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ABSTRACT

The tessellation studied here is motivated by some stegaalbapplications of a new expression for the
motion invariant density of straight lines k. The term ‘pivotal’ stems from the fact that the tessellatio
is constructed within a plane which is isotropic through adix'pivotal’ origin. Consider either a stationary
point process, or a stationary random lattice of points & flane. Through each point event draw a straight
line which is perpendicular to the axis determined by thgiorand the point event. The union of all such
lines (calledp-lines) constitutes the mentioned tessellation. We comagnon the pivotal tessellation based
on a stationary and isotropic planar Poisson point proeesshow that this tessellation is not stationary.

Keywords: geometric probabilityp-line, pivotal tessellation, Poisson point process, sfegy, stochastic
geometry.

INTRODUCTION number of intersections and chord length, respectively

(Cruz-Orive, 2005; 2008).
The purpose of this paper is to explore elementary

properties of a special planar tessellation stemming Here we are interested in some properties of
from the application of recent stereological resultdn® Pivotal tessellation constituted by the-lines
(Cruz-Orive, 2005; 2008; Gual-Arnau and Cruz-Orive,aSSOC'ated with a planar Poisson point process.
2009).

Consider the equatorial disBy; = B3N Lz[op PRELIMINARIES
whereB3 C RS represents a ball of radilR centred

at the originO and L denotes an isotropic plane Given a pointz € R? of polar coordinate$p, w),
throughO with normal directiort € S2. p € (0,0), w € (0,2m), we define ap-line L1(z) as a

Within the disk By, generateN independent straight line with normal coordinatép, w), namely,

and identically distributed uniform random points o

{z1,2,...,2x}, (Fig. 1a). For each=1,2,...,N, draw L1(2) = La(p, @) ) _

a straight lineL1(z) through the point; and normal = {Xx=(x1,%2) € R*: X1C0Sw+XoSinw=p} .

to the axisOz. ThusLy(z) is effectively a “point (2)

sampled” straight line which will be called g—line.

The union of all p—Iines constitutes a tessellation Consider either a stationary planar point process

in the reference disk, (Fig. 1b) which will be called

a pivotal tessellation, inasmuch as the containing o= Uzi= (3)

planeLy can only rotate around a fixed ‘pivoO. ieN

The practical interest of this construction lies in the

following fact. Consider a nonvoid compact subset ~ with realizations iriR?, or a stationary random lattice

Bs of volumevs(Y) with piecewise smooth boundary

dY of areav,(dY). Then, Ne=No+z=]37, (4)
ieN

where/\o C R? is a fixed regular lattice of points and

Z is a uniform random point in a fundamental tile of

N : : : .
Ta(Y) = aN-1S vi {(YNBo:) AL (z 1y /o (Fig. 3a). In either case, the pivotal tessellation
a(Y) i; al 20 Nba(@)}, @) associated with eitheb or A\, is

N
Ua(AY) = 2aN—1_Zl Vo{(dY NBay) NLa(z)} ,

are unbiased estimators o¥»(dY) and vs(Y), LP:UL1(25) (5)

respectively, wherea := nR?, and vp, v; denote icN
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Fig. 1. (a) Disk centred at O containing 50 independent uniform @mdooint events. (b) Associated pivotal
tessellation formed by the corresponding p-lines with eespo O.

namely the corresponding procesgdfnes, (Figs. 1b,
3b).

In this paperP(dx) represents the probability
element of a random variabl®, namelyP(dx) :=
P(x < X < x+dx). If X admits a probability density
function f(x), then P(dx) = f(x)dx. This notation
extends to higher dimensions in a natural manner.

THE PIVOTAL POISSON
TESSELLATION IN R?

When the associated proceBss a stationary and
isotropic planar Poisson point process (Stoganl,,
1995), then the corresponding pivotal tessellatibn
will be called the pivotal Poisson tessellation. Let
denote the fixed intensity @b, namely,

E{vo(®NB)}
T=—77"—"—=
v2(B)
whereB denotes any subset from the Bowehklgebra
in R2, and Vq denotes theg-dimensional Hausdorff

measure inR2, (thus v, represents areay; curve
length, andvg the counting measure).

0< vy(B) < oo, (6)

Next we obtain some properties of the tesselation

Y. To do this we consider the random intersection
N

WNBr=|JL1(z)NBr,
i=1

(7)

(Fig. 1b), whereBg C R? is a closed disk of radius
R centred at the originO, whereas{z,z,...,zy}

representN independent and identically distributed

(i.i.d.) uniform random (UR) points iBg, and

N ~ PoissolirR?T) , (8)

64

so thatN is a Poisson random variable with mean and
variance equal taR?T.

For ap-line L1(2) := L1(p,w) such that the point
z of polar coordinate$p, w) is UR in Bg, it is easy to
show thatp and w are independent random variables
with

P(dp) = 2R pdp ,
P(dw) = (2m) ldw,

O0<p<R,
O<w<?2m. (9)
Lemma 1. Let ze Br denote a UR point in B
Then the mean chord length determined w® the
corresponding p-line is,

E {Vl(Ll(Z) N BR)} = gR . (10)

Proof. Straightforward bearing in mind that
vi(L1(z) NBRr) =2y/R2—p?2andusingEq. 9. O

Proposition 1. The mean total length per unit disk
area of the straight line segments determined s
the p-lines oWV is

M(R) = (MR E{vi(WNBr)}

4
=—-1R. 11
1 (11)

Proof. Conditional on the numbeX of p-lines
from W hitting Bg, by Eq. 10 we have,

4

E{vi(¥NBr)IN} = ZRN. (12)

Using the premise (Eq. 8) and dividing byR?, the
result follows. O
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Consequence.From Eq. 11 we see thaAf(R) = support seH, ;g Of the chordL;(z) N Br with
O(R), which implies that the pivotal Poisson respect to the disk centi® (see Fig. 2). Bearing in
tessellatiort! associated withb is not stationary. mind thatP(dz,) = (R?)~1dz,, z, € Bg, we have

Remark 1. The mean area of the equatorial disk p(p,w;R) :==P{L1(z2) NL2(22) € Br|p, w}
Bot considered in the Introduction (see Fig. 2) per

unit volume of the corresponding balgBs A3(R) = = I P(dzy) (15)
niR2/(4nR3/3) = 3/(4R). On the other hand, the mean H1(2)n8R

total chord length of the bounded pivotal Poisson :}_g.gdisk< /1—p2/R2>,
tessellation in By, per unit area of By, is given by 2 m

Eqg. 11. Therefore, the mean total chord length of such
planar tessellation per unit volume of the reference”

ball B, is 1
’ Odisk(X) = > (cos‘lx— Xy 1— x2) , (0<x<1),
MR =R AR =1, (13) (16)
_ _ _ . is the geometric covariogram of a disk of unit diameter.
namely a constant. This result is consistent with the; jg readily verified that,

fact that p-lines are effectively motion invariantfi?.

R
Lemma 2. Let z, z denote two i.i.d. UR points indB P{L1(z1) NL2(2) € Br} :/ p(p,w;R)P(dp)
Then, 30
== 17
= (1)

whereP(dp) is given by the first Eq. 9. O

here

P{La(z2) N La(22) € Br} = g WRE (0,00), (14)

that is, the probability that the corresponding two p-

y 0 1 2
lines intersect inside Bis a known constant equal to Proposition 2. Let A2 (R), AS(R), and AP (R)
3/8 for any R> 0. denote the mean total numbers per unit disk area of

the vertices, edges and connected regions constituting
the bounded tessellatidH N Bg, respectively. Then,

AV(R) = %T2R2+2T,

MR = R 3, (18)
3 1

AP(R) = ETZRZJFTJFW ,

where the terms following the first one in the right
hand side of the preceding identities represent the
contributions of the disk boundagBg.

Proof. We use the method of Santal6 (1940; 1976
, - , _ p. 51). Conditional on the numbBrof p-lines fromW¥
Fig. 2. The probability that a p-line L(z;) associated  pitting By, letVigo(N), V,g(N) denote the mean number
with a UR point 2 € Br hits a given p-chord {(z1) N of vertices interior tBg and indBg, respectively, and

Br (thick straight line segment in the figure) is equal t0get\/, (N) +V,g(N) = V(N). Then using Lemma 2,
the probability that z falls in the support set (shaded

region) of the given p-chord with respect to O.
gion) given p P E{V(N)|N} = <I;I>g+2N. (19)
Proof. Fix one of the two pointse.g, z1 = Likewise, let Ego(N), Esg(N) denote the mean

(p,w), p € (O,R), w € (0,2m), and denote by number of edges interior toBg and in JBg,
p(p,w;R) the required probability conditional on respectively, and seEgo (N) + Eyg(N) = E(N). At
(p,w). By the definition of support set (Cruz-Orive, each interior vertex there meet 4 edges, but they are
2005; Gual-Arnau and Cruz-Orive, 2009), it follows counted twice because each edge has two vertices as
that p(p, w;R) is the probability thatz, falls in the endpoints. On the other hand, at each boundary vertex
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(b)

Fig. 3.(a) A realization of a stationary random square lattice aesia disk. The centre O of the disk is uniform
random in a tile of the lattice (shaded square). (b) The aisded pivotal lattice tessellation inside the disk, which
is in fact the kind of probe used in the applications (Cruav®y2005; 2008).

there meet 3 edges, but they are also counted twice foelations,
the same reason. Therefore,
E{N(R)} =4+0O(R?),

E{E(N)|N}:2<2')§+3N. (20) E{B(R)} =O(R™), (23)
E{A(R)}=0O(R?).

Finally, let F(N) denote the total number of
connected regions or “faces”. By Euler's formula we  Proof. Substitute the results Eg. 11 and Eq. 18
haveV (N)+F (N) —E(N) = 1, and therefore, into Eq. 22. O

E{F(N)|N} = <N)§+N+1. (21)
2)8 CONCLUSIONS AND COMMENTS

~ Taking expectations on both sides of each of the  Concerning the planar pivotal Poisson tessellation
identities (Eqgs. 19-21) with respect 1, bearing y, the main conclusion is that it is not stationary, as
Eq. 8 in mind, and dividing bytR? in each case, the jjlustrated by the results (Eqs.11, 18, and 23). The
corresponding identities (Eq. 18) are obtained. [ asymptotic mean number of vertices of a polygon is
4, as in the ordinary Poisson tessellation of straight
gnes (Stoyaret al,, 1995), but the remaining properties
change with the distance from the origin. The non
stationarity is intuitively plausible on seeing Fig. 1b.
A priori one might think that, becausglines on an

Definition. The mean number of vertices (or of sides)
the mean boundary length, and the mean area of
connected region from the bounded tessellatipn
Br, are defined respectively as follows,

ZA(l)(R) isotropic planelq are effectively motion invariant
E{N(R)} = (OT’ in R3, and because the associated point process is

Ao (R) stationary Poisson, théd would also be stationary in

E(B(R)} — 2/\12(R) +2/R 2o R2, but this is n.ot the case. As confirmed by _Eq. 13,
{B(R)} = —/\ @R ’ (22)  the length density of the—lines of the planar pivotal
o (R Poisson tessellation must be constaniRih because
E{AR)} = 1 . they are motion invariant iiR3. Note that the plane

,\52) (R) Lojg is less and less “dense” away from the origin; this

effect must be compensated by a higher and higher line
Proposition 3. The characteristics given in the length density in that plane away from the origin, and
preceding definition satisfy the following asymptoticthis is indeed what happens.
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