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ABSTRACT

The densities of the intrinsic volumes – in 3D the volume density, surface density, the density of the integral
of the mean curvature and the density of the Euler number – area very useful collection of geometric
characteristics of random sets. Combining integral and digital geometry we develop a method for efficient
and simultaneous calculation of the intrinsic volumes of random sets observed in binary images in arbitrary
dimensions. We consider isotropic and reflection invariantBoolean models sampled on homogeneous lattices
and compute the expectations of the estimators of the intrinsic volumes. It turns out that the estimator for the
surface density is proved to be asymptotically unbiased andthus multigrid convergent for Boolean models with
convex grains. The asymptotic bias of the estimators for thedensities of the integral of the mean curvature
and of the Euler number is assessed for Boolean models of balls of random diameters. Miles formulae with
corresponding correction terms are derived for the 3D case.

Keywords: Boolean models, digital topology, image analysis, Miles’ formulae, Minkowski functionals,
quermass densities, volume images.

INTRODUCTION

With the fast development of new materials like
foams or fibre reinforced composites there is a
growing need for non-destructive testing and structure
characterisation. Often, geometric characteristics of
the whole structure have to be estimated from the given
2D or 3D image of a small sample. A very attractive set
of geometric characteristics are the intrinsic volumes
(or quermassintegrals or Minkowski functionals). On
the one hand, they include the widely used volumeV,
surface areaS, and Euler numberχ . On the other hand,
they are in some sense complete, see Hadwiger (1957).
The fourth intrinsic volume in 3D – the integral of
mean curvatureM – has nice interpretations for various
structures, too. In particular for random fibre systems,
it is proportional to the total fibre length.

Throughout this paper, we assume that the
structure of interest is observed in ann-dimensional
binary digital image. That is, the structure is given by
its intersection with a lattice and a cuboidal window
and values associated the lattice points indicating
structure (1) or background (0).

The well known integral geometric Crofton
formulae provides a method for determining the
intrinsic volumes from lower dimensional sections of
the structure. A discretisation of this formula is the

basis of our method, see also Chapter 4 in Ohser
and Mücklich (2000) and Langet al. (2001). The
Crofton formulae reduce the estimation of intrinsic
volumes to the estimation of the Euler number in
lower dimensional sections. Therefore, the present
paper is based on thorough investigations of digital
connectivity and consistent estimation of the Euler
number, see Nagelet al. (2000); Ohseret al. (2002;
2003); Schladitzet al. (2006). The consistency results
for the Euler number estimates of foreground and
background established in Ohseret al. (2002) carry
over to all intrinsic volumes. In order to give the
reader a comprehensive description of our approach
making the latter as self-contained as possible, we
recall some facts addressed in the papers mentioned
above. In the present paper it is shown that this
approach can be extended on all intrinsic volumes in
arbitrary dimensions.

In order to check the accuracy of the proposed
method, the bias of the estimators is computed
for macroscopically homogeneous (stationary) and
isotropic Boolean models. Using ideas of Serra (1982),
we show that our surface area estimator is multigrid
convergent for this very rich class of sets. However, the
bias of the estimators for the integral of mean curvature
and for the Euler number does not necessarily vanish
with decreasing lattice distance. Even worse, for three
out of the four adjacency systems examined, the bias
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of the Euler number estimator diverges. Nevertheless,
for lattice distances in the range of 1% to 10% of the
mean grain size of the Boolean model, the estimation
is sufficiently accurate for practical applications. The
explicit formulae for the bias of the estimators lead to
formulae connecting the estimated intrinsic volumes
with the parameters of the Boolean model. The
structure of these formulae resembles the original
Miles’ formulae (Miles, 1976) in the Euclidean space
with additional terms correcting for the discretisation
effects.

The presented method yields a fast algorithm for
simultaneously determining the intrinsic volumes and
their densities. The core of the algorithm consists in a
convolution of the binary image with a suitably chosen
2n mask resulting in a grey value image, see Lang
et al. (2001); Ohser and Mücklich (2000). All further
steps are based solely on the grey value histogram
whose size does not depend on image size or content.
Thus the advantage over other methods for estimating
the intrinsic volumes, see Blasquez and Poiraudeau
(2003); Schmidt and Spodarev (2005) are simplicity
and speed of the algorithm. The surface area in 3D
is measured directly from the binary volume image
without need to approximate the surface. Moreover,
compared to empirical marching cubes methods like
in Windreich et al. (2003), only a small number of
pixel configurations has to be taken into account. In
Schladitz et al. (2006) the weights for the surface
are compared with those of Lindblad and Nyström
(2002), see also Ziegel and Kiderlen (2009) for a sound
investigation of surface area estimation.

This paper is organised as follows: First we
repeat some facts about homogeneous lattices and
summarise results on adjacency systems and Euler
number estimation from Nagelet al. (2000); Ohser
et al. (2002; 2003); Schladitzet al. (2006). Based
on concepts of section lattices and their translative
complements, we derive discrete versions of the
Crofton formulae for polyconvex sets and from these,
estimators for the densities of the intrinsic volumes of
random sets. In particular, we compute weights for the
estimation of the density of the integral of the mean
curvature inR

3. Finally, we present Miles’ formulae
for Boolean models inRn sampled on homogeneous
lattices. In principle, we follow Ohseret al. (2003)
where formulae are given for the density of the Euler
number of Boolean models inR3 with balls of constant
diameter. These results are generalised as follows: We
derive formulae for the expectations of the densities of
the intrinsic volumes for Boolean models with convex
grains. Advantages and drawbacks of the presented
method are discussed in the last section.

POINT LATTICES AND PIXEL
CONFIGURATIONS

Image data are usually given on homogeneous
point lattices,e.g., thecubic primitive latticeLn = aZ

n,
a > 0, whereZ denotes the set of integers anda is the
lattice distance. Of course, most images are given on
orthogonal lattices. However, we will consider lower
dimensional section lattices of cubic or orthorhombic
lattices, too, which are not necessarily orthogonal.
Hence we introduce homogeneous lattices in a more
general setting.

Let u1, . . . ,un ∈ R
n form a basis of R

n and let
U = (u1, . . . ,un) be the matrix of column vectors. Then
L

n = UZ
n is called ann-dimensionalhomogeneous

lattice. The closedunit cell of L
n w. r. t. the basis

u1, . . . ,un is the Minkowski sumC = [0,u1]⊕ . . . ⊕
[0,un] of the segments[0,ui ] between the origin 0 and
the lattice pointsui . Its volume is volC = |detU | > 0,
and the value of|detU | does not depend on the choice
of the lattice basis.

The intersectionX ∩L
n of a compact setX ⊂ R

n

and a homogeneous latticeL
n is called aLn-sampling

of X. In the language of image processing,X∩L
n is the

set offoreground pixelsandXc∩L
n is thebackground.

Locally, anL
n-sampling ofX can be described by

pixel configurations which are specified as follows:
The vertices of the unit cellC are indexed, and we
write x j = ∑n

i=1λiui with the index j = ∑n
i=12i−1λi ,

λi ∈ {0,1}. Clearly, the unit cellC has 2n vertices,
x j ∈ F 0(C), j = 0, . . . ,2n−1, whereF 0(C) denotes
the set of vertices ofC. In a similar way we introduce
the indices for all subsetsξ ⊆ F 0(C). Let 1 denote
the indicator function,i.e., 1(x ∈ ξ ) = 1 if x ∈ ξ and
1(x∈ ξ ) = 0 otherwise. An indexℓ is assigned to aξ ,
and we writeξℓ if

ℓ =
2n−1

∑
j=0

2 j ·1(x j ∈ ξ ) , (1)

for all ξ ⊆ F 0(C). We haveℓ ∈ {0, . . . ,ν} with ν =
22n − 1. That means, the powers of 2 are used for
encoding the vertices. Notice thatξ0 = /0,ξν = F 0(C),
andξν−ℓ = ξν \ ξℓ. The setξℓ can be considered as a
local pixel configuration of the foreground.

We use pictograms to illustrate configurations
where full discs mark foreground pixels and empty
discs mark background pixels, see Table 1 for
examples. Sets of pixel configurations are denoted by
pictograms with vertices not marked with a disc, which
can be either foreground or background pixels, see
Table 2.

In the case of a cubic primitive lattice which is
highly symmetric, the pixel configurationsξℓ ⊆F 0(C)
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are commonly grouped in equivalence classes. LetM

be the set of all linear isometries (rigid motions and
reflections) leavingLn unchanged,i.e., θL

n = L
n for

all θ ∈ M . The configurationξℓ1 is equivalent toξℓ2

if there is aθ ∈ M and ay∈ L
n such thatθ ξℓ1 + y =

ξℓ2. By D0, . . . ,Dν0 we denote the congruence classes
of {ξ0, . . . ,ξν} underM . Furthermore, we choose a
system{η0, . . . ,ην0} of representativesη j ∈ D j . We
write ηc

j for a representative of the equivalence class
of F 0(C)\η j .

Since the intrinsic volumes are motion invariant
characteristics, their weights can be presented in terms
of the congruence classes instead for the complete set
of pixel configurations. Theν0 + 1 = 22 congruence
classes in the 3D case are given in Table 1 with our
choice of representativesη0, . . . ,η21.

ADJACENCY AND EULER
NUMBER

In the literature the adjacency relation of lattice
points (or pixels) is usually characterised by a
neighbourhood graph and the complementarity of
adjacencies is defined via the Jordan surface theorem
(Jordan-Brouwer theorem), see,e.g., Lachaud and
Montanvert (2000). Here we follow Ohseret al.
(2003); Schladitzet al. (2006) where the definition of
adjacency is based on a consistency relation for the
Euler number.

We first consider the convex hullsFℓ = convξℓ

of a configurationξℓ forming convex polytopes with
Fℓ ⊆ C and F 0(Fℓ) ⊆ F 0(C), ℓ = 1, . . . ,ν . We set
F0 = /0. LetF j(F) denote the set of allj-dimensional
faces of a convex polytopeF. For a setF of convex
polytopes writeF j(F) =

⋃{F j(F) : F ∈ F} using
the convention

⋃{F j(F) : F ∈ F} =
⋃

F∈F F j(F).
Furthermore, byA we denote the topological closure
of a setA⊂R

n and #N denotes the number of elements
of a finite setN.

Definition 1 LetFloc ⊆ {F0, . . . ,Fν} be a set of convex
polytopes Fℓ = convξℓ fulfilling the conditions

(i) /0 ∈ Floc, C∈ Floc,

(ii) if F ∈ Floc thenF i(F) ⊂ Floc for i = 0, . . . ,dimF,

(iii) if Fi ,Fj ∈ Floc andconv(Fi ∪Fj) /∈ Floc then Fi ∩Fj ,
Fi \Fj , Fj \Fi ∈ Floc.

(iv) if Fi1, . . . ,Fim ∈ Floc and F =
⋃m

j=1Fi j is convex
then F∈ Floc, m= 2, . . . ,#Floc.

ThenFloc is called alocal adjacency systemandF =
⋃

x∈Ln(Floc + x) is said to be anadjacency systemof
the latticeL

n.

From (i) it immediately follows thatF 0(F) = L
n.

The conditions (ii) and (iii) ensure that the Euler
number of the unions

⋃{F ∈ F : F 0(F) ⊂ ξℓ},
ℓ = 0, . . . ,ν , can be computed via the Euler-Poincaré
formula and the inclusion-exclusion principle, see
Schneider (1993). Condition (iv) prevents the
existence of many different local adjacency systems
generated from the same ’basic bricks’.

The pair Γ = (F 0(F),F 1(F)) is said to be the
neighbourhood graphof F; it consists of the setF 0(F)
of vertices and the setF 1(F) of edges. All vertices
are of the same order sinceΓ is homogeneous,Γ +
x = Γ, x ∈ L

k. The order of the vertices is called the
connectivityof L

n. We write Fm if the corresponding
neighbourhood graph ism-connected.

For n = 3 we recall the adjacency systemsF6,
F14.1, F14.2, andF26 considered in detail in Ohseret al.
(2002; 2003).

– F6 is generated by the singleton containing the unit
cellC, i.e., F6 =

⋃

x∈L3
⋃3

j=0F j(C+x).

– F14.1 is generated by the tessellation ofC into the
6 tetrahedraF139, F141, F163, F177, F197, F209, i.e.,
F14.1 is the smallest adjacency system containing
these tetrahedra.

– F14.2 is generated by the family of tetrahedraF43,
F141, F149, F169, F177, andF212.

– The maximum adjacency systemF26 on L
3 is

generated byFloc = {F0, . . . ,F255}.

Now we introduce a discretisation of a set w. r. t. a
given adjacency system.

Definition 2 The discretisationX ⊓ F of a compact
subset X⊂ R

n w. r. t. a given adjacency systemF is
defined as the union of all elements ofF that have all
their vertices in X, i.e.,

X⊓F =
⋃

{F ∈ F : F
0(F) ⊆ X} . (2)

An adjacency systemF can be seen as a set of ’bricks’
of the discretisation where a ’brick’F ∈ F is a subset
of the discretisation ofX if and only if all vertices ofF
belong toX. Notice thatX⊓F = (X∩L

n)⊓F, i.e., the
discretisationX⊓F is determined by theLn-sampling
of X alone.

As in Ohseret al. (2002; 2003); Schladitzet al.
(2006) we approximateX by a discretisationX ⊓ F

w. r. t. an adjacency systemF. Since the setX⊓F forms
a (not necessarily convex) polyhedron, the number
#F j(X ⊓F) of elements ofF j(X ⊓ F) is finite and,
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therefore, the Euler numberχ(X⊓F) can be computed
via the Euler-Poincaré formula,

χ(X⊓F) =
n

∑
j=0

(−1) j #F
j(X⊓F) . (3)

In order to apply a “local method” for measuring
the Euler number we consider a local version of the
Euler-Poincaré formula (Eq. 3). The conditions (ii)
and (iii) in Definition 1 ensure that the Euler number
of a discretisationX ⊓F can be computed from local
knowledge. We observe that for the local configuration
ξ = X∩C∩L

n of X∩L
n we haveξ ⊓F = (X⊓F)∩C.

Now we define the weights

µF = min{ j : there is aG∈ F
j(C) with F ⊆ G} ,

(4)
for correcting effects occurring at the cells’ edges.
The expression 2n−µF is the number of lattice cells
coveringF, i.e., the faceF belongs to totally 2n−µF

neighbouring cells. Thus, the reciprocal weight 2µF−n

should be used when countingF locally. Now the
numberχn

0 can be introduced as

χn
0(ξℓ⊓F) =

n

∑
j=0

(−1) j ∑
F∈F j(ξℓ⊓F)

2µF−n, (5)

for ℓ = 0, . . . ,ν . We haveχn
0((ξℓ+x)⊓F) = χn

0(ξℓ⊓F)
for all x∈ L

n, cf. also Jernotet al. (2004). In fact,χn
0

can be considered as an edge-corrected localisation of
χ . One observes that

∑
F∈F j (ξℓ⊓F)

2µF−n ∑
x∈Ln

1(F +x⊆C) = #F
j(ξℓ⊓F) ,

for all ξℓ ⊆F 0(C). Now, the additivity and translation
invariance of the Euler number and the fact thatX ⊓
F = (X∩L

n)⊓F yield

χ(X⊓F) = ∑
x∈Ln

χn
0(C∩ ((X⊓F)−x)) (6)

= ∑
x∈Ln

ν

∑
ℓ=0

χn
0(ξℓ⊓F)1(ξℓ +x⊆ X)1(ξν−ℓ +x⊆ Xc)

=
ν

∑
ℓ=0

χn
0(ξℓ⊓F)

︸ ︷︷ ︸

wℓ

∑
x∈Ln

1(ξℓ +x⊆ X)1(ξν−ℓ +x⊆ Xc)

︸ ︷︷ ︸

hℓ

with the convention 0·∞ = 0. The last equation shows
that the Euler number can be written as a scalar
product of the vectorsw = (wℓ) and h = (hℓ). The
componentswℓ = χn

0(ξℓ ⊓F) of the vectorw = (wℓ)
serve as weights for computing the Euler number. It
is important to realise that these weights depend onF,

but they are independent ofX. On the other hand, the
vectorh = (hℓ) is independent ofF. The components
of w for the adjacency systemsF6, F14.1, F14.2 andF26
onL

3 are given in Ohseret al. (2003).

Now following Jernotet al. (2004), we consider
a refinement of Eq. 3 which is possible whenF
is generated by a tessellationG0 = {P1, . . . ,Pm} ⊆
{F0, . . . ,Fν} of the unit cell C. The setPi are n-
dimensional polytopes with

⋃m
i=1Pi = C and intPi ∩

intPj = /0 for i 6= j, where intP denotes the interior
of P. Then the periodic extensionG =

⋃

x∈Ln(G0 + x)
is a (deterministic) tessellation ofR

n. We assume that
G forms a face-to-face tessellation. As in Ohseret al.
(2002), we call a tessellationG having the above
properties anadmissible tessellation.

Let µ̃F be the number of cells ofG coveringF ,

µ̃F = #{P∈ G : F ⊆ P} ,

for F ∈F j(Pi) and j = 1, . . . ,n. We follow Jernotet al.
(2004) where an alternative versioñχn

0 of the local
Euler number is defined as

χ̃n
0(ξℓ⊓F) =

m

∑
i=1

n

∑
j=0

(−1) j ∑
F∈F j (Pi)

1(F 0(F) ⊆ ξℓ∩Pi)

µ̃F
︸ ︷︷ ︸

w̃(i)
ℓ

. (7)

It follows that χ̃n
0 = χn

0 and thus Eq. 6 is valid with̃χn
0

instead ofχn
0 .

Finally, we introduce pairs of complementary
adjacency systems. In the continuous case the
consistency relation χ(X) = (−1)n+1χ

(
Xc

)
is

fulfilled for all compact, polyconvex and topologically
regular setsX ⊂ R

n, see Ohseret al. (2002); Rataj and
Zähle (2003), and a similar relationship should hold in
the discrete case.

Definition 3 The pair (F,Fc) is called a pair of
complementary adjacency systemsif (X ⊓F)∩ (Xc⊓
Fc) = /0 and

χ(X⊓F) = (−1)n+1χ(Xc⊓Fc) , (8)

for all compact X⊂ R
n. An adjacency systemF is

called self-complementaryif (X ⊓ F)∩ (Xc ⊓ F) = /0
andχ(X⊓F) = (−1)n+1χ(Xc⊓F) for all compact X.

For a given adjacency systemF there does not
necessarily exist a complementary adjacency system
Fc, and until now there is not known a constructive
way to findFc. Furthermore, the criterion of Definition
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3 is not appropriate for checking complementarity. A
simpler criterion is given in Schladitzet al. (2006).

It turns out that the 6-adjacency onL3 is
complementary to the 26-adjacency and there are
two self-complementary adjacency systems known
on L

3, the 14.1-adjacency and the 14.2-adjacency.
In other words,(F6,F26), (F14.1,F14.1), (F14.2,F14.2)
and (F26,F6), are pairs of complementary adjacency
systems onL3, see also Ohseret al. (2002; 2003);
Schladitzet al. (2006).

INTRINSIC VOLUMES

The Crofton formulae reduce measurement of the
intrinsic volumes to computation of Euler numbers in
lower dimensional sections. A discretisation of these
formulae combined with an efficient calculation of
the Euler numbers in the intersections yield a fast
algorithm for simultaneously determining the intrinsic
volumes from anL

n-sampling ofX. The backbone
of the Euler number calculation is a thorough
investigation of digital connectivity and consistency.

SECTION LATTICES AND TRANSLATION
LATTICES

Let X ⊂ R
n be a compact set (i.e., an object or

a particle). We assume thatX is polyconvex,i.e., X
is a finite union of compact convex sets. The Crofton
formulae for computing the intrinsic volumes ofX use
section profiles ofX on affine subspaces ofR

n. In order
to obtain a digitised version, we introduce section
lattices of a given homogeneous latticeL

n and their
translative complements in analogy to linear subspaces
and their orthogonal complements.

Definition 4 A pair
(
L

k,TL
n−k

)
, k = 1, . . . ,n− 1, is

called a k-dimensional section latticeLk equipped with
the translative complementTL

n−k, if there exists a
basisv1, . . . ,vn of L

n with

(i) L
k = (v1, . . . ,vk)Z

k ,

(ii) T
L

n−k = (vk+1, . . . ,vn)Z
n−k,

(iii) there is an x∈F 0(Č) with {v1, . . . ,vk}⊂F 0(C+
x) whereČ is the reflection of the unit cell ofLn at
the origin.

Condition (iii) ensures that integration over ’local
knowledge’ on the image data is possible as needed
later. The translative complementT

L
n−k has properties

similar to those of the orthogonal complement of a
linear subspace. In particular, the union of shiftsL

k+x

of the section lattice over allx from the corresponding
translation latticeTL

n−k yields the cubic latticeLn =
⋃

x∈TLn−k L
k +x. However, the translative complement

is not necessarily uniquely determined. Nevertheless,
choosing one of the translative complements arbitrarily
turns out to cover all applications presented in the
following.

MEASUREMENT

We denote byL k the set of allk-dimensional
linear subspaces ofRn; ⊥L is the orthogonal
complement ofL ∈ L k; V⊥L is then− k-dimensional
Lebesgue measure on⊥L, andµ denotes the rotation
invariant measure onL k with µ(L k) = 1. Now the
Crofton formulae for the intrinsic volumesVn−k(X) of
a compact and polyconvex setX can be written in the
form

αn0kVn−k(X)

=
∫

L k

∫

⊥L

χ(X∩ (L+y))V⊥L(dy)

︸ ︷︷ ︸

pk
X(L)

µ(dL) , (9)

k = 1, . . . ,n−1, with the constants

αn0k =
Γ
(

k+1
2

)
Γ
(

n−k+1
2

)

√
π Γ

(
n+1

2

) .

This means that the intrinsic volumes can be expressed
in terms of the Euler number measured on lower-
dimensional subspaces.

The observation ofX on the latticeLn implies that
the integrand in the Crofton formulae (Eq. 9) is known
for only a finite number of elements ofL k and the
translationL + y is possible for discrete values ofy,
only. That is, both integrals in Eq. 9 are approximated
by sums. Furthermore, the intersectionX ∩ (L + y)
must be replaced by its discretisationX ⊓ (Fk + y)
with respect to an adjacency systemFk in L

k where
L = spanLk. Finally, the translationsy are fromT

L
n−k

instead of⊥L, whereT
L

n−k is a translative complement
according to Definition 4.

DISCRETISATION OF THE
TRANSLATIVE INTEGRAL

For simplicity we restrict ourselves to the special
case whereX is observed on a cubic primitive
lattice. Nevertheless, this is not a substantial restriction
and the following considerations can be extended to
arbitrary homogeneous lattices, too.

Let Ck andF
k be a lattice cell and an adjacency

system of a section latticeLk of aZ
n, respectively.

Denote by TCn−k a unit cell of the translation
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lattice T
L

n−k of L
k (according Definition 4) and by

projTCn−k the orthogonal projection ofTCn−k onto
⊥L = ⊥(spanLk). Denote its volume by vpn−k :=
volprojTCn−k and note that the ratio vpn−k/an−k is an
unscaled quantity. We have

vpn−k = volprojTCn−k =
volC
volCk , k = 1, . . . ,n−1.

(10)

Now, in analogy to the rectangular quadrature
rule, the translative (inner) integral in Eq. 9 can be
approximated by

pk
X(L) ≈ vpn−k ∑

y∈TL
n−k

χ((X−y)∩L)

≈ vpn−k ∑
y∈TL

n−k

χ((X−y)⊓F
k)

(6)
= vpn−k ∑

y∈TL
n−k

∑
z∈Lk

χk
0

(

Ck∩
(
((X−y)⊓F

k)−z
))

= vpn−k ∑
x∈Ln

χk
0

(

Ck∩
(
(X−x)⊓F

k)
)

, (11)

where the local Euler numberχk
0 is defined as in

Eq. 5 but w. r. t. the adjacency systemFk on the section
latticeL

k.

The last expression can be considered as an
estimator ˆpk

X(L) of the translative integralpk
X(L). For

a fixed section latticeLk, the volume of projTCn−k

and thus ˆpk
X(L) do not depend on the particular choice

of T
L

n−k. This follows directly from Eq. 10 and the
definition of theL

k, see Definition 4.

It can be seen that the right-hand side of Eq. 11 is
a scalar product,

p̂k
X(L) =

νk

∑
ℓ=0

vpn−kχk
0

(
ζℓ⊓F

k)

︸ ︷︷ ︸

an−kw̃(k)
ℓ

·

· ∑
x∈Ln

1(ζℓ +x⊆ X)1(ζνk−ℓ +x⊆ Xc)

︸ ︷︷ ︸

h(k)
ℓ

, (12)

with νk = 22k − 1 and the local pixel configurations
ζℓ ⊆ F 0(Ck) on L

k, where the indexing of theζℓ

is chosen analogously to the one for theξℓ. Notice

that the vector ˜w(k) = (w̃(k)
ℓ ) depends on the adjacency

systemF
k and the vectorh(k) = (h(k)

ℓ ) depends on the
sampleX∩L

k of X on Lk.

The computation of the vectorsh(k) involves access
to all pixel values of the image. Therefore, this is

the most time consuming part in the estimation of
the translative integrals in Eq. 9. Thus, from the
algorithmic point of view the following question
arises: Is it possible to compute all translative integrals
from the sameh determined just once for a given set
X and latticeL

n? In order to use this oneh for all
dimensionsk and all section latticesLk, the vectors
w̃(k) of weights have to be adapted, such that the scalar
productw̃(k)h(k) has a representation asw(k)h. In order
to achieve this, we consider the following two cases:

(i) Due to Definition 4(iii), the section latticeLk has the
property that there is a translationy∈ L

n such that
Ck + y⊂ C. Then it follows thatCk = (C− y)∩L
and

χk
0

(

Ck∩
(
(X−x)⊓F

k)
)

=

χk
0

(

(C−y)∩
(
(X−x)⊓F

k)
)

,

for all x∈ L
n. This yields

p̂k
X(L) = vpn−k ∑

x∈Ln

χk
0

(

(C−y)∩
(
(X−x)⊓F

k)
)

.

From Eq. 5 we obtain

χk
0(ζ j ⊓F

k) = χk
0

(
(ξℓ−y)⊓F

k)

for all j ∈ {0, . . . ,νk} and allℓ ∈ {0, . . . ,ν} with
ζ j ⊆ ξℓ−y andζνk− j ⊆ ξν−ℓ−y. Furthermore, one
gets

h(k)
j =

ν

∑
ℓ=0

hℓ 1(ζ j ⊆ ξℓ−y,ζνk− j ⊆ ξν−ℓ−y) ,

for j = 0, . . . ,νk. Using this, Eq. 12 can be
rewritten as

p̂k
X(L) =

ν

∑
ℓ=0

vpn−kχk
0

(
(ξℓ−y)⊓F

k)

︸ ︷︷ ︸

an−kw(k)
ℓ

·

· ∑
x∈Ln

1(ξℓ +x⊆ X)1(ξν−ℓ +x⊆ Xc)

︸ ︷︷ ︸

hℓ

,

defining the vectorw(k) = (w(k)
ℓ ).

(ii) Now we treat those section lattices having the
property that there is no translationy ∈ L

n with
Ck + y ⊂ C. Then Definition 4(iii) ensures that
there are finitely manyx ∈ L

n such that the
intersectionsCk ∩ (C− x) generate a face-to-face
tessellation ofCk. This tessellation can be refined
into a tessellationG0 = {P1, . . . ,Pm} of Ck into k-
simplicesPi such that for eachPi there is ayi ∈
L

n with Pi + yi ∈ C and F 0(Pi + yi) ⊂ F 0(C).
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Then the adjacency systemFk is generated by the
tessellationG0. Making use of Eq. 7, it can be
shown that ˆpk

X(L) has the same form as above but
with the weights

w(k)
ℓ =

vpn−k

an−k

m

∑
i=1

n

∑
j=0

(−1) j·

· ∑
F∈F j (Pi)

1
µ̃F

1
(

F
0(F) ⊆

(
ξℓ∩ (Pi +yi)

))

for ℓ = 0, . . . ,ν .

Summarising, we have shown that for all dimensionsk
and for all section latticesLk, the translative integrals
pk

X(L) in the Crofton formulae (Eq. 9) can be estimated
via

p̂k
X(L) = an−k

ν

∑
ℓ=0

w(k)
ℓ hℓ , k = 1, . . . ,n−1 , (13)

whereL = spanLk is the corresponding subspace.

DISCRETISATION OF THE INTEGRAL
OVER ALL SUBSPACES

From theL
n-sampling ofX the estimator ˆpk

X(Li)
of the translative integral of Eq. 9 is known for finitely
many subspacesLi = spanLk

i , i = 1, . . . ,mk, only.
Hence, one has to find an appropriate approximation
of

∫

L k pk
X(L)dµ(L).

Applying a simple quadrature yields
∫

L k

pk
X(L)dµ(L)≈

∫

L k

p̂k
X(L)dµ(L)

≈
mk

∑
i=1

γ (k)
i p̂k

X(Li) , (14)

whereγ (k)
i are suitable weights. The choice of these

weights is not trivial since the planesL1, . . . ,Lmk are
not uniformly scattered inL k. Moreover, the estimates
p̂k

X(Li) of the pk
X(Li) are not of the same accuracy for

different subspaces. In 2D, the 2π-periodic rectangle
rule leads to weights which are proportional to the
lengths of the Voronoı̈ arcs corresponding to directions
of the straight linesLi . This geometric interpretation
can be extended to higher dimensions which leads to
a generalisation of the rectangular rule. For the special
case of a cubic primitive latticeL3 = aZ

3, a > 0, we
haveγ (1)

i = γ (2)
i for all i, and the numerical values are

γ (k)
i = 0.091556 for i = 1,2,3; γ (k)

i = 0.073961 for

i = 4, . . . ,9; γ (k)
i = 0.070391 for i = 10, . . . ,13, see

Langet al. (2001).

Summarising formulae Eqs. 9, 13 and 14, we
obtain the approximation̂Vn−k(X) of Vn−k(X) as

V̂n−k(X) =
1

αn0k

mk

∑
i=1

γ (k)
i an−k

ν

∑
ℓ=0

w(i,k)
ℓ hℓ

=
an−k

αn0k

ν

∑
ℓ=0

mk

∑
i=1

γ (k)
i w(i,k)

ℓ

︸ ︷︷ ︸

hℓ ,

v(k)
ℓ

where thew(i,k)
ℓ are the coefficients corresponding

to the adjacency systemsFk
i on the subspacesLi

according to Eq. 13.

Table 1.Surface area weights4v(1)
ℓ , weights2πv(2)

ℓ
for computing the integral of the mean curvature and
the weights v(3) for the Euler number. The weights for
the Euler number are given for the pairs(F6,F26),
(F14.1,F14.1), (F14.2,F14.2) and (F26,F6) (from left
to right). The table shows the values for8v(3) for
ease of reading. The weights for(F14.1,F14.1) and
(F14.2,F14.2) are averages over the transforms inM as
the adjacency systemsF14.1 andF14.1 are not isotropic
(i.e., invariant w. r. t. the linear transforms inM ).

j η j 4v(1)
ℓ 2πv(2)

ℓ 8v(3)
ℓ

0 ξ0 0 0 0 0 0 0
1 ξ1 0.376 0.590 1 1 1 1
2 ξ3 0.659 0.728 0 0 0 0
3 ξ9 0.646 0.616 2 0 0 -2
4 ξ129 0.588 0.687 2 0 0 -6
5 ξ7 0.839 0.446 -1 -1 -1 -1
6 ξ131 0.768 0.426 1 -1 -1 -3
7 ξ41 0.813 0.334 3 -3 -1 -1
8 ξ15 0.927 0 0 0 0 0
9 ξ43 0.914 0 -2 -2 -2 -2
10 ξ139 0.856 0 -2 -2 -2 -2
11 ξ153 0.785 0 0 0 -2 0
12 ξ105 0.874 0 4 -8 0 4
13 ξ99 0.843 0 0 -2 -2 0
14 ξ214 0.813 -0.334 -1 -3 -1 3
15 ξ124 0.768 -0.426 -3 -1 -1 1
16 ξ248 0.839 -0.446 -1 -1 -1 -1
17 ξ126 0.588 -0.687 -6 0 0 2
18 ξ246 0.646 -0.616 -2 0 0 2
19 ξ252 0.659 -0.728 0 0 0 0
20 ξ254 0.376 -0.590 1 1 1 1
21 ξ255 0 0 0 0 0 0
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The last equation shows that estimates of the
intrinsic volumesVn−k(X) can also be written as

V̂n−k(X) =
an−k

αn0k
v(k)h , k = 1, . . . ,n−1 , (15)

with the scalar productsv(k)h of the vectorsv(k) =
(
v(k)
ℓ

)
andh. We complete the above set of estimators

by those of the volumeVn and the Euler numberV0 of
X:

V̂n(X) = anv(0)h ,

with the coefficientsv(0)
ℓ = volC/an for odd ℓ, and

v(0)
ℓ = 0 otherwise;

V̂0(X) = v(n)h ,

with the coefficientsv(n)
ℓ := wℓ = χn

0(ξℓ ⊓F) whereF

is an adjacency system onLn.

For n = 3 we getα301 = α302 = 1
2. The intrinsic

volumesV2 andV1, and thus the surface areaSand the
integral of the mean curvatureM, can be estimated as

Ŝ(X) = 2V̂2(X) = 4a2v(1)h ,

M̂(X) = πV̂1(X) = 2πav(2)h .

The surface area weights 4v(1), also published in
Schladitz et al. (2006), the weights 2πv(2) for the
integral of mean curvature and the weightsv(3) for the
Euler number are presented in Table 1. The weights for
the Euler number were first published in Ohseret al.
(2002).

The surface area and the integral of mean curvature
are rotation invariant functionals. Thus the weights
can be presented for the representativesη j of the
congruence classesD j of the pixel configurations
ξ0, . . . ,ξ255. Notice that for the surface area the weights
for complementary representativesηc

j are the same
as for η j while in the case of the integral of mean
curvature the sign switches.

INTRINSIC VOLUME DENSITIES

Instead of deterministic sets we consider now
random sets widely used as geometric models for
constituents of microstructures. The characterisation
of a constituent simplifies considerably in case of
macroscopic homogeneity and even further if the
microstructure is isotropic, too. In these cases, the
intrinsic volume densities are important geometric
characteristics of the constituents.

In principle, the intrinsic volume densities of a
constituent can be estimated by the intrinsic volumes
related to the volume of the observation window, see
Chapter 4 in Ohser and Mücklich (2000) and Lang
et al. (2001). Alternative approaches Klenket al.
(2006), Mrkvička and Rataj (2008), Schmidt and
Spodarev (2005) are based on solutions of systems
of linear equations deduced from the local Steiner
formula, see Section 4.4 in Schneider (1993), or
the principal kinematic formula. These methods are
studied in detail for the 2-dimensional case but work
in principle in arbitrary dimensions. Comparisons for
Boolean models in 2D in Guderleiet al. (2007) and
Mrkvička and Rataj (2008) show, that the accuracy of
the resulting estimators is sometimes higher than of
those given in Chapter 4 of Ohser and Mücklich (2000)
using the present approach. However, so far none of
these algorithms has been proved to work in practice
in dimensionsn≥ 3.

MACROSCOPIC HOMOGENEITY

Let Ξ be a macroscopically homogeneous random
set onR

n observed in a compact and convex window
W with nonempty interior. Assume now that the
realisations ofΞ belong to the extended convex ring
almost surely and thus their intersections withW are
polyconvex sets. Furthermore, assume thatΞ fulfils the
integrability conditionE2#(Ξ∩K) < ∞ for any compact
and convex setK, where #X denotes the minimal
numbermsuch that the setX has a representationX =
K1∪ . . .∪Km with compact and convex setsK1, . . . ,Km.
Then theintrinsic volume densities VV,k of Ξ exist and
can be defined by the limits

VV,k(Ξ) = lim
r→∞

EVk(Ξ∩ rW)

vol(rW)
, k = 0, . . . ,n,

see,e.g., Schneider and Weil (2008), p. 398.

The random setΞ may be observed on the
homogeneous latticeLn with the unit cell C. By
Ξ ∩ L

n we denote theLn-sampling ofΞ where L
n

is a equipped with a pair(F,Fc) of complementary
adjacency systems. Furthermore, as in Section 4.4
the section latticesLk

i of L
n are equipped with pairs

(Fk
i ,F

k
c,i) of complementary adjacency systems,i =

1, . . . ,mk, k = 1, . . . ,n− 1. Again, for the sake of
simplicity we concentrate on samplings on cubic
primitive lattices.

Now the method described in Section 4.2 is
adapted to the measurement of the volume density. We
choose a windowW such thatLn∩(W⊖Č) 6= /0, where
W ⊖ Č is the windowW reduced by the reflection
of the unit cellC of L

n. Furthermore, let̃h = (h̃ℓ)
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be the vector of numbers of local configurations in
Ξ∩W∩L

n,

h̃ℓ = ∑
x∈Ln∩(W⊖Č)

1(ξℓ +x⊂ Ξ)1(ξν−ℓ +x⊂ Ξc) ,

for ℓ = 0, . . . ,ν . Then estimators of the intrinsic
volumesVV,n−k can be given by

ṼV,n−k(Ξ) =
an−kv(k)h̃

αn0k #(Ln∩ (W⊖Č))volC
, (16)

for k = 0, . . . ,n. These estimators are usually biased
for k > 0. Because of the macroscopic homogeneity
of Ξ, the expectations of thẽVV,n−k depend on
the probabilities that the local configurationsξℓ

belong to the foregroundΞ and the complementary
configurationsξν−ℓ are in the backgroundΞc. From
volC = an and E h̃ℓ/#(Ln ∩ (W ⊖ Č)) = P(ξℓ ⊆
Ξ, ξν−ℓ ⊆ Ξc) it follows that

EṼV,n−k(Ξ) =
1

αn0k ak

ν

∑
ℓ=0

v(k)
ℓ P(ξℓ ⊆ Ξ, ξν−ℓ ⊆ Ξc) ,

(17)
for k = 0, . . . ,n.

In order to assess estimation errors in
the theoretical considerations below, the above
probabilities are expressed in terms ofP(ξℓ ⊆ Ξc).
For each local configurationξℓ and a pointx∈ ξℓ one
gets

P(ξℓ ⊆ Ξ,ξν−ℓ ⊆ Ξc)

= P(ξℓ \{x} ⊆ Ξ,ξν−ℓ ⊆ Ξc)

−P(ξℓ \{x} ⊆ Ξ,ξν−ℓ∪{x} ⊆ Ξc) .

Recursion yields the linear equation system

P(ξℓ ⊆ Ξ,ξν−ℓ ⊆ Ξc) =
ν

∑
j=0

b jℓP(ξ j ⊆ Ξc) , (18)

for ℓ = 0, . . . ,ν , where theb jℓ are integers. (We remark
that Eq. 18 as well as the explicit values of theb jℓ can
be derived from the inclusion-exclusion formula, too.)
Plugging (18) into (17) we obtain

EṼV,n−k(Ξ) =
1

αn0k ak

ν

∑
ℓ=0

v(k)
ℓ

ν

∑
j=0

b jℓP(ξ j ⊆ Ξc)

=
1

αn0k ak

ν

∑
j=0

ν

∑
ℓ=0

v(k)
ℓ b jℓ

︸ ︷︷ ︸

P(ξ j ⊆ Ξc) , (19)

g(k)
j

for k= 0, . . . ,n, where the weightsg(k)
j are independent

of Ξ.

Table 2.The weights̄g(k)
j for the 22 congruence classes

of the local pixel configurations in 3D-images. The

first, second, third, fourth column of̄g(0)
i correspond

to the pairs(F26,F6), (F14.1,F14.1), (F14.2,F14.2), and
(F6,F26), respectively.

j η j ḡ(1)
j ḡ(2)

j 8ḡ(3)
j

0 ξ0 0 0 0 0 0 0

1 ξ1 0.751 0.751 1 1 1 1

2 ξ3 -0.275 -0.861 -3 -3 -3 -3

3 ξ9 -0.314 -1.076 0 -3 -3 -6

4 ξ129 -0.163 -0.314 0 -1 -1 -4

5 ξ11 0 0.549 0 6 6 12

6 ξ131 0 0.628 0 6 4 24

7 ξ41 0 0.325 0 0 2 8

8 ξ15 0 0 3 0 0 -3

9 ξ43 0 0 0 0 -2 -8

10 ξ139 0 0 0 -6 -2 -24

11 ξ159 0 0 0 0 0 -6

12 ξ105 0 0 0 0 0 -2

13 ξ99 0 0 0 0 -2 -24

14 ξ214 0 0 0 0 0 8

15 ξ124 0 0 0 0 0 24

16 ξ248 0 0 0 0 0 24

17 ξ126 0 0 0 0 0 -4

18 ξ246 0 0 0 0 0 -12

19 ξ252 0 0 0 0 0 -12

20 ξ254 0 0 0 0 0 8

21 ξ255 0 0 -1 0 0 -1

MACROSCOPIC HOMOGENEITY AND
ISOTROPY

Let now Ξ be macroscopically homogeneous,
isotropic and the distribution ofΞ is invariant under
reflection at the origin. For cubic primitive lattices
it is sufficient to restrict the following considerations
to the congruence classesD j of the local pixel
configurations. Then the probabilities in Eq. 17 can be
rewritten as

P(ξℓ ⊆ Ξ, ξν−ℓ ⊆ Ξc) = P(η j ⊆ Ξ, ηc
j ⊆ Ξc) ,

for all ξℓ ∈D j and the linear equation system (18) takes
the form

P(ηℓ ⊆ Ξ,ηc
ℓ ⊆ Ξc) =

ν0

∑
j=0

b̄ jℓP(η j ⊆ Ξc) ,
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for ℓ = 0, . . . ,ν0 and with integer coefficients̄b jℓ.
Obviously,∑ν0

j=01(ξℓ ∈ D j) = 1 for all ℓ and, thus, the
expectations of the intrinsic volumes can be expressed
by

EṼV,n−k(Ξ) =
1

αn0kak

ν0

∑
j=0

ḡ(k)
j P(η j ⊆ Ξc) , (20)

with the coefficients

ḡ(k)
i =

ν0

∑
j=0

b̄i j

ν

∑
ℓ=0

v(k)
ℓ 1(ξℓ ∈ D j) ,

for i = 0, . . . ,ν0 andk = 0, . . . ,n.

Now we restrict the considerations toR3. Using
the weights in the Table 1, appropriate estimators of
the densitiesSV , MV and χV of the surface area, the
integral of the mean curvature and the Euler number
are

S̃V =
4v(1)h̃

a ∑ h̃ℓ
, M̃V =

2πv(2)h̃

a2 ∑ h̃ℓ
, χ̃V =

v(3)h̃

a3 ∑ h̃ℓ
,

respectively. Their expectations are

ES̃V =
4
a

21

∑
j=0

ḡ(1)
j P(η j ⊆ Ξc) ,

EM̃V =
2π
a2

21

∑
j=0

ḡ(2)
j P(η j ⊆ Ξc) ,

Eχ̃V =
1
a3

21

∑
j=0

ḡ(3)
j P(η j ⊆ Ξc) ,

respectively. The values of the ¯g(k)
j are listed in Table 2.

INTRINSIC VOLUME DENSITIES
OF BOOLEAN MODELS

Now we consider Boolean models sampled on
a cubic lattice L

n = aZ
n, a > 0. In this section

we present relationships between the expectations of
the intrinsic volume densities of sampled Boolean
models, the density of the germs and the corresponding
expectations of the intrinsic volumes of the grains.
Following Serra (1982) p. 492ff and p. 557, we
derive formulae forLn-samplings of Boolean models
connecting the parameters of the Boolean models with
the expectations of the estimatorsṼV,k of the densities
of the intrinsic volumes. Comparisons with Miles’
formulae yields the asymptotic bias of the estimators.

BOOLEAN MODELS IN R
n

Let Φ = {x1,x2, . . .} denote a macroscopically
homogeneous Poisson point field inR

n (the point field
of germs) with point densityλ > 0 and Ξ1,Ξ2, . . .
a sequence of independent and identically distributed
(i. i. d.) random, compact and convex sets (thegrains)
with nonempty interior and independent ofΦ. The
corresponding Boolean model is defined as the random
closed set

Ξ =
∞⋃

j=1

(Ξ j +x j) .

For more detailed definitions and explanations
see Matheron (1975); Schneider and Weil (2008);
Molchanov (1997). In the following we assume that
the random grainsΞi are isotropic and invariant
w. r. t. reflection at the origin. ThenΞ is isotropic, too,
and invariant w. r. t. reflection at the origin. Moreover,
assumeEVk(Ξ1) < ∞ for k = 1, . . . ,n.

With probability one the intersection of two grains
is either empty or has nonempty interior. Then from
the consistency relation for the Euler number and
Crofton’s intersection formulae (9) it follows that
VV,k(Ξ) = (−1)n−k+1VV,k

(
Ξc

)
for k = 0, . . . ,n−1.

For Boolean models, the probabilities occurring on
the right hand side of Eq. 20 can be written as

P(ηℓ ⊂ Ξc) = e−λEVn(Ξ1⊕ηℓ), ℓ = 0, . . . ,ν0.

The expectations of volumes occurring on the
right hand side of this equation can be calculated
approximately by the Steiner formula when
substitutingηℓ with its convex hullFℓ = convηℓ. We
can assumeVn(Ξ1⊕ηℓ) ≈Vn(Ξ1⊕Fℓ) which follows
for particular cases from the following lemmas.

Lemma 1 Let K be a compact and convex set with
nonempty interior, then

Vn(K⊕ [0,au])−Vn(K⊕{0,au}) = o(a), u∈ Sn−1

as a↓ 0.

Proof For the Minkowski addition ofK with the
segment[0,au], a > 0, we have

Vn(K⊕ [0,au]) = Vn(K)+aVn−1
(
Π(K,⊥spanu)

)
,

(21)
where Π(K,⊥spanu) is the orthogonal projection
of K onto the n− 1-dimensional subspace⊥spanu
orthogonal to the straight line spanned byu. On the
other hand

Vn(K⊕{0,au}) = Vn(K∪ (K +au)) (22)

= 2Vn(K)−cov(K,au), a≥ 0 ,

86



Image Anal Stereol 2009;28:77-92

where cov(K,au) = Vn(K ∩ (K + au)) denotes the
covariogram function of the setK w. r. t. u. Now, since
V(K) = cov(K,0) and

Vn−1
(
Π(K,⊥spanu)

)
= −

[ d
dt

cov(K,tu)
]

t=0+
,

see Section 4.3 in Matheron (1975), it follows that

Vn(K⊕ [0,au])−Vn(K⊕{0,au})
a

=
cov(K,au)−cov(K,0)

a
−

[ d
dt

cov(K,tu)
]

t=0+
,

and thus

lim
a↓0

Vn(K⊕ [0,au])−Vn(K⊕{0,au})
a

= 0 .

�

We remark that Lemma 1 holds more generally for
configurationsξ ⊆ F 0(C) andF = convξ . This is a
consequence of Corollary 2.(2) of Kiderlen and Rataj
(2006) as the support function of a general nonempty
compact set inRn is defined as the support function of
its convex hull.

Lemma 2 For n ≥ 3, balls Br with fixed radius
r, configurationsξ ⊆ F 0(C) and F = convξ with
dimF ≤ 2 one gets

Vn(Br ⊕F)−Vn(Br ⊕ξ ) = o
(
a2) as a↓ 0 .

Proof First we observe that the distance betweenξ and
F is smaller than the space diagonal of the unit cell,
max{‖x− y‖ : x∈ F,y∈ ξ} < a

√
n. For alla < r/

√
n

we can chooset =
√

r2−na2. Then it follows that
F ⊕Bt ⊂ ξ ⊕Br ⊂ F ⊕Br .

Now we replaceF ⊕ Bt with a non-convex set
having enlarged spherical sectors at the vertices of
F . Let H(F,u) be a supporting hyperplane ofF with
normal directionuand letN(F,x)= {u∈R

n\{0} : x∈
H(F,u)}∪{0} denote the normal cone ofF at x∈ F ,
see Schneider (1993), p. 70. ThenN(F,x)∩Br is the
normal cone restricted to the ballBr . The spherical
sectors ofF at the verticesx are given byFr(x) =
{u+x : u∈ N(F,x)∩Br}. Using this one obtains

(F ⊕Bt)∪
⋃

x∈ξ
Fr(x) ⊂ ξ ⊕Br ⊂ F ⊕Br . (23)

Since
⋃

x∈ξ
(Fr(x)−x) = Br and

(
intFr(x)−x

)
∩

(
intFr(y)−y

)
= /0 ,

for all x,y∈ ξ with x 6= y, the Steiner formula implies
that

Vn

(

(F⊕Bt)∪
⋃

x∈ξ
Fr(x)

)

= κnrn+
dimF

∑
k=1

κn−kt
n−kVk(F) .

Notice that since the intrinsic volumesVj are j-
homogeneous,Vj (

F
a ) = 1

a j Vj (F) for a > 0, where the
Vj (

F
a ) are independent of the lattice spacinga. Now

from Eq. 23, thek-homogeneity ofVk and with the
above choice fort we get the estimation

0≤Vn(Br ⊕F)−Vn(Br ⊕ξ )

≤Vn(Br ⊕F)−Vn

(

(F ⊕Bt)∪
⋃

x∈ξ
Fr(x)

)

≤
dimF

∑
k=1

κn−k

(

rn−k− tn−k
)

Vk(F)

=
dimF

∑
k=1

κn−kr
n−k



1−
(

1− na2

r2

) n−k
2



akVk

(
F
a

)

.

(24)

Finally, the assertion of the above lemma follows from

lim
a↓0

1−
(

1− na2

r2

) n−k
2

a2−k = 0 ,

asn > 2, andk > 0. �

In order to estimate the error introduced by
replacing ηℓ with its convex hull Fℓ = convηℓ we
have to derive lemmas similar to 1 and 2 but for the
respective expectations.

Lemma 3 Let X be a random compact and convex
set whose distribution is isotropic and invariant
w. r. t. reflection at the origin and whose interior is a. s.
nonempty. Assume thatEVn(X) < ∞ and that there is
an ε > 0 such that a. s. Bε ⊆ X, then

E(Vn(X⊕ [0,au])−Vn(X⊕{0,au})) = o(a),

as a↓ 0 for all u ∈ Sn−1.

Proof Eqs. 21 and 22 imply

Vn(X⊕ [0,au]−Vn(X⊕{0,au})
≤ aVn−1

(
Π(X,⊥spanu)

)
a. s. for all u∈ Sn−1.

The assumptionsEVn(X) < ∞ andBε ⊆ X a. s. yield

EVn−1(X) < n
Vn−1(Bε)

Vn(Bε)
EVn(X) < ∞,
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see Schneider (1993, p. 327), originally due to Wills
(1970). Together with the convexity ofX this in
turn ensures thatEVn−1

(
Π(X,⊥spanu)

)
< ∞ for all

u∈ Sn−1 giving an integrable upper bound for the left
hand side. This finally allows to interchange limit and
expectation and the assertion follows from Lemma 1.
�

Lemma 4 For n≥ 3, let Br ⊆ R
n be a ball of random

diameter with r≥ ε > 0 a. s. andErn < ∞. Then for
all configurationsξ ⊆ F 0(C) and F = convξ with
dimF ≤ 2 one gets

E(Vn(Br ⊕F)−Vn(Br ⊕ξ )) = o
(
a2) .

Proof Eq. (24) and the assumptionErn < ∞ yield

E
(
Vn(Br ⊕F)−Vn(Br ⊕ξ )

)

≤
dimF

∑
k=1

κn−kErn−k



1−
(

1− na2

ε2

) n−k
2



akVk

(
F
a

)

,

and thusE
(
Vn(Br ⊕ F)−Vn(Br ⊕ ξ )

)
= o(a2) using

the same argument as in Lemma 2. �

We remark that for every functionf : R 7→ R with
f (a) = o(am) asa↓ 0,m> 0, it follows that 1−ef (a) =
o(am).

As Fℓ is convex, an application of the principal
kinematic formula to macroscopic homogeneous
Boolean models gives

lnP(Fℓ ⊂ Ξc) = −λEVn(Ξ1⊕Fℓ)

= −λ
dimFℓ

∑
j=0

αn0 jVj (Fℓ)EVn− j(Ξ1) ,

see Schneider and Weil (2008), p. 380. From thej-
homogeneity of the intrinsic volumesVj it follows
that the probabilityP(Fℓ ⊂ Ξc) can be considered as
a function fℓ of the lattice distancea,

fℓ(a) = exp

{

−λ
dimFℓ

∑
j=0

αn0 j a
jVj

(
Fℓ

a

)

EVn− j(Ξ1)

}

,

where theVj (
Fℓ
a ) are independent ofa. Note that

fℓ(a) = fℓ(0) for Fℓ with dimFℓ = 0. For Fℓ with
dimFℓ > 0 we now use a Taylor expansion offℓ,

fℓ(a) =
dimFℓ

∑
i=0

f (i)
ℓ (0)

i!
ai +o

(

adimFℓ

)

, (25)

where f (i)
ℓ is theith derivative offℓ.

From the above approach and Eq. 20, the
expectations of the estimators̃VV,n−k(Ξ) can be
expressed in terms of the derivatives of the functions
fℓ. Using Lemma 3 and Lemma 4, respectively, we can
formulate the following theorems.

Theorem 1 Let Ξ be a homogeneous and isotropic
Boolean model with random, compact, convex grains
whose distribution is invariant w. r. t. reflection at the
origin. If there is anε > 0 such that a. s. Bε ⊆ Ξ1 and
EVn(Ξ1) < ∞ , then

EṼV,n−1(Ξ) =
1

αn01

ν0

∑
ℓ=0

ḡ(1)
ℓ

(
fℓ(0)

a
+ f ′ℓ(0)

)

+o(1)

(26)
as a↓ 0.

Proof We recall thatṼV,n−1(Ξ) is estimated from the
data sampled on 1D section lattices. As a consequence,
dimFℓ is 0 or 1.

Now plugging the result of Lemma 3 into Eq. 20
yields

EṼV,n−1(Ξ) =
1

αn01a

ν0

∑
ℓ=0

ḡ(1)
ℓ (P(Fℓ ⊆ Ξc)+o(a))

=
1

αn01a

ν0

∑
ℓ=0

ḡ(1)
ℓ fℓ(a)+o(1).

The assertion of the theorem now follows from the
series expansion Eq. 25. �

Theorem 2 Let Ξ be a Boolean model inRn, n≥ 3,
with balls of random diameter r. If r> ε > 0 a. s. and
Ern < ∞, then

EṼV,n−k(Ξ) =
(−1)k+1

αn0k

ν0

∑
ℓ=0

ḡ(k)
ℓ

k

∑
i=0

f (i)
ℓ (0)

i! ak−i +o(1)

(27)
as a↓ 0 and for k= 1,2.

Proof We make use of the fact that̃VV,n−1(Ξ) and
ṼV,n−2(Ξ) are estimated from 1D and 2D section
lattices, respectively, and thus dimFℓ ≤ 2 meeting the
assumptions of Lemma 4.

Then plugging the result of Lemma 4 into Eq. 20
and using Eq. 25 in the same way as in the proof of
Theorem 1 yields Eq. 27. �
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BOOLEAN MODELS IN R
3

We specialise to the 3D case from now on. Let
V̄, S̄, ¯̄b denote the expectations of the volume, the
expectation of surface area, and the expectation of
the mean breadth of the grainΞ1, i.e., EV3(Ξ1) = V̄,
2EV2(Ξ1) = S̄ and 1

2EV1(Ξ1) = ¯̄b. Then the surface
densitySV = 2VV,2(Ξ), the density of the integral of
the mean curvatureMV = πVV,1(Ξ), and the density of
the Euler numberχV = VV,0(Ξ) of a Boolean model
can be expressed in terms ofλ , V̄, S̄, and¯̄b by Miles’
formulae

SV = e−λV̄λ S̄,

MV = e−λV̄
(

2πλ ¯̄b− π2λ 2

32
S̄2

)

,

χV = e−λV̄
(

λ − λ 2

2
¯̄bS̄+

πλ 3

384
S̄3

)

, (28)

see Miles (1976) and Theorem 9.1.4 in Schneider and
Weil (2008). On the other hand the expectations of the
corresponding estimators according to Eqs. 26 and 27
have a structure similar to Miles’ formulae,

ES̃V = e−λV̄λ S̄+o(1) , (29)

EM̃V = e−λV̄
(

2πλ ¯̄b−0.354297λ 2S̄2
)

+o(1) ,

(30)

Eχ̃V ≈ e−λV̄
(

λ 2 c1

a
S̄2 +λ +λ 2c2

¯̄bS̄+λ 3c3S̄3
)

,

(31)

where the constantsc1, c2, andc3 depend on the chosen
pair of complementary adjacency systems(F,Fc), see
Table 4. Notice that the values forc1, c2, and c3
correspond to those ones published in Ohseret al.
(2003) for a Boolean model with balls of constant
diameter.

In order to show that Eqs. 29 and 30 follow directly
from Eqs. 26 and 27, respectively, we introduce the
volumevℓ, the surface areasℓ, and the mean breadth
bℓ of the set1aFℓ. Using these notations, the functionfℓ
can be rewritten as

fℓ(a) = exp
{

−λ
(

V̄ +
1
2

S̄bℓa+
1
2

¯̄bsℓa
2 +vℓa

3
)}

.

The first derivatives offℓ ata = 0 are

fℓ(0) = e−λV̄ ,

f ′ℓ(0) = e−λV̄
(

−λ
1
2

S̄bℓ
)

,

f ′′ℓ (0) = e−λV̄
(

−λ ¯̄bsℓ +λ 2
(1

2
S̄bℓ

)2
)

,

f ′′′ℓ (0) = e−λV̄
(

−λ6vℓ +λ 23
2

¯̄bsℓS̄bℓ−λ 3
(1

2
S̄bℓ

)3
)

.

For k = 1, it can be seen from the values in the Tables
2 and 3 that

21

∑
ℓ=0

ḡ(1)
ℓ = 0 ,

21

∑
ℓ=0

ḡ(1)
ℓ bℓ = −1

2
,

which yields Eq. 29. Fork = 2 it follows that

21

∑
ℓ=0

ḡ(2)
ℓ = 0 ,

21

∑
ℓ=0

ḡ(2)
ℓ bℓ = 0 ,

21

∑
ℓ=0

ḡ(2)
ℓ b2

ℓ = 0.451105,
21

∑
ℓ=0

ḡ(2)
ℓ sℓ = 2 ,

and from Eq. 27 one obtains Eq. 30.

Finally, consider the casek= 3. Independent of the
choice of a pair(F,Fc) of complementary adjacency
systems, it can be seen that

21

∑
ℓ=0

ḡ(3)
ℓ = 0 ,

21

∑
ℓ=0

ḡ(3)
ℓ bℓ = 0 ,

21

∑
ℓ=0

ḡ(3)
ℓ sℓ = 0 ,

21

∑
ℓ=0

ḡ(3)
ℓ vℓ = −1 ,

which yields Eq. 31 where the coefficientsc1, c2, c3

are computed via

c1 =
1
8

21

∑
ℓ=0

ḡ(3)
ℓ b2

ℓ , c2 =
1
4

21

∑
ℓ=0

ḡ(3)
ℓ bℓsℓ ,

c3 =
1
48

21

∑
ℓ=0

ḡ(3)
ℓ b3

ℓ .

Table 3.The mean width bℓ, the surface area sℓ and the
volume vℓ for the convex hulls of the representativesηℓ

of the 22 congruence classes. The constant c is given
by c= 1

π arctan
√

2.

89



OHSERJ ET AL : Miles formulae for observations on lattices

ℓ ηℓ bℓ sℓ vℓ

0 ξ0 0 0 0

1 ξ1 0 0 0

2 ξ3
1
2 0 0

3 ξ9
1√
2

0 0

4 ξ129

√
3

2 0 0

5 ξ11
1
2 + 1

2
√

2
1 0

6 ξ131
1+

√
3

4 + 1
2
√

2

√
2 0

7 ξ41
3

2
√

2

√
3 0

8 ξ15 1 2 0

9 ξ43
3
8 + 3(1−c)

2
√

2
3+

√
3

2
1
6

10 ξ139
1
2 + 1

2
√

2
+ 1

2
√

3
1+

√
2 1

6

11 ξ153
1
2 + 1√

2
2
√

2 0

12 ξ105 3
√

2c 2
√

3 1
3

13 ξ99
3
8 + 1+3c

2
√

2
+ 1

4
√

3
1
2 +

√
2+

√
3

2
1
6

14 ξ214
3
8 + 9c

2
√

2
3(1+

√
3)

2
1
2

15 ξ124
5
8 + 1+3c

2
√

2
3+

√
3

2 +
√

2 1
3

16 ξ248
3
4 + 1

2
√

2
+ 1

4
√

3
2+

√
2 1

3

17 ξ126
3
4 + 3c√

2
3+

√
3 2

3

18 ξ246
3
4 + 3c√

2
3+

√
3 2

3

19 ξ252 1+ 1
2
√

2
3+

√
2 1

2

20 ξ254
9
8 + 3c

2
√

2
9
2 +

√
3

2
5
6

21 ξ255
3
2 6 1

Table 4.The values of the constants c1, c2, c3 for the
continuous case, cf. Eq. 28, and the four considered
pairs of complementary adjacency systems.

103c1 c2 103c3
continuous 0 −0.5 8.181. . .
(F26,F6) 0 −0.75 15.625

(F14.1,F14.1) −1.248. . . −0.105. . . 12.770. . .
(F14.2,F14.2) −3.294. . . −0.110. . . 13.918. . .

(F6,F26) −0.409. . . −0.547. . . −9.449. . .

In order to assess the asymptotic behaviour for
a ↓ 0 of the estimatorŝSV , M̂V , and χ̂V , Eqs. 29, 30,
and 31 are compared with Miles’ formulae. It can
bee seen that̂SV is asymptotically unbiased fora ↓ 0
(multigrid convergent). This is related to the fact that
the estimators of the Euler numbers of 1D Boolean
models are asymptotically unbiased, see Serra (1982).

For Boolean models with balls of random
diameters it can be shown that the asymptotic bias of
M̂V is

lim
a↓0

EM̂V −MV = −0.045872λ 2S̄2e−λV̄ .

This corresponds to a result in Serra (1982), where the
estimation of the Euler number of a planar Boolean
model was shown to be asymptotically biased. In order
to assess the asymptotic bias ofχ̂V , the constants
c1, c2, c3 have to be compared with the respective
ones in Eq. 28. Obviously,̂χV is always biased. More
precisely, the asymptotic bias is even infinite for the
pairs(F6,F26), (F14.1,F14.1) and(F14.2,F14.2).

For (F26,F6) the coefficientc1 in Eq. 31 vanishes
and thus the difference of the right-hand sides of
Eqs. 28 and 31 is finite. However, the error in Eq. 31
can not be estimated and thus the asymptotic behaviour
of χ̂V is unknown for(F26,F6).

DISCUSSION

The probably most intuitive method for measuring
the surface area is based on rendering data, see,
e.g., Lindblad and Nyström (2002), where the
areas of the surface patches serve as weights for
computing the surface area from local knowledge,i.e.,
from the numbers of pixel configurations. However,
this type of estimator is not multigrid convergent.
There are alternative methods also based on an
explicit approximation of the boundary without further
assumptions but ensuring multigrid convergence, see
Klette and Rosenfeld (2004) for an overview. However,
these approximations are expensive since they are not
local.

As pointed out in Section 4.2, the surface area
can be measured directly from the binary volume
image without need to approximate the surface. We
are starting from the local knowledge represented
by the numbers of 2× 2 × 2 pixel configurations
on cubic primitive lattices and ask for the best
choice of surface weights. The weights suggested
by Lindblad (2005) minimise the estimation variance
of the surface area of a plane with random normal
direction uniformly distributed on the unit sphere.
This idea goes back to Mullikin and Verbeek (1993),
see also the discussion in Windreichet al. (2003).
A comprehensive treatment of the subject of surface
estimation is due to Ziegel and Kiderlen (2009). Their
weights minimise the asymptotic worst case error for
surface area estimation for decreasing lattice distances
(multigrid convergence). This approach is based on a
general asymptotic result proved in Kiderlen and Rataj
(2006). It also allows a comparison of the various
methods for surface estimation. As shown in Ziegel
and Kiderlen (2009), the maximum asymptotic relative
error for general setsX is 12.8 % for the weights
suggested in Lindblad and Nyström (2002), 7.3 % for
the weights given in Lindblad (2005) and Schladitz
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et al. (2006) and 4.0 % for the best choice in Ziegel
and Kiderlen (2009).

The approach based on the Crofton formulae has
a number of advantages. First, the method of surface
area estimation can simply be extended to arbitrary
dimensions and to most of the other intrinsic volumes,
in particular the integral of the mean curvature which
measurese.g. the length of fibres in non-wovens or
the total length of edges of open foams. Furthermore,
this approach works for arbitrary homogeneous lattices
so that we are no longer restricted to cubic primitive
lattices, see Chapter 4 in Ohser and Mücklich (2000)
and Langet al. (2001). This is an important fact since
many imaging techniques like nano-tomography by
electron microscopy combined with focused ion beam
slicing produce images on non-cubic lattices.

The diverging bias of the Euler number estimators
of Boolean models is due to the huge number of tiny
‘tunnels’ and single background pixels between just-
touching grains in discretisations. These tunnels and
single pixels can be removed by smoothing the surface,
e.g., with a morphological closure before determining
the Euler number. On the other hand, when assuming
alternative (and even more realistic) sampling models,
e.g., suggested in Hall and Molchanov (1999), the
bias in χ̂V is probably much smaller than for theLn-
sampling considered in the present paper.

ACKNOWLEDGEMENTS

The authors very much appreciate fruitful
comments by an unknown referee and Markus
Kiderlen whose suggestions improved the paper
considerably. Katja Schladitz was supported by the
Rheinland-Pfalz cluster of excellence “Dependable
Adaptive Systems and Mathematical Modelling”
(http://www.dasmod.de/). The research of Joachim
Ohser was supported by the FH3-programme of the
German Federal Ministry of Education and Research
under project grant 1711B06.

REFERENCES

Blasquez I, Poiraudeau JF (2003). Efficient processing
of Minkowski functionals on a 3d binary image using
binary decision diagrams. In: Journal of WSCG, vol. 11
(1). WSCG, Plzen, Czech Republic: UNION Agency-
Science Press.

Guderlei R, Klenk S, Mayer J, Schmidt V, Spodarev E
(2007). Algorithms for the computation of Minkowski
functionals of deterministic and random polyconvex
sets. Image Vision Comput 25:464–74.

Hadwiger H (1957). Vorlesungen über Inhalt, Oberfläche
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