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ABSTRACT

The tessellation studied here is motivated by some stereological applications of a new expression for the
motion invariant density of straight lines inR3. The term ‘pivotal’ stems from the fact that the tessellation
is constructed within a plane which is isotropic through a fixed, ‘pivotal’ origin. Consider either a stationary
point process, or a stationary random lattice of points in that plane. Through each point event draw a straight
line which is perpendicular to the axis determined by the origin and the point event. The union of all such
lines (calledp-lines) constitutes the mentioned tessellation. We concentrate on the pivotal tessellation based
on a stationary and isotropic planar Poisson point process;we show that this tessellation is not stationary.

Keywords: geometric probability,p-line, pivotal tessellation, Poisson point process, stereology, stochastic
geometry.

INTRODUCTION

The purpose of this paper is to explore elementary
properties of a special planar tessellation stemming
from the application of recent stereological results
(Cruz-Orive, 2005; 2008; Gual-Arnau and Cruz-Orive,
2009).

Consider the equatorial diskB2,t = B3 ∩ L3
2[0],

whereB3 ⊂ R
3 represents a ball of radiusR centred

at the originO and L2[0] denotes an isotropic plane
throughO with normal directiont ∈ S2

+.

Within the disk B2,t , generateN independent
and identically distributed uniform random points
{z1,z2, ...,zN}, (Fig. 1a). For eachi = 1,2, ...,N, draw
a straight lineL1(zi) through the pointzi and normal
to the axisOzi. Thus L1(zi) is effectively a “point
sampled” straight line which will be called ap−line.
The union of all p−lines constitutes a tessellation
in the reference disk, (Fig. 1b) which will be called
a pivotal tessellation, inasmuch as the containing
planeL2[0] can only rotate around a fixed ‘pivot’O.
The practical interest of this construction lies in the
following fact. Consider a nonvoid compact subsetY⊂
B3 of volumeν3(Y) with piecewise smooth boundary
∂Y of areaν2(∂Y). Then,

ν̂2(∂Y) = 2aN−1
N

∑
i=1

ν0{(∂Y∩B2,t)∩L1(zi)} ,

ν̂3(Y) = aN−1
N

∑
i=1

ν1{(Y∩B2,t)∩L1(zi)} , (1)

are unbiased estimators ofν2(∂Y) and ν3(Y),
respectively, wherea := πR2, and ν0, ν1 denote

number of intersections and chord length, respectively
(Cruz-Orive, 2005; 2008).

Here we are interested in some properties of
the pivotal tessellation constituted by thep−lines
associated with a planar Poisson point process.

PRELIMINARIES

Given a pointz∈ R2 of polar coordinates(ρ ,ω),
ρ ∈ (0,∞), ω ∈ (0,2π), we define ap-line L1(z) as a
straight line with normal coordinates(ρ ,ω), namely,

L1(z) := L1(ρ ,ω)

=
{

x = (x1,x2) ∈ R
2 : x1cosω +x2sinω = ρ

}
.

(2)

Consider either a stationary planar point process

Φ =
⋃

i∈N

zi , (3)

with realizations inR2, or a stationary random lattice

Λz = Λ0 +z=
⋃

i∈N

zi , (4)

whereΛ0 ⊂ R
2 is a fixed regular lattice of points and

z is a uniform random point in a fundamental tile of
Λ0, (Fig. 3a). In either case, the pivotal tessellation
associated with eitherΦ or Λz is

Ψ =
⋃

i∈N

L1(zi) , (5)
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Fig. 1. (a) Disk centred at O containing 50 independent uniform random point events. (b) Associated pivotal
tessellation formed by the corresponding p-lines with respect to O.

namely the corresponding process ofp-lines, (Figs. 1b,
3b).

In this paper P(dx) represents the probability
element of a random variableX, namely P(dx) :=
P(x < X ≤ x+ dx). If X admits a probability density
function f (x), then P(dx) = f (x)dx. This notation
extends to higher dimensions in a natural manner.

THE PIVOTAL POISSON
TESSELLATION IN R2

When the associated processΦ is a stationary and
isotropic planar Poisson point process (Stoyanet al.,
1995), then the corresponding pivotal tessellationΨ
will be called the pivotal Poisson tessellation. Letτ
denote the fixed intensity ofΦ, namely,

τ =
E{ν0(Φ∩B)}

ν2(B)
, 0 < ν2(B) < ∞ , (6)

whereB denotes any subset from the Borelσ -algebra
in R2, and νq denotes theq-dimensional Hausdorff
measure inR2, (thus ν2 represents area,ν1 curve
length, andν0 the counting measure).

Next we obtain some properties of the tesselation
Ψ. To do this we consider the random intersection

Ψ∩BR =
N⋃

i=1

L1(zi)∩BR , (7)

(Fig. 1b), whereBR ⊂ R2 is a closed disk of radius
R centred at the originO, whereas{z1,z2, ...,zN}
representN independent and identically distributed
(i.i.d.) uniform random (UR) points inBR, and

N ∼ Poisson(πR2τ) , (8)

so thatN is a Poisson random variable with mean and
variance equal toπR2τ .

For a p-line L1(z) := L1(ρ ,ω) such that the point
z of polar coordinates(ρ ,ω) is UR in BR, it is easy to
show thatρ andω are independent random variables
with

P(dρ) = 2R−2ρ dρ , 0 < ρ < R ,

P(dω) = (2π)−1dω , 0 < ω < 2π . (9)

Lemma 1. Let z∈ BR denote a UR point in BR.
Then the mean chord length determined in BR by the
corresponding p-line is,

E{ν1(L1(z)∩BR)} =
4
3

R . (10)

Proof. Straightforward bearing in mind that
ν1(L1(z)∩BR) = 2

√
R2−ρ2 and using Eq. 9. �

Proposition 1. The mean total length per unit disk
area of the straight line segments determined in BR by
the p-lines ofΨ is

λ 2
1 (R) := (πR2)−1

E{ν1(Ψ∩BR)}

=
4
3

τR . (11)

Proof. Conditional on the numberN of p-lines
from Ψ hitting BR, by Eq. 10 we have,

E{ν1(Ψ∩BR)|N} =
4
3

RN . (12)

Using the premise (Eq. 8) and dividing byπR2, the
result follows. �
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Consequence.From Eq. 11 we see thatλ 2
1 (R) =

O(R), which implies that the pivotal Poisson
tessellationΨ associated withΦ is not stationary.

Remark 1. The mean area of the equatorial disk
B2,t considered in the Introduction (see Fig. 2) per
unit volume of the corresponding ball B3, is λ 3

2 (R) =

πR2/(4πR3/3)= 3/(4R). On the other hand, the mean
total chord length of the bounded pivotal Poisson
tessellation in B2,t , per unit area of B2,t , is given by
Eq. 11. Therefore, the mean total chord length of such
planar tessellation per unit volume of the reference
ball B3, is

λ 3
1 (R) = λ 2

1 (R) ·λ 3
2(R) = τ , (13)

namely a constant. This result is consistent with the
fact that p-lines are effectively motion invariant inR3.

Lemma 2. Let z1, z2 denote two i.i.d. UR points in BR.
Then,

P{L1(z1)∩L2(z2) ∈ BR} =
3
8
, ∀R∈ (0,∞) , (14)

that is, the probability that the corresponding two p-
lines intersect inside BR is a known constant equal to
3/8 for any R> 0.

ρ
R

O

z1

BR

Fig. 2.The probability that a p-line L1(z2) associated
with a UR point z2 ∈ BR hits a given p-chord L1(z1)∩
BR (thick straight line segment in the figure) is equal to
the probability that z2 falls in the support set (shaded
region) of the given p-chord with respect to O.

Proof. Fix one of the two points,e.g., z1 =
(ρ ,ω), ρ ∈ (0,R), ω ∈ (0,2π), and denote by
p(ρ ,ω ;R) the required probability conditional on
(ρ ,ω). By the definition of support set (Cruz-Orive,
2005; Gual-Arnau and Cruz-Orive, 2009), it follows
that p(ρ ,ω ;R) is the probability thatz2 falls in the

support setHL1(z1)∩BR
of the chordL1(z1)∩BR with

respect to the disk centreO (see Fig. 2). Bearing in
mind thatP(dz2) = (πR2)−1dz2, z2 ∈ BR, we have

p(ρ ,ω ;R) := P{L1(z1)∩L2(z2) ∈ BR|ρ ,ω}

=
∫

HL1(z1)∩BR

P(dz2) (15)

=
1
2
−

2
π
·gdisk

(√
1−ρ2/R2

)
,

where

gdisk(x) =
1
2

(
cos−1x−x

√
1−x2

)
, (0≤ x≤ 1) ,

(16)
is the geometric covariogram of a disk of unit diameter.
It is readily verified that,

P{L1(z1)∩L2(z2) ∈ BR} =
∫ R

0
p(ρ ,ω ;R)P(dρ)

=
3
8

, (17)

whereP(dρ) is given by the first Eq. 9. �

Proposition 2. Let λ (0)
0 (R), λ (1)

0 (R), and λ (2)
0 (R)

denote the mean total numbers per unit disk area of
the vertices, edges and connected regions constituting
the bounded tessellationΨ∩BR, respectively. Then,

λ (0)
0 (R) =

3π
16

τ2R2 +2τ ,

λ (1)
0 (R) =

3π
8

τ2R2 +3τ , (18)

λ (2)
0 (R) =

3π
16

τ2R2 + τ +
1

πR2 ,

where the terms following the first one in the right
hand side of the preceding identities represent the
contributions of the disk boundary∂BR.

Proof. We use the method of Santaló (1940; 1976
p. 51). Conditional on the numberN of p-lines fromΨ
hitting BR, letVBo(N),V∂B(N) denote the mean number
of vertices interior toBR and in∂BR, respectively, and
setVBo(N)+V∂B(N) = V(N). Then using Lemma 2,

E{V(N)|N}=

(
N
2

)
3
8

+2N . (19)

Likewise, let EBo(N), E∂B(N) denote the mean
number of edges interior toBR and in ∂BR,
respectively, and setEBo (N) + E∂B (N) = E (N). At
each interior vertex there meet 4 edges, but they are
counted twice because each edge has two vertices as
endpoints. On the other hand, at each boundary vertex
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Fig. 3. (a) A realization of a stationary random square lattice inside a disk. The centre O of the disk is uniform
random in a tile of the lattice (shaded square). (b) The associated pivotal lattice tessellation inside the disk, which
is in fact the kind of probe used in the applications (Cruz-Orive, 2005; 2008).

there meet 3 edges, but they are also counted twice for
the same reason. Therefore,

E{E(N)|N}= 2

(
N
2

)
3
8

+3N . (20)

Finally, let F (N) denote the total number of
connected regions or “faces”. By Euler’s formula we
haveV (N)+F (N)−E (N) = 1, and therefore,

E{F(N)|N}=

(
N
2

)
3
8

+N+1 . (21)

Taking expectations on both sides of each of the
identities (Eqs. 19–21) with respect toN, bearing
Eq. 8 in mind, and dividing byπR2 in each case, the
corresponding identities (Eq. 18) are obtained. �

Definition. The mean number of vertices (or of sides),
the mean boundary length, and the mean area of a
connected region from the bounded tessellationΨ ∩
BR, are defined respectively as follows,

E{N(R)}=
2λ (1)

0 (R)

λ (2)
0 (R)

,

E{B(R)}=
2λ 2

1 (R)+2/R

λ (2)
0 (R)

, (22)

E{A(R)}=
1

λ (2)
0 (R)

.

Proposition 3. The characteristics given in the
preceding definition satisfy the following asymptotic

relations,

E{N(R)}= 4+O(R−2) ,

E{B(R)}= O(R−1) , (23)

E{A(R)}= O(R−2) .

Proof. Substitute the results Eq. 11 and Eq. 18
into Eq. 22. �

CONCLUSIONS AND COMMENTS

Concerning the planar pivotal Poisson tessellation
Ψ, the main conclusion is that it is not stationary, as
illustrated by the results (Eqs.11, 18, and 23). The
asymptotic mean number of vertices of a polygon is
4, as in the ordinary Poisson tessellation of straight
lines (Stoyanet al., 1995), but the remaining properties
change with the distance from the origin. The non
stationarity is intuitively plausible on seeing Fig. 1b.
A priori one might think that, becausep-lines on an
isotropic planeL2[0] are effectively motion invariant
in R3, and because the associated point process is
stationary Poisson, thenΨ would also be stationary in
R2, but this is not the case. As confirmed by Eq. 13,
the length density of thep−lines of the planar pivotal
Poisson tessellation must be constant inR

3 because
they are motion invariant inR3. Note that the plane
L2[0] is less and less “dense” away from the origin; this
effect must be compensated by a higher and higher line
length density in that plane away from the origin, and
this is indeed what happens.
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For estimation purposes via Eq. 1 it is simpler
and more efficient to start with a stationary random
lattice of points (Fig. 3a), instead of a Poisson point
process. The corresponding pivotal lattice tessellation
(Fig. 3b) will enjoy similar properties. An exact study
of the latter might be prohibitive, however, because the
number of lattice points inside a disk is a complicated
oscillating function of the disk diameter.
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