemma
2,M CM ={1,...,n} andUy be a matrix consisting
of the column vectorsi; with j € M. In particular, it

holdsUZ" = UZ". For a vectow, let v; denote its

j-th element. We define

the window: W=UR"with R"={r e R" : 0<r(j, <
dgj) for 1 < j < n} forafixedd € N,

the imageI=L"NW =U(Z"NR") whereL"=UZ",
the color mapping: vI+— {BG_COL,FG_COL} with

V(X) = {

the set of foreground pixels: ¥ TN X,
projections: Ry (L") = UyZ™M C 1L,
a subimage: @x = (x+Pu(L"))N"W CT forx e L.

FGCOL forxelInX
BG.COL forxeI\X ’

and
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All vectors are assumed to provide the methods
dd() toadd anelemenat () to access the element
ith the index given by the argument (starting from

0),init() to set all elements to the value of the

argumentr esi ze() to resize the vector to the length
given by the argument andi ze() to query the
number of elements. The+ 1-th element can be
accessed alternatively by the ] -operator, following
the name of the vector.

The main vectors, arrays and structures used in
our run length encoding and labeling procedures
are | mage, | ngSi ze, Rank, I ndex, R eRun,

Rl eLi ne andNei ghbor s.

By | nage we denote the pixel array for the image
data {(x,v(x)) : x € I}, precisely the entry for the
pixel x € I has the value/(x). We assume that the
entry is accessed bynage[ x1] ...[ X)] where here
(X1,...,%Xn) is the coordinate vector fox w.r.t. the
basis{us,...,Un}, i.€. X=XgU1 + ... + XaUn. In an
implementation of an algorithm capable to handle
images of an arbitrary dimensionality which is
unknown initially, the addressing of pixels is a bit
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more complex since the above style is inappropriatbeing thek-th element.

for unknown n. However, this is not an issue of

interest here, so for illustration we choose the simple THE RUN LENGTH ENCODING
form. The vectorl ngSi ze stores the dimensions

of I mage. It is the pendant of the vecta in the ALGORITHM
definition of the window from the modeRank is a Besides the data structures from above, the
vector of lengthn and stores the ranks of the lattice implementation of our run length encoding needs the
directions. The valuBank[ i ] withie {0,...,n—1}  following. Entities marked as ‘global’ are available in
is the rank of the direction with index(indicated by all routines. The variables, FG_COL andBG_CCL as

U). The scanning order Rank[ 0] ,...,Rank[ n- 1] .  well as the vectorRank andl ndex are global.

I ndex is the complementary vector (of length
of Rank, which maps the rank of a direction
to its index, i.e. I ndex[ Rank[i]] =i and
Rank[ I ndex[r]] =r for O < i,r < n. The
structureRl eRun, holding the data of a single run, LABEL_PROP [global] — Boolean variable which
consists of the attributeabel and the two-element indicates whether label propagation is switched on
vector Pos. The valuePos|[ 0] is the coordinate of (true)oroff (fal se)

the start pixel of the run in the rank O-direction, and
Pos[ 1] is the corresponding coordinate of its end

| ND — Boolean variable which indicates whether a
run of foreground pixels is active  ue) or not
(fal se)

t ot NunLi n —the total number of lines

pixel. The procedure for the run length encoding writegpr el Label — variable for assigning a
a preliminary label intd abel . Finally, Rl eLi ne unique preliminary label to each run if
is a vector ofRl eRuns and represents a run length LABEL PROP == fal se

encoded lineS; , , of the imagel. Here,ig denotes the
index of the rank O-direction. The size Bf eLi ne
depends on the_ contents of the image, the iniex order of directions),i.e. the current pixel is
and the line with representative € I. The array | mage[ Cur Pi xCs[n-1]] . . [ Cur Pi xCs[ 0] ]
Nei ghbor s represents a vector of relative coordinate o '
vectors for the neighbors of a pixel according toLi nePos — vector storing the position of the current
the governing notion of connectedness. This means line in the image w.r.t. the scanning ordere.
that the neighbors of a pixel € T have coordinate Cur Pi xCs[ I ndex[r]] = LinePos[r-1]
vectors of the form(xy,...,x,)+ Nei ghbors[j], forO<r<n

wherej € {0,...,k — 1}, K is the number of neighbors
andNei ghbor s[j ] is a coordinate vector of length
n with Nei ghbors[j][k] € {-1,0,1} for k
{0,...,n—1}. The order in which the neighbors are
stored inNei ghbor s does not matter. This array
represents the neighborhood graph of an adjacency
system accordinge to Definition 1. Due to the Eq. 3, We are now prepared to turn to the pseudo-code
Nei ghbor s is expected to contain then2vectors for the procedurddoEncodi ng() , which performs
(0,...,Vk,...,0) with k€ {1,...,n} andw € {—1,1}  the run length encoding.

Cur Pi xCs - vector holding the coordinates
of the current pixel (w.r.t. the original

Rl eData [global] - a n — l1l-dimensional
array of Rl eLines with dimensions
(I nrgSi ze[ | ndex[ n-1]1],...,

I ngSi ze[ | ndex[ 1]] ), stores the run length
encoded version dfnage

voi d DoEncodi ng()
{

bool | ND;

int i, r, totNunlLin, prelLabel;

vect or <i nt > Cur Pi xCs(n), LinePos(n-1);
R eRun Run;

R eLi ne *pLi ne;

/1l set variables

Cur Pi xCs.init(0);

Li nePos.init(0);
totNuniin = 1;

I ndex[ Rank[0]] = O;
FORi FROM1 TO n-1 DO

{
I ndex[ Rank[i]] = i:
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totNuniin *= 1 ngSi ze[i];
}

/1 allocate nenory for the array R eData

/1 The size of the i-th dinension (i =1,...,n-1) of RieData is the

/1 image size in the direction with rank n-i.
Rl eData = new Rl eLi ne[ | ngSi ze[ I ndex[n-1]]]..[1 mgSi ze[ | nd

/1 main | oop
DO

{
pLi ne = &Rl eDat a[ Li nePos[n-2]]..[LinePos[0]];

/'l set the coordinates of the current pixel
FORr FROM1 TO n-1 DO

Cur Pi xCs[ I ndex[r]] = LinePos[r-1];
Cur Pi xCs[ I ndex[0]] = O;

ex[1]11;

/'l check whether a run starts at the first pixel in the current line

I'F I mage[ Cur Pi xCs[n-1]]..[CurPi xCs[0]] == FG_COL THEN

{

IND = true

Run. Pos[ 0] = O;
}
ELSE

IND = fal se;

FOR i FROM 1 TO I ngSi ze[ I ndex[0]]-1 DO

HEN

not hing to do

{
Cur Pi xCs[ | ndex[ 0] ] ++;
I F I mage[ Cur Pi xCs[n-1]]..[CurPi xCs[0]] == FGCOL T
{
/1 if IND == true, then current run continues, nothing to do
/1l a new run starts
I'F 'IND THEN
{
IND = true;
Run. Pos[0] = i;
}
}
ELSE
{
/1 current run ends
I F I ND THEN
{
IND = fal se;
Run. Pos[ 1] = i-1;
pr el Label ++;
Run. | abel = LABEL_PROP? -999: prel Label ;
pLi ne- >add( Run) ;
}
/1 if IND == fal se, then BG COL-run conti nues,
}
}

// the end of the current line in the rank O-directio
/1 check whether sone run is active and end it

I F I mage[ Cur Pi xCs[n-1]]..[CurPi xCs[0]] == FG_COL THEN
{
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IF !'I ND THEN
Run. Pos[ 0] = I ngSi ze[ | ndex[0]]-1;
Run. Pos[ 1] = I ngSi ze[ | ndex[ 0] ] -1;

prel Label ++;
Run. | abel = LABEL_PROP? -999: prel Label ;
pLi ne- >add( Run) ;

}

/1 update the line position, according to the scanning order
r = 0;
WH LE r < n-1 AND ++LinePos[r] >= | ngSize[lndex[r+1]] DO
Li nePos[r++] = 0;
}
WHI LE Li nePos[n-2] < IngSize[ | ndex[n-1]]
}

THE LABELING ALGORITHM using thisLabel Map. At last, the labeled image can

Next, we consider the actual labeling of thebe written as a pixel array by decoding the run length
representatiol eDat a.

image data, which is based on a preceding run
length encoding. We have already stated that all In the pseudo-code for the labeling method
correspondences between preliminary labels can HeolLabel i ng(), variables which are not described
found by testing only the start and the endpoint ofoelow have the same meaning a®vEncodi ng() .
runs with their respective neighbors according to th‘?\l
chosen adjacency. The number of correspondences ca
be kept very small if not a unique preliminary label is
assigned to each run beforehand (during the run length
encoding), but instead labels are propagated to alewPr el Label — variable for assigning a unique
adjacent, non-labeled runs (having still the placeholder preliminary label to each non-labeled run (with
label -999), and a new preliminary label is given only  placeholder label) iEABEL_PROP == true

to a run which has not already received one, while
scanning the image in the specified order. If label®"
are propagated, only correspondences between a new
preliminary label and a previously propagated one
have to be registered and resolved later on. Otherwise,
the number of preliminary labels and the number of
arising correspondences usually is much higher. A
recursive labeling approach like that from Martin-Cur NoCs — vector holding the coordinates of the
Herrero (2004) is based on an extremal form of label current neighbor pixel (w.r.t. the original order of
propagation in the sense that the propagation may directions)

emerge from every point of a run and is Starteﬂ;abel VD [aloball — vector manping the oreliminar
again in every line which received a propagated label. Iabelsp([gs thg indices oprt)heg entrFi)es) o t%e

In our algorithm, it is restricted to the start and : - :
endpoint of a run and stopped at the adjacent runs. The associated final labels (as their values)
number of preliminary labels determines the size of The labeling procedurBolLabel i ng() returns
the vectorLabel Map, whose entry indices representthe number of objects in mage corresponding to
the preliminary labels. This vector is processed byhe adjacency deducible from the predefined array
means of the correspondences (in the procedurddei ghbors. In the following pseudo-code, code
Associ at e() andReset Label Map() ) suchthat passages enclosed b###' should be regarded as
each entry is assigned the value of the associated finptesent only if the condition in th&##-header is
label. Subsequently, the labels of the runs are updatddifilled.

ﬁ_VALI D - Boolean variable which indicates
whether a neighbor pixel lies inside the image
(true)ornotal se)

el Label — stores the preliminary label of a run;
if LABEL_PROP == f al se, thenpr el Label

has the same meaning as DoEncodi ng(),
otherwise pr el Label does not necessarily
increase while passing through the image but
might hold a propagated label

i nt DoLabel ing()

{
bool NB_VALI D;

int i, j, k, m r, newPrel Label, prelLabel, objects;
vect or<i nt > Cur Pi xCs(n), CurNbCs(n), LinePos(n-1), Label Map;
R eLi ne *pLi ne;

54



Image Anal Stereol 2009;28:45-61

R eRun *pRun, *pNbRun;

I

set vari abl es

newPr el Label = 0;
CurPi xCs.init(0);
Li nePos.init(0);

| F LABEL_PROP THEN
Label Map. resi ze(1);
ELSE

Label Map. resi ze(prel Label +1);

Label Map.init(BG CO);

/1
DO

{

mai n | oop

pLine = &Rl eDat a[ Li nePos[n-2]]..[LinePos[0]];

/'l set the coordinates of the current pixel
FORr FROM1 TO n-1 DO
Cur Pi xCs[ I ndex[r]] = LinePos[r-1];

/1 test all runs in the current |ine addressed by pLine
FOR i FROM 0 TO pLine->size()-1 DO

{
pRun = &(pLine->at(i));

### LABEL_PROP == true
/'l check whether run has yet received a propagated | abel
/1 otherwi se assign a new prelimnary |abel and register it
| F pRun->l abel == -999 THEN
{
pRun- >l abel = ++newPrel Label ;
Label Map. add(BG_CQOL) ;

}
HitH

prel Label = pRun->l| abel ;

/1 exam ne the start and endpoint of the current run
FORj FROM 0O TO 1 DO
{
IFj == 0 OR (j == 1 AND pRun->Pos[0] != pRun->Pos[1]) THEN

{
Cur Pi xCs[ I ndex[0]] = pRun->Pos[j];

/1 test the valid neighbors for |abel correspondences
FOR k FROM 0 TO Nei ghbors. size()-1 DO

{
NB_VALI D = true;

FOR m FROM 0 TO n-1 WHI LE NB_VALI D DO

{
Cur NbCs[n] = CurPi xCs[n] + Nei ghbors[k][n];

IF CurNbCs[ni < 0 OR CurNbCs[ni >= I ngSize[n THEN
NB_VALI D = fal se;

}

/1 neighbor is valid, i.e. lies inside the inmage
I'F NB_VALI D THEN

{
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/1 query the address of the current neighbor
/1 this is NULL if the neighbor is a background pi xel
pNbRun = QueryPt r ( Cur NbCs) ;

I F pNbRun !'= NULL AND pNbRun->| abel != prel Label THEN
{
### LABEL_PROP == true
I F pNbRun- >l abel !'= -999 THEN
Associ at e(prel Label , pNbRun->| abel , Label Map);
ELSE
pNbRun- >l abel = prel Label;
#itt
### LABEL_PROP == fal se
Associ at e(prel Label, pNbRun->| abel , Label Map);
#itt
}

}

/1 update the line position, according to the scanning order
r =0;
VWH LE r < n-1 AND ++LinePos[r] >= | ngSize[lndex[r+1]] DO
Li nePos[r++] = 0;
}
WHI LE Li nePos[n-2] < IngSize[ |l ndex[ n-1]]

/'l setup the final Label Map
obj ects = Reset Label Map(Label Map) ;

/1 update the run | abels
Li nePos.init(0);

DO

{
pLi ne = &Rl eDat a[ Li nePos[ n-2]]..[LinePos[0]];

FOR i FROM O TO pLine->size()-1 DO
pLine->at(i).label = Label Map. at (pLi ne->at(i). | abel);

r =0;
WH LE r < n-1 AND ++Li nePos[r] >= I ngSi ze[ I ndex[r+1]] DO
Li nePos[r++] = O;
}
VWHI LE Li nePos[n-2] < IngSize[lndex[n-1]]

/1 return the nunber of objects in the inage
return objects;

The arrayRl eDat a now contains all information this information and writes an image in pixel format.
on the labeled image. The next routine decompresses

void WitelLabel edl nage()
{ . .
int 1, r;
vect or <i nt > Cur Pi xCs(n), LinePos(n-1);
Rl eLi ne xpLi ne;
R eRun *pRun;

56



Image Anal Stereol 2009;28:45-61

Li nePos.init(0);
DO
{
pLi ne = &Rl eDat a[ Li nePos[n-2]]..[LinePos[0]];

FORr FROM1 TO n-1 DO
Cur Pi xCs[ I ndex[r]] = LinePos[r-1];

FOR i FROM 0 TO pLi ne->size()-1 DO

{
pRun = &(pLine->at(i));
FOR Cur Pi xCs[ | ndex[ 0]] FROM pRun->Pos[ 0] TO pRun->Pos[1] DO
I mage[ Cur Pi xCs[0]]..[CurPixCs[n-1]] = pRun->| abel;
}
r =0;

WHI LE r < n-1 AND ++LinePos[r] >= IngSi ze[ I ndex[r+1]] DO
Li nePos[r++] = 0;
}
WHI LE Li nePos[n-2] < ImgSi ze[ | ndex[ n-1]]

The overall calling sequence RoEncodi ng() The recursive methodAssoci at e() relates
- DoLabel ing() - WitelLabel edl mage(). equivalent preliminary labelsa and b with the
We now explain shortly the auxiliary routines Smallest equivalent label inabel Map. After calling
QueryPtr(), Associate(), as well as this routine, f'graversmgLabeI :\/Bp via repeated
Reset Label Map() . substitution ofi ndex by Label Map[i ndex] as
long as the latter is non-zero, starting from either
The methodQuer yPt r () returns a pointerto the i ndex = a orindex = b, leads to the smallest
run which contains the pixel with coordinate veaBsr  equivalent label as the lashdex.
if this is not a background pixel. Otherwise, the pixel ) _ _
is not contained in any run, and tiNJLL-pointer s Voi d Associate(int a, int b,

returned. vect or <i nt >& Label Map)
{
int c;
R eRun* QueryPtr (vector<i nt>& Cs)
t IF a <b THEN
tnt 1, pos; {c=a a=b; b=c; }
vector<i nt> Li nePos(n-1);
RieLine »pLine; | F Label Map[a] == BG COL THEN
Label Map[a] = b;
pos = Cs[Index[0]]; ELSE | F Label Map[a] '= b THEN
FOR1 FROM1 TO n-1 DO _ Associ at e(Label Map[a], b, Label Map);
Li nePos[i-1] = Cs[Index[i]]; }
pLine = Finally, Reset Label Map() assigns unigue
&Rl eDat a[ Li nePos[n-2]]..[LinePos[0]]; and minimal final labels to the preliminary ones
which have no smaller counterparts and resolves the
FOR i FROM O TO pLine->size()-1 DO connections made up Associ at e() . This means
{ that afterwards each preliminary labielis mapped
I'F pLine->at(i).Pos[1] >= pos THEN to the smallest integegr = Label Map[i] which
{ preserves the equivalence relations. The return value
I'F pLine->at(i).Pos[0] <= pos THEN of Reset Label Map() is the number of objects in
return & pLine->at(i)); | mage.
ELSE
return NULL;
} i nt Reset Label Map(vect or<i nt >& Label Map)
} {
return NULL; int i, objects;
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obj ects = 0; are at hand in RAW format with 8 Bit per pixel. The
_ _ firstimage has a size of 274 MB and 5.7 % foreground
{FOR i FROM O TO Label Map. si ze()-1 DO pixels. The second one needs 26 MB and has 86.4 %
. foreground pixels. For details about the materials and
| F Label Map[i] == BG_COL THEN . . )
Label Map[i] = ++obj ect s: imaging methods see Helfex al. (2002; 2003).
ELSE o o Our test system is a PC with AMD Athlon(tm) 64
| Label Map[i] = Label Map[ Label Mapli]1]:  processor 3800+, 1 GB RAM, running SuSE Linux
10.0 (kernel v2.6.13). We compiled the source codes
return objects; with the GCC v4.0.2, using the optimization switch
} ‘-03'. The performance data are listed in the tables

below (‘'S./O. denotes our algorithm, ‘M.-H.’ the one
The latter both routines have been proposedfom Martin-Herrero).
and discussed in Martin-Herrero and Peon-Fernande -
(2000). The algorithm presented in this sectior
is the basis for the current labeling function in
the commercial software MAVI (Fraunhofer ITWM,
Department of Image Processing, 2005).

EXAMPLE AND DISCUSSION

In this final section, we look at an exemplary
application of our algorithm as well as of the
alternative recursive algorithm by Martin-Herrero,
cf. Martin-Herrero (2004). The test data are two
binarized 3D microtomography images of materials
Their visualizations are shown in Figs. 1 and 2.

Fig. 2.3D image (29% 300x 300 pixels, 0.75 um pixel
size) showing a specimen of the Fontainebleau sand
stone.

At first, we want to make clear what the
times listed in Tables 1 and 2 refer to. For our
algorithm, we note that after calling the procedures
DoEncodi ng() and DoLabel i ng() the run
length arrayRl eDat a with the correct run labels is
obtained. It might be sufficient or even beneficial to do
any further processing of the image on this structure.
Otherwise, it remains to write the labeled image as
a pixel array using¥ i t eLabel edl nage() . The
processing time for this has not been considered in

. : . . Tables 1 and 2. Since the algorithm by Martin-Herrero
Fig. 1.3D image (660« 660x 660 pixels, 0.7 pm pixel identifies non-labeled foreground pixels by a negative

size) showing a specimen of a metallic foam in ealrl3(/alue, it usually necessitates a preprocessing of the

extension stage. source pixel array mage to change the foreground
In Fig.1 the metallic matrix is transparent while thelabel FG_COL to this value (if the values ih mage

pore space appears opaque. In Fig.2 the solid matterase non-negative). In principle, the identification value

opague and the pore space is transparent. Both imagesn be any value which does not coincide with the
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background coloBG_CCOL (mostly chosen to be 0) comparison, it is also important that the runs for the
and any valid final label. However, the number ofsecond image contain 39 pixels in average, while for
objects inl mage is not predicted, and we require the the first one this number is 4. Roughly speaking,
final labels to be consecutive integers starting from 1it appears that a setting in which many pixels are
If one agrees to drop this restriction, a substitution ofaptured in few runs overlapping in adjacent lines is
FG_COL can be avoided. Anyway, the time possiblymore amenable to our method than to the other. Also
needed for this is not recorded above. We also warin view of the above times, it should be carefully
to emphasize that the times have been obtained withbserved whether a preprocessing such as RLE leads
variants of both algorithms optimized for 3D data ando an overall improvement in the processing needs
a fixed scanning order. (the processing time, in particular). Although for
. ) . ~ the worst case of a ‘salt and pepper’ image (with
In comparison with the second image, the firsty |3rge amount of small objects) also the recursive
one has qnly few foreground pixels and a pixe_ls P€Hnd probably almost every other labeling algorithm
object ratio of 59. By contrast, the second iMag&an not fully deploy its potential, a run length
contains mainly foreground pixels, which are multiply ¢ coding surely will spoil the total performance of the
connected, and has 704926 pixels per object idrgcedure. Martin-Herrero’s algorithm from Martin-
average. On the first dataset, the recursive algorithferrero (2004) and the enhanced Hoshen-Kopelman
by Martin-Herrero is more efficient than ours andalgorithm from Hoshen (1998) offer an on-the-fly
takes clear advantage of extremal label propagatioRnaiysis of objects. This feature could be added to
Nevertheless, ir appears that our method with_ activ:c_lteéiur algorithm by collecting information during the
label propagation can serve as an alternative. Singgn length encoding and processing it subject to the

the algorithms rely on different image representationfahe| correspondences (and propagations) during the
(pixel array vs. RLE structure), it is not appropriate|aheling.

to compare the times for the labeling only. In this . ) .
respect, we remark that it could be valuable for both _ TWO otherimportantimpact factors for the labeling

algorithms to inspect how they can be adapted t@'€ the adjacency system and the scanning order.
different image representations. For this question, th&N€ above results concern the labeling w.r.t. the 6-

fundamental work Dillencouret al. (1992) should be 2djacency. Since neighbors in the direction of the
consulted. (quasi-)run length encoding need not to be checked

for correspondences, kradjacency requires a test of

On the dataset for Fig. 2, our approach combine@nly k — 2 neighbors inDoLabel i ng() and the
with label propagation shows some superiorityrecursion part of the algorithm from Martin-Herrero
compared to the recursive one. For the latter, wg2004), respectively. When switching ¢og.the 14.x-
note here the relatively high recursion depth alongdjacency, in our method the ratid4 — 2)/(6 —
with the fact that many pixels are queried which2) = 3 of tested neighbors is roughly reflected in
have already received a propagated label. The labéte times needed for the labeling. Although described
propagation in our method significantly reduces theonly for the 6-adjacency in Martin-Herrero (2007), the
number of preliminary labels for this image and makesecursive method can be straightforwardly extended to
the labeling procedure including the computationother adjacencies. A test and comparison for these has
of Label Map very fast. For the evaluation and not yet been done.

Table 1.Performance data for Fig. 1 and the 6-adjacency, 275536aibje

algorithm S./O.:4 preliminary labels executio_n time
M.-H.: max. recursion depthl RLE | Labeling| total
S./O.,LABEL_PROP = fal se 3856 027 273s| 593s | 866s
S./O.,LABEL_PROP = true 738601 272s| 370s |6.42s
M.-H. 504 706 — 437s | 437s
Table 2.Performance data for Fig. 2 and the 6-adjacency, 33 objects.
algorithm S./O.: 4 preliminary labels executio_n time
M.-H.: max. recursion depth RLE | Labeling| total
S./O.,LABEL_PROP = fal se 590753 0.34s| 296s | 33s
S./O.,LABEL_PROP = true 28176 0.33s| 058s | 091s
M.-H. 590 649 — 183s | 183s
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Regarding the theoretical foundation from sectiorsimple form by a run length array can be desirable. We
“Connectedness”, we want to remark the following.only mention the morphological filtering of objects,
Both algorithms clearly work for arbitrary adjacency noise removal and geometric transforms as operations
systems including the 18-adjacency. However, ongvhich can take advantage of this. For further uses
should be aware that further processing and analysif the run length encoding we refer to the papers
of images labeled w.r.t. the 18-adjacency carDi Zenzoet al. (1996) and Messonet al. (2002).
lead to conflicts. Since there does not exist arSince the recursive method of Martin-Herrero and ours
adjacency system for the background which isfollow in a way complementary ideas, a combination
complementary to the 18-adjacency according t®f both methods could be worth considering.
Definition 3, the topology of the foreground pixels .
does not fit the topology of the background pixels. Moreover, the tasks of run length encoding and

In particular, the Euler number of the backgrouncf‘f’lbe'ing are wgll-suited for parallelizatio_n._A simp!e
differs from the sum of the Euler numbers of theSt€P towards this would be to separate big images into

obtained equivalence classes. Thus, whenever furthBfoCks and process first their interiors independently
j d then gather correspondences in the border areas.

processing and analysis of the label image is necessafy,

we recommend a labeling w.r.t. an adjacency systerti>iNg [abel offsets after the block computations to
F with existingF, according to Definition 3. avoid a false coincidence of labels, a label map for the

whole image can be computed.
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