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ABSTRACT

Homogeneous planar tessellations stable under itera8diiT (tessellations) are considered. Using recent
results about the joint distribution of direction and ldngf the typicall -, K- andJ-segment we prove closed
formulas for the first, second and higher moments of the kenfithese segments given their direction. This
especially leads to the mean values and variances of thasd¢itigs and mean value relations as well as general
moment relationships. Moreover, the relation betweengesan values and certain conditional mean values
(and also higher moments) is discussed. The results ardlaigoated for several examples.

Keywords: conditional distribution, iteration (nestintijlear segments, mean value relation, moments, random
tessellation, stability, stochastic geometry.

INTRODUCTION exist. Moreover, we will derive explicit formulas for
all moments of the quantities in question for arbitrary
Random tessellations are nowadays used fdnomogeneous planar STIT tessellations.
modeling several structures which arise for example

in material sciences, biology and. medlc_al SCIENCeS a1ue relations. In particular we are interested in mean
The most popular models are Poisson line or pIan@allues for the lengths of the typica, K- and J-

getsselg'orslgés P(_)rlrs]son-Vor(;)nlm tessetILatlons h(se egment having a fixed direction and their relation to
toyanetal., 195 )- €s€ Models are on th€ one Nant, o' ean values without the directional conditioning
side mathematically feasible and useful in practic his could be of some interest for stereological
on the other. More complex models can be 0bt""'ne%{uestions). At this point the directional distribution of

by applying certain operations on _given ftesse_llationsthe tessellation plays an important role and we will be
These are for example superposition or iteration. Thﬁble to extend the mean value formulas to the case,

latter operation leads to a relatively new model for, ;.o the typical-, K- or J-segment is replaced by the

random tessellations, the §o-called STIT_ model. Th?ypicall-, K- or J-segment with a fixed given direction.

name STIT refers to their characteristic propertyyoreqver, the known formulas can be recovered by
they arestable undeiteration. This property will be 5 6raging over all possible directions. This observation
explained in some detail in the next section. is a new feature of STIT tessellations, which can only

Several geometric quantities were calculated foP€ observed, when the anisotropic case is studied and
this model by now. This includes mean value formulaghis was not investigated until the recent works Mecke
in 2D and 3D and length distributions of several(2008) and Thale (2008). We will furthermore obtain
linear segments. For the latter Meckeal. (2007) @ general moment relationship for the conditional and
calculated also first and second moments, but On|ynC0nditi0na| Iength distribution of the Segments. Our
for the isotropic case. They especially observed thd€sults are demonstrated on several concrete examples,
the variance of the length of the so-called typital N pgrtlcular we consider the isotropic case and confirm
segment is infinite. The same observation was made @gain the results of Meclet al. (2007). Also the new
Thale (2008) also for two anisotropic examples. It isfectangular case and a case with unequal weights is
one aim of this short paper to undertake a deeper studijscussed.
of this phenomenon. We will show that the variance
(and also other higher moments) of the length of the
typical I-segment does not exist fany homogeneous PLANAR STIT TESSELLATIONS
planar STIT tessellation, which shows, that these linear
segments are in some sense very long. In contrast By a planar tessellation we mean a subdivision
to this result we will be able to show that for the of the plane into a locally finite union of convex
length of the typicaK- and J-segmentall moments polygons, which intersect only in their boundaries.

The other aim of the paper is the study of mean
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The family of such tessellations will be denoted byd on [7, 9], sincek () = La. The latter is called
7. Such tessellations can also be described as tlrectional distribution ofp. We assume in this paper,
union of their cell boundaries. This allows us tothatk (or equivalently®) is concentrated on more than

consider a tessellation as a closed subséRofWe
will follow this path here. Denoting b¥ the restriction
of Matheron'sg-algebra ¢f. Stoyanet al., 1995) to
7, we call a random variablé with values in the
measurable spa¢e’, T] a random planar tessellation.
Forx € R? we denote byly the translation oR? by the

vector—x. Ty induces also an operation on the space of S« - H — (

tessellations, also denoted By, by Ty® = ® — x. We
say that a random tessellatianis homogeneous (or
stationary), ifTy® has the same distribution & for

all x e R?. The law of a homogeneous tessellation is

also called homogeneous.

We fix now two random planar tessellatiothsand
WY with law P and Q, respectively. The cells of
are denoted b (®). We associate now to each cell
p € C(®) independently a random tessellatip with
law Q. Now define a random tessellatidne W by

PeoW:i=0U (] (pN¥p),
peC(®)

the law of which is denoted bl B Q. It was shown
in Meckeet al. (2008b) that if® is a homogeneous
tessellation and is also homogeneous thebo W

a single direction. This ensures the existence of of a
STIT tessellation with this measure as its directional
measure or distributionc{, Nagel and Weiss, 2005).
Having in mind these notions and notations we can
define the rose of intersectionswofs

0,0) :h /,f Isinz(h, ) dk(F). (1)

is a homogeneous random tessellation, too. We call

a homogeneous random tessellatidnstable with
respect tateration (STIT for short), if 2P © ®) has
the same law asp itself (this is equivalent to the

Fig. 1.Realization of an isotropic STIT tessellation.

We summarize now the most important features

definition used for example in Nagel and Weiss (2005)pf planar STIT tessellationgp with directional

see Mecke, 2008).

The existence of such tessellations was shown i

Nagel and Weiss (2005) together with a construction in

a bounded window for arbitrary dimensions. A global

construction of planar STIT tessellations was recently

presented in Mecket al. (2008a).

Denote by[.7Z, $)] the measurable space of lines
through the origin. By the direction of an arbitrary
line g we mean the unique parallel lingg) € 7.
For a line segmens denote the lineg containings
by g(s). Then the directiorr(s) of s can be defined
asr(s):=r(g(s)) € 2. For a planar tessellatio#
we introduce now a directional measweas follows:
For B € $) we consider the familybg of edges with

direction in B. The mean length of these edges per
unit area (note that this is a well defined quantity,™

since® is homogeneous) will be denoted hy(B).
By the relationk : $ — [0,0) : B— La(B) we get a
measurex on [J7, )], the directional measure @.
If we denote byLa the edge length intensity.e., the
mean total edge length per unit area, ®f we can
write K also ax = Lad for some probability measure
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measure:

i. The intersection ofo with an arbitrary lineg (not
necessarily through the origin) is a homogeneous
Poisson point process og. It has intensity

sk(r(g)) (cf. Nagel and Weiss, 2005).

The interior of the typical cell (this is a cell with
Palm shape distribution, see Stoyetnal., 1995)
has the same distribution as the interior of the
typical cell of a Poisson line tessellation with the
same directional measuref.(Nagel and Weiss,
2003).

The nodes (vertices) hateshapej.e., from each
node we have three emanating edges and two of
them are collinearcf. Nagel and Weiss, 2003).

2.

3.

4. The cells of® are not in a face-to-face position,

see Fig. 1¢€f. Nagel and Weiss, 2005).

More results about STIT tessellations can be found
in Nagel and Weiss (2003), Nagel and Weiss (2005),
Nagel and Weiss (2006),Meckeal. (2007), Meckest

al. (2008a), Mecket al. (2008b), Thale (2008), Thale
(2009).
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RECENT RESULTS FOR |-, K- measure o7’ x (0, ») having densityly with respect

AND J-SEGMENTS to the product measurg x .., where %, is the
Lebesgue measure restricted(@). Then we have
Mackisack and Miles (1996) introduced the notion(Theorem 12 in Mecke, 2008, Corollary 3.4 and
of I-, K- andJ-segments and showed that their analysi§-0rollary 3.6 in Thale, 2008):
can be fruitful, especially in the case of tessellations 5 se(h)
which are not face-to-face. K-segment they called di : (h,x) — / t2e Xt
every line segment of the tessellation without any ksk(h) Jo
vertex in its relative interior. AJ-Segment is a face . 2 2,
of a cell and arl-segment is the union of connected di : (h,%) — 3_ZKS'2<(h)/1 te Mt
and collinearK-segments, which cannot be enlarged sc(h) [
by anotheK-segment. d;: (h,x) — KZ—/ e S (Mig
K X

We consider now the marked point process=

{¥k, N bkens X € {1,3,K}, of X-segment midpointgy,

where the marké$y € 7 are given by the direction

of the X-segment througly,. The typicalX-segment

] 3 in direction h € JZ of the tessellation® can now

\ be defined as the line segment containing the origin,

where @ is considered under the Palm distribution

PON. (For the general theory of Palm distributions for

[ marked point processes see for example Stayah,

1995).
Fig. 2. Different types of linear ments in a planar
telgsellatitlnn. P I =g I P From the formulas above we can conclude the

following integral representations for the conditional
) o o densitiesd; j, dy, anddy |, of the length distributions
The investigation of the length distribution of theseys the typicall -, K- andJ-segmentin directioh € 7,
segments for planar STIT tessellations starts in Meckgjnce the density of the direction with respect to the
et al. (2007) for the isotropic case. The authors of thisyjrectional measure of the typical I-, K- and J-
paper were able to calculate explicitly the densitiegegment is given bg(-)/Z« in each casecf. Mecke,
of the length distribution of the segments and by>qos: Thale, 2008):
integration their mean values and second moments

(compare with the isotropic example below). 2 s,
. . dn) =g [ et @
In his paper, Mecke (2008) starts the analysis of sz(h) Jo
the anisotropic case. Here, in contrast to the isotropic 2 2 , s (h)tx
case, one has to take also into account the direction of dKIh(X) = §SK(h)/1 te dt, ®3)
the segments. Thus, he considered the joint distribution et
of direction and length for the case of-segments. dijh(x) :/x e Wit . 4)

His approach was completed by the consideration of
the typicalK- and J-segment in Thale (2008) (here

typical should be understood in the Palm sense, wherex -II;Q?I Sveitrgsc;E?vaivnrgepal)lr:/vilﬁhsjrnf%rlj? to(e;)rédvenot
the Palm distribution with respect to the segmen{a plicitly 9 Yy

midpoints is considered). powerful and lead to short proof in the next section.

We like to summarize the results now. Let therefore

® be a homogeneous planar STIT tessellation with N AIN RESULTS

directional measure&. The rose of intersections &f

is again given by Eq. 1. The directional distribution of  \we consider a homogeneous planar STIT

® will be denoted by? . We further define the constant tessellatior with directional measure. Denote the
S . 5 rose of intersections ok again bys, and fix some

k ;:/ / [sinZ(h,h)|dk (h) dk(h) . directionh € .. The typicall-, K- and J-segment

HIA with direction h will be denoted byl%", K% and

The joint distribution of direction and length of the J°M respectively. The (euclidean) length I8, KON

typical X-segment,X € {I,J,K}, is a probability andJ®"is denoted byL(1%"), L(K%") and L(J%"),
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respectively. Fok = 1,2, 3,... we define now thek-

moments

I(h) == E[L(1%M)K,
Ki(h) :=E[L(K®M)*,
J(h) == E[L(I%M)¥.

TYPICAL I-SEGMENTS

We start our analysis with the typicélsegment
19N in directionh € .27 . First observe that integration

by parts yields fot > 0

/ Xe Xdx =t* 1M (k4 1),
0

Ki(h) = /0 Xt 1 (x) dix
) 2 2
= [ 3] Sath) [te i ax
0 3 1

2 oo
_ 25(h) / 2 [ / xkes“(h)xdx}dt
3 1 0

2
= ésK(h)kF(kJrl)/ 2t it
1

2 2 kil
_SSK(h)kr(k+1)/lt dt
2 X_4
S (k1) k2
s Ve 72,
4
% _In2 k=2
3sc(h)Z

This shows, that in contrast to the previous cale

whereT (-) is Euler's Gamma-function. We can now moments of the length of the typickl-segment with

use Fubini’s theorem and formula Eq. 2 to obtain

|k(h):/0 Xl ()l
= [ XK [ / tze‘txdt] dx
/O SK(h)Z 0
2 ALY A ]
- = t x<e dx| dt
SK(h)Z/O [/O

This means for the length of the typidakegment in
any directionh, that only the first moment exists. All

higher moments are infinite.

TYPICAL K-SEGMENTS

We continue with the typicak-segmen& %" with

directionh € .7Z. First observe that

/' Xke dx = () K1 (k4 1)
0

directionh exist. We also obtained a closed formula for
them.

TYPICAL J-SEGMENTS

This case is much easier, since(J%") is
exponentially distributed with parametesy(h),
because of the Poisson typical cells of STIT
tessellations (see the key properties in the section on
planar STIT tessellations). Thus, we obtain

r(k+1)
sc(h)k -

J(h) =E[LQN)[* =

We see that also in the case of the typidal
segment in directiom all moments exist. We like to
remark that the result can also be obtained by a direct
calculation using formula Eg. 4.

Note that in the above formulas fdg(h), Kg(h)
andJy(h), I' (k+ 1) could be replaced bi.

MEAN VALUES AND VARIANCES
We can especially apply our results to compute the

mean values and the variances ¢f°"), L(K%") and
L(J%M). We consider therefore a homogeneous planar

for all s,;t > 0. We use now formula Eq. 3 and againSTIT tessellation with directional measueand fix a

Fubini's theorem to obtain

directionh € .7. Then we obtain
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EL(IO’h) _ 2 For the higher moment&y(h) and J(h), k > 3, we
sc(h)’ get the following general relation for the conditional
VL% = oo, length distributions:
2 2 2¢-4
EL(K®M = —~— Ki(h) == =——J(h
VL(KO) — 2 > In2—} for any h € 7. An analogous formula can also be
3s¢(h)? 3)’ obtained for the unconditioned moments again simply
1 by integration:
B = oy 2 k-4
1 E|L(K%)[ = §‘mE|L(JO)|k-
VL3N = 5,
sc(h) Note that )
by using the formulaVX = EX2 — (EX)? for real lim 837*4 -0.
valued random variable. kw3 2¢(k—2)

Comment: One can conclude from Eq. 8 the fact,
MOMENT RELATIONSHIPS that the mean number of nodes in the relative interior

Recall thats, () /{x is the density of the direction Of the typicall-segment equals 2 ant for the typical
of the typicall -, J- andK-segment segmeif, K°, J° J-segment. It will be shown in the fo_rthcomlng paper
wrt. k (cf. Mecke, 2008; Thale, 2008) and the relation(Thale, 2009), that for STIT tessellationsif, d > 2,
K () = La. We obtain the following mean values for the mean number of nodes in the relative interior of

the length of the typicdl-, J- andK-segment: the typicall-segment equald and (d —1)/2 for the
typical J-segment I(-, J- and K-segments of higher

EL(1°) = Eq(EL(1%M)) = 2La (5) dimensional STIT tessellations are now considered for

N ? ' the 1-skeleton; the definition remains the same).
BLKY) = BBLK®T) =22 (6)
L EXAMPLES
EL(J%) = En(EL(I?") = 7 (7)

THE ISOTROPIC CASE

We consider in this section homogeneous and
. isotropic planar STIT tessellations with edge length
EL(1° :/ dk(h) = S k()= A  intensity 2. In this case we can calculate the
(%) 2 sk(h)  k k(h) ZKK( ) {x distribution functions/, Fx andF; of the length of

Note that these mean values are the same as the ong tylpicaél-, K2 zn\(/jv\]-sg?ment, respectively, using
computed in Nagel and Weiss (2006), but there th ormuias £gs. 4. Ve obtain
constan = {x/ Lﬁ was used instead df. 2

F(X) = 17? (1-(1+x)e™),

wherekE;, denotes the average over all directidngor
example

These formulas imply the following mean value

nese 2

relations: Fc(X) =1— 32 (14x—(1+20)e ) e,
EL(1%M) = 3EL(K%M) = 2EL(3%M) F(x)=1—e*

and which confirms the results of Mecket al. (2007),

EL(1°) = 3EL(K®) = 2EL(J°) . (8)  especially Theorem 2 and 4 therein. For the densities
The relations Eq. 8 confirm earlier results from thepi (X), pk (x) andp;(x) we get
paper Nagel and Weiss (2006), which were obtained 4 X2
by quite different methods. Beside these mean value pi(X)=— (1 (1+x+7%) ex> ,
relations we obtain the following relationship of X 2

the variances of the typicd{- and J-segment with 4 1 X2 o
directionh € 7 () =35 ( (1+x+3)

2 1
VLK) = 3 (2 In2— §> VL) — (14 2x+2x%) e—2X> :
~ 0.70196 VL(I°M . py(x) =e X
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Fig. 3. Densities p; (black), pk (grey) and p; (dashed)
in the isotropic case.
Fig. 4.Realization of a rectangular STIT tessellation.

For the mean values and variances we have in this From Eqgs. 2-4 we calculate again the densities

case pi(X), pxk(X), ps(x) of the length distribution of the
typical |-, K- andJ-segment with direction ix- or y-
EL(I%) =2, EL(K) = % CEL@Y) =1 axis, respectively:
2 2 _X
and p|(x):g(87(8+4x+x)e z) ,
2 5 X N\ X
T 0= (B2 0000
1 x
VLK = 2 (21n2- 1) | Pa(X) = €72
3 3
VL% =1

from Eqgs. 5-7, which confirms Eg. 8 and the earlier o7
results from Nagel and Weiss (2006).

06
Note that in the isotropic case the length and
the direction of the typical-, K- and J-segment are 0.5

independent.
044

THE RECTANGULAR CASE 03]

We consider a homogeneous planar STIT 5]
tessellatior®® with directional distribution

0 02 04 06 0B 1 12 14 16 18 2

1 his thex- or y-axis, _Fig. 5.Densities p; (black), pk (grey) and p; (dashed)
dhy=<2 in the rectangular case.
0 else,

For the mean values and variances we obtain
and edge length intensity 1. The cells of such a 4
tessellation® are rectangles with probability one (a EL(1%M) =4, EL(KOM = 3
similar case was investigated in Mackisack and Miles
(1996) but not for STIT tessellations of course). and

, ELE®M =2
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VL(I%M = 400, and
16 1
VL(KO.,h) — ? <2 In2— é) s VL(IO,DZ) =400,
VLI = 4 VL(K%P2) = 4(6In2-1),
VL(I9P2) =9,

for both directionh (x andy). Furthermore we have

EL(IO) _ }(EL(lo.,X) +EL(|O7y)) —4, For t.he mean values and variances in direcfian
2 we obtain
1 4
EL(K®) = Z(EL(K®) + EL(K%Y)) = =,
( ) 2( ( ) ( )) 3 EL(IO’DB) _ 127 EL(KO’DB) _ 47 EL(JO’DB) _ 6
EL(J) = }(EL(JO’X) +EL(IW)) =2.
2 and

VL(1%P3) = 40,
VL(KOP3) = 16(6In2—1),
VL(J%P3) = 36.

A CASE WITH UNEQUAL WEIGHTS

At the end we like to discuss an example with
unequal weights. Consider therefore a directional
distribution &, which has the following weights on

three directions Here we see that the mean values in direcfibnare

half of the mean values in directioDs. This is due

to the fact that directiorD, is twice more likely to
occur for an edge than directi@y. Note that there is

a similar relation between the mean values in the other
directions.

h = x-axis,

h= {x=y}, the diagonal

h =y-axis. For the mean length of the typicl, K- and J-

segment?, K% andJ® we obtain now

Ol Wk NI

The first direction is calledD4, the secondD, 1 1 1
and the thirdDs for abbreviation. We further assume EL(1°) = ZEL(1%P1) + ZEL(1%P2) + ZEL(19P3)
that the edge length intensitys is 1. On can now 2 3 6
calculate the 9 different densitigsx p,(-) for X € =6,
{1,3,K} andi = 1,2,3, but we do not give the explicit p (0 _ }EL(KO,Dl) n }EL(KO,DZ) n }EL(KO,Da)
formulas here. Instead we concentrate on several mean 2 3 6

value relations: For the mean values and variances in =2,
directionD4 we have 1 1 1
EL(J%) = EEL(JOle) + éEL(JOvDZ) + 6IEL(JQDB)
4
EL(19P1) =4, EL(K%P1) = 3 EL(J%P1) =2 =3,
and which confirms the relation in Eq. 8.
VL(1%P1) = 400,
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