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ABSTRACT

The densities of the intrinsic volumes — in 3D the volume dgnsurface density, the density of the integral
of the mean curvature and the density of the Euler number —-aarery useful collection of geometric
characteristics of random sets. Combining integral andaligeometry we develop a method for efficient
and simultaneous calculation of the intrinsic volumes oid@n sets observed in binary images in arbitrary
dimensions. We consider isotropic and reflection invarBodlean models sampled on homogeneous lattices
and compute the expectations of the estimators of the gitrirolumes. It turns out that the estimator for the
surface density is proved to be asymptotically unbiasedfamimultigrid convergent for Boolean models with
convex grains. The asymptotic bias of the estimators fod@vesities of the integral of the mean curvature
and of the Euler number is assessed for Boolean models af dfalandom diameters. Miles formulae with
corresponding correction terms are derived for the 3D case.

Keywords: Boolean models, digital topology, image analyd¥iles’ formulae, Minkowski functionals,
guermass densities, volume images.

INTRODUCTION basis of our method, see also Chapter 4 in Ohser
and Mucklich (2000) and Langt al. (2001). The

With the fast development of new materials like Crofton formulae reduce the estimation of intrinsic
foams or fibre reinforced composites there is aolumes to the estimation of the Euler number in
growing need for non-destructive testing and structuréower dimensional sections. Therefore, the present
characterisation. Often, geometric characteristics dgpaper is based on thorough investigations of digital
the whole structure have to be estimated from the give@onnectivity and consistent estimation of the Euler
2D or 3D image of a small sample. A very attractive sepumber, see Nagedt al. (2000); Ohseet al. (2002;
of geometric characteristics are the intrinsic volume2003); Schladitzt al. (2006). The consistency results
(or quermassintegrals or Minkowski functionals). Onfor the Euler number estimates of foreground and
the one hand, they include the widely used voliwpe background established in Ohsetr al. (2002) carry
surface are&, and Euler numbeyx. On the other hand, over to all intrinsic volumes. In order to give the
they are in some sense complete, see Hadwiger (1957§ader a comprehensive description of our approach
The fourth intrinsic volume in 3D — the integral of Making the latter as self-contained as possible, we
mean curvatur® — has nice interpretations for various recall some facts addressed in the papers mentioned

structures, too. In particular for random fibre systems@bove. In the present paper it is shown that this
it is proportional to the total fibre length. approach can be extended on all intrinsic volumes in

. arbitrary dimensions.
Throughout this paper, we assume that the
structure of interest is observed in ardimensional In order to check the accuracy of the proposed

binary digital image. That is, the structure is given byMethod, the bias of the estimators is computed
its intersection with a lattice and a cuboidal window o Macroscopically homogeneous (stationary) and
and values associated the lattice points indicatin
structure (1) or background (0).

otropic Boolean models. Using ideas of Serra (1982),
e show that our surface area estimator is multigrid
convergent for this very rich class of sets. However, the

The well known integral geometric Crofton bias of the estimators for the integral of mean curvature
formulae provides a method for determining theand for the Euler number does not necessarily vanish
intrinsic volumes from lower dimensional sections ofwith decreasing lattice distance. Even worse, for three
the structure. A discretisation of this formula is theout of the four adjacency systems examined, the bias
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of the Euler number estimator diverges. Nevertheless, POINT LATTICES AND PIXEL

for lattice distances in the range of 1% to 10% of the  CONFIGURATIONS

mean grain size of the Boolean model, the estimation

is sufficiently accurate for practical applications. The Image data are usually given on homogeneous
explicit formulae for the bias of the estimators lead topoint latticese.g, thecubic primitive latticeL." = aZ",
formulae connecting the estimated intrinsic volumes > 0, whereZ denotes the set of integers amds the
with the parameters of the Boolean model. Thdattice distance. Of course, most images are given on
structure of these formulae resembles the originabrthogonal lattices. However, we will consider lower
Miles’ formulae (Miles, 1976) in the Euclidean spacedimensional section lattices of cubic or orthorhombic
with additional terms correcting for the discretisationlattices, too, which are not necessarily orthogonal.
effects. Hence we introduce homogeneous lattices in a more

H q hod vields a f I hm § general setting.
The presented method yields a fast algorithm for n . n
simultaneously determining the intrinsic volumes an _Let ul,...,uB EtrI]R foi”ﬁ afbafls of R tand _:_it

their densities. The core of the algorithm consists in n__(lijliﬁ‘ isungallee d 22:3 drilr);gng?o%g}ﬂgri%Oésr{eouesn
convolution of the binary image with a suitably Chosenlattige Th 9

2" mask resulting in a grey value image, see Lan

et al. (2001); Ohser and Miucklich (2000). All f_urther 0,un] of the segment0, ui] between the origin 0 and
steps are based solely on the grey value histogra e lattice pointsi. Its volume is voC = |detU] > O,

whose size does not depend on image size or content,q the value ofdetU | does not depend on the choice
Thus the advantage over other methods for estimating the |attice basis.

the intrinsic volumes, see Blasquez and Poiraudeau _ _ N N
(2003); Schmidt and Spodarev (2005) are simplicity 1 h€ intersectiorX NIL" of a compact seX C R

and speed of the algorithm. The surface area in 3@"d @ homogeneous lattiée is called al."-sampling

is measured directly from the binary volume image®! X: In the language of image processiig,L" is the

without need to approximate the surface. Moreover?
compared to empirical marching cubes methods like Locally, anL"-sampling ofX can be described by
in Windreich et al. (2003), only a small number of pixel configurations which are specified as follows:
pixel configurations has to be taken into account. Inrhe vertices of the unit celC are indexed, and we
Schladitzet al. (2006) the weights for the surface Write Xj = $1L; Ait; with the indexj = 7, 2~ 1A;,
are compared with those of Lindblad and NystromAi € {0,1}. Clearly, the unit cellC has 2 vertices,

(2002), see also Ziegel and Kiderlen (2009) for a soundi € #°(C), j =0,...,2" — 1, where°(C) denotes

the indices for all subset® C .79(C). Let 1 denote

This paper is organised as follows: First wethe indicator functionj.e, 1(x€ §) =1 if xe€ & and
repeat some facts about homogeneous lattices aidgx € &) = 0 otherwise. An indeX is assigned to §,
summarise results on adjacency systems and Euland we writeé, if
number estimation from Naget al. (2000); Ohser on_1q
et al. (2002; 2003); Schiladitzet al. (2006). Based /= ZO 2] Axj € €é), (1)
on concepts of section lattices and their translative =
complements, we derive discrete versions of th 0 .
Crofton formulae for polyconvex sets and from these?% all £ € 77(C). We havel € {0,...,v} with v =
estimators for the densities of the intrinsic volumes of_— L- That means, the powers of 2 af‘;gised for
random sets. In particular, we compute weights for th(SEnCOdIng the vertices. Notice theg= 0, & =7 (©),
estimation of the density of the integral of the mea andé,_¢ = &y \ &. The set, can be considered as a

g o ocal pixel configuration of the foreground.

curvature inR®. Finally, we present Miles’ formulae
for Boolean models irR" sampled on homogeneous  We use pictograms to illustrate configurations
lattices. In principle, we follow Ohseet al. (2003) Wwhere full discs mark foreground pixels and empty
where formulae are given for the density of the Eulediscs mark background pixels, see Table 1 for
number of Boolean models [k with balls of constant €Xamples. Sets of pixel configurations are denoted by
diameter. These results are generalised as follows: Wictograms with vertices not marked with a disc, which
derive formulae for the expectations of the densities ofan e either foreground or background pixels, see
the intrinsic volumes for Boolean models with convex '20l€ 2.
grains. Advantages and drawbacks of the presented In the case of a cubic primitive lattice which is
method are discussed in the last section. highly symmetric, the pixel configuratiods C .#°(C)

e closedunit cell of L" w.r.t. the basis
EEjl,...,un is the Minkowski sumC = [O,u;] ® ... ®

et offoreground pixelaindX°N1IL" is thebackground
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are commonly grouped in equivalence classes.#et Then[ is called alocal adjacency systerndF =

be the set of all linear isometries (rigid motions andJyjn(Fioc + X) is said to be aradjacency systerof
reflections) leavind." unchangedi.e., 6L." = " for  the latticel.".

all 8 € .#. The configuratior€,, is equivalent toé,,

if there is a8 € .# and ay € 1" such tha9&,, +y = From (i) it immediately follows that7°(F) = LL".

és,. By Do, ...,Dy, we denote the congruence classed he conditions (ii) and (iii) ensure that the Euler
of {&,...,&} under.#. Furthermore, we choose a number of the uniondJ{F € F : Z°(F) C &},
system{no,...,Ny,} Of representativeg; € D;. We {=0,...,v, can be computed via the Euler-Poincaré

write nf for a representative of the equivalence clas§ormula and the inclusion-exclusion principle, see
of ZO(C)\ ; Schneider (1993). Condition (iv) prevents the
J.

existence of many different local adjacency systems
Since the intrinsic volumes are motion invariantgenerated from the same ’basic bricks’.
characteristics, their weights can be presented interms 1,4 pairl = (Z(F), Z1(F)) is said to be the

of the congruence classes instead for the complete Sﬁéighbourhood grapbf F; it consists of the se#°(F)

of pixel configurations. They + 1 = 22 congruence ot yertices and the se?(F) of edges. All vertices

classes in the 3D case are given in Table 1 with oufre of the same order sindeis homogeneous; +

choice of representative, ..., N21. x =T, x € LX. The order of the vertices is called the
connectivityof L.". We write Fy,, if the corresponding
neighbourhood graph is-connected.

ADJACENCY AND EULER For n = 3 we recall the adjacency systerfs,

NUMBER F141, F142, andF,g considered in detail in Ohset al.
(2002; 2003).

In the literature the adjacency relation of lattice— [Fgis generated by the singleton containing the unit
points (or pixels) is usually characterised by a cellC,i.e,Fg= ;.3 U?:Oﬁl(Cer).
neighbourhood graph and the complementarity of
adjacencies is defined via the Jordan surface theorem
(Jordan-Brouwer theorem), see,g, Lachaud and
Montanvert (2000). Here we follow Ohsest al.
(2003); Schladitzt al. (2006) where the definition of _ _
adjacency is based on a consistency relation for the F1a2 is generated by the family of tetrahedtzs,
Euler number. F141, Fr49, F169, F177, andFo12.

We first consider the convex hulls, = convé, The maximum adjacency systeffbs On L is

of a configuration§, forming convex polytopes with generated bffioc = {Fo. ..., Foss}.

F, C C and #9(F) C #°(C), £ =1,...,v. We set Now we introduce a discretisation of a setw.r.t. a
Fo = 0. Let.Z1(F) denote the set of ajl-dimensional  given adjacency system.

faces of a convex polytope. For a setl of convex _ , o

polytopes write.Z i (F) = U{.Zi(F) : F € F} using Definition 2 The discretisationX M F of a compact
the conventionJ{.Z!(F) : F € F} = Urp Z(F). subset XC R" w.r.t. a given adjacency systefnis
Furthermore, byA we denote the topological closure def!ned as thg union of all elementsfofhat have all

of asetA C R" and #N denotes the number of elementstheir vertices in X, i.e.,

of a finite setN. XNF=|J{FeF: Z°%F)CX}. 2)

F141 is generated by the tessellation@into the

6 tetrahedrdrizo, F141, Fi63 F177, F107, F209 i.€.,
F141 is the smallest adjacency system containing
these tetrahedra.

I An adjacency systefffi can be seen as a set of 'bricks’
Definition 1 LetFio: C {F.O’.' - Fy} be a set of convex ¢ the discretisation where a 'bricke € F is a subset
polytopes = convé, fulfilling the conditions of the discretisation oX if and only if all vertices of

- belong toX. Notice thatX MFF = (XNL") 1T, i.e, the

i) 0 € Fc, C € Fige, . o . . P

M) € Fioc, C € Fioc _ discretisatiorX MF is determined by th&"-sampling
(i) ifF € FiocthenF'(F) C Fipc fori =0,...,dimF, of X alone.

(iii) if Fi, Fj € Floc andconF UFj) ¢ Fioc then FNF;, As in Ohseret al. (2002; 2003); Schladitet al.
F\F;, F\F € Foc. (2006) we approximatX by a discretisatiolX M F
P AT e w. r.t. an adjacency systelfh Since the seX 1F forms

(iv) if F,...,F, € Fioc and F = UT‘:lF.j is convex a (not necessarily convex) polyhedron, the number
then Fe Fioc, m=2, ..., #F|oc. #7)(XMT) of elements of#! (XM F) is finite and,
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therefore, the Euler numbgi X M) can be computed but they are independent &f. On the other hand, the

via the Euler-Poincaré formula, vectorh = (hy) is independent of". The components
. of wfor the adjacency systenig, F141, F142 andFog
X(XAF) = %(71)j#yj (XMF). 3 ©n L3 are given in Ohseet al. (2003).
=

Now following Jernotet al. (2004), we consider

a refinement of Eq. 3 which is possible whé&h

In order to apply a “local method” for measuring is generated by a tessellatisth = {Pi,...,Pn} C

the Euler number we consider a local version of theFo,...,F/} of the unit cellC. The setR are n-

Euler-Poincaré formula (Eq. 3). The conditions (i) dimensional polytopes with)"; R = C and int? N
and (iii) in Definition 1 ensure that the Euler numberintP; = 0 for i # j, where inP denotes the interior

of a discretisatio’X M F can be computed from local of P. Then the periodic extensidft = Uycpn (%0 + X)
knowledge. We observe that for the local configurations a (deterministic) tessellation &". We assume that

& =XNCNL"of XNL"we haveé MF = (XMF)NC. ¢ forms a face-to-face tessellation. As in Ohseal.
Now we define the weights (2002), we call a tessellatio having the above

_ properties amdmissible tessellation

e =min{j : thereis &G e .#!(C) with F C G},

4)
for correcting effects occurring at the cells’ edges. ~ .

The expression 2HF is the number of lattice cells e =#Pcd  FCP,

coveringF, i.e, the faceF belongs to totally 2°*F  ¢o,F e Zi(R)andj=1,...,n. We follow Jernoet al.

neighbouring cells. Thus, the reciprocal weigHt 2" (2004) where an alternative versigg§ of the local
should be used when countirfg locally. Now the  Eyler number is defined as

numberyg can be introduced as

Let [ir be the number of cells & coveringF,

n ) XS(EZ HF) =
Xo(&MF) =S (-1} S 287" (5) m 0 : 1(FO(F) C&NP)
=0 FeZ1(&F (-1’ ~— - (N
J S i;JZO Fe;(ﬂ) He
for¢=0,...,v. We havex(((&+x)NF) = x5(&NIF) 0
for all x e L", cf. also Jernoet al. (2004). In fact,x; Wy
can be considered as an edge-corrected localisation of . . L
X. One observes that It follows that X = xg and thus Eq. 6 is valid witlyg

instead ofy.

i Z HF+xCC)=#71(&NF), Finally, we introduce pairs of complementary
Fe.Z) (&) xelL adjacency systems. In the continuous case the
consistency relation x(X) = (—1)""1x (X°) is
fulfilled for all compact, polyconvex and topologically
regular setX C R", see Ohseet al. (2002); Rataj and
Zahle (2003), and a similar relationship should hold in
the discrete case.

for all & C .Z9(C). Now, the additivity and translation
invariance of the Euler number and the fact tXat
F = (XNL")NF yield

X(XTIF) = n)(c?(Cﬁ((Xl_lF)*X)) (6)

v Definition 3 The pair (F,F.) is called a pair of
= Z X0(&MF)L(& +xC X)1(&,_r+xC X°) complementary adjacency systeihgX M) N (X°r

xeLn (=0 F¢) = 0 and
\%
Z/ZXS(EE'_'F) Z 1(&+xC X)1(& _+xC X X(XMF) = (=)™ (X°NF,) , (8)
=0 xelLlh
W, hy for all compact XC R". An adjacency systeffi is

called self-complementaryf (XM F) N (X°MF) =0

with the convention O = 0. The last equation shows andx(XF) = (—1)™1x(X°r1F) for all compact X.
that the Euler number can be written as a scalar

product of the vectorsv = (w;) andh = (hy). The For a given adjacency systelf there does not
componentsv, = x; (& MF) of the vectorw = (w;)  necessarily exist a complementary adjacency system
serve as weights for computing the Euler number. 1., and until now there is not known a constructive
is important to realise that these weights depent,on way to findF.. Furthermore, the criterion of Definition
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3 is not appropriate for checking complementarity. Aof the section lattice over alifrom the corresponding
simpler criterion is given in Schladitt al. (2006). translation latticg L"K yields the cubic latticé." =
k .
o 3 . UxeTrn-« L 4-X. However, the translative complement
It turns out that the 6-adjacency oh” is is not necessarily uniquely determined. Nevertheless,

::omplelrpentaryl/ to t?e 26-da_djacency ar:d thelie ar oosing one of the translative complements arbitrarily
WO _sell-complementary adjacency Systems XNOWR, ..o oyt to cover all applications presented in the

on L3, the 14.1-adjacency and the 14.2-adjacenc3fo”OWing

In (cj)t(her WO)rdS,(F&FzG), ](CF14.17IE‘|14.1), (F14.2,1514.2) '

and (IFp6,Fg), are pairs of complementary adjacency

systems orlL3, see also Ohseet al. (2002; 2003); MEASUREMENT

Schladitzet al. (2006). We denote by.Z* the set of allk-dimensional
linear subspaces ofR"; ‘L is the orthogonal
complement oL € .#%; V,, is then — k-dimensional

INTRINSIC VOLUMES Lebesgue measure dih, andu denotes the rotation
invariant measure or’* with p(.#*) = 1. Now the

The Crofton formulae reduce measurement of th&rofton formulae for the intrinsic volumes,_(X) of
intrinsic volumes to computation of Euler numbers in@ cOmpact and polyconvex setcan be written in the
lower dimensional sections. A discretisation of thesd®'™m
formulae combined with an efficient calculation of oV k(X)
the Euler numbers in the intersections yield a fast "% "k
algorithm for simultaneousl_ydetermining the intrinsic ://X(Xﬂ(Lij))VLL(dy)u(dL)’ 9)
volumes from anL"-sampling of X. The backbone
of the Euler number calculation is a thorough
investigation of digital connectivity and consistency. p'>‘<(L)

KA

SECTION LATTICES AND TRANSLATION <= %+ =1, with the constants

k+1 —k+1
LATTICES g - TEF)T(55)
nok = .
. . VT (%54)
Let X ¢ R" be a compact sei.€., an object or 2
a particle). We assume that is polyconvex,i.e, X  This means that the intrinsic volumes can be expressed
is a finite union of compact convex sets. The Croftorin terms of the Euler number measured on lower-
formulae for computing the intrinsic volumesX¥fuse  dimensional subspaces.
section profiles oK on affine subspaces&f'. In order

to obtain a digitised version, we introduce SeCtionyq jntegrand in the Crofton formulae (Eq. 9) is known
lattices of a given homogeneous lattit8 and their ¢, only a finite number of elements a¥* and the

translative complements in analogy to linear subspacgs, ysjationL +v is possible for discrete values gf

and their orthogonal complements. only. That is, both integrals in Eq. 9 are approximated
by sums. Furthermore, the intersecti®n (L +Y)

Definition 4 A pair (LXTL"¥), k=1,...,n—1,is must be replaced by its discretisationr1 (F + y)

called a kdimensional section lattideX equipped with ~ With respect to an adjacency systéin L* where

the translative complementL", if there exists a L = sparlLk. Finally, the translationg are from" "X
basisvs, ..., Vvn of L" with instead of'L, where' L" ¥ is a translative complement
according to Definition 4.

The observation oK on the latticel." implies that

(I) ]Lk = (Vla s aVk)Zk )
(i) TLK = (vierr, ... Vi) Z0K, DISCRETISATION OF THE

(ii) there is an>e #9(C) with {va, .., vi} € #O(C+ TRANSLATIVE INTEGRAL
x) whereC is the reflection of the unit cell &f" at For simplicity we restrict ourselves to the special
the origin. case whereX is observed on a cubic primitive
lattice. Nevertheless, this is not a substantial resmicti
Condition (iii) ensures that integration over 'local and the following considerations can be extended to

knowledge’ on the image data is possible as needgd Pitrary homogeneous lattices, too.

later. The translative complemeit" X has properties Let Ck andFK be a lattice cell and an adjacency
similar to those of the orthogonal complement of asystem of a section lattickX of aZ", respectively.
linear subspace. In particular, the union of shiffs-x  Denote by TC"* a unit cell of the translation
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lattice TL" % of L (according Definition 4) and by the most time consuming part in the estimation of

proj'C"X the orthogonal projection ofC" K onto the translative integrals in Eq. 9. Thus, from the

1L = L(sparlL¥). Denote its volume by vp, := algorithmic point of view the following question

volproj'C"K and note that the ratio “pk/an—k isan arises: Is it possible to compute all translative integrals

unscaled quantity. We have from the samdn determined just once for a given set
X and latticel."? In order to use this onk for all

. T~n_k__ VOIC . _ dimensionsk and all section lattice&.X, the vectors
VPn_i = volproj C™% = volCK’ k=1...n=1 &0 of weights have to be adapted, such that the scalar
(10)  productw®¥h® has a representation @§9h. In order

rule, the translative (inner) integral in Eq. 9 can bej) pye to Definition 4(iii), the section latticeX has the

approximated by

PxL)~vp S X(X=y)nL)
yeTL" K
AV Y X((X—y)nFY)

yeTLM K

Do Y Y x(CN((x=ynFY-2))

yeT ]Lnfk zelLK

=VPhk Y X'()‘(Ckm((X—x)l‘le)> :

XxeLn

(11)

where the local Euler numbexf is defined as in

Eq. 5 but w. r. t. the adjacency systé&tfion the section
lattice LK.

The last expression can be considered as an

estimatorp§ (L) of the translative integrgb (L). For
a fixed section latticé ¥, the volume of projC" K

and thusp')‘((L) do not depend on the particular choice

of TLL"K, This follows directly from Eq. 10 and the
definition of thelLk, see Definition 4.

It can be seen that the right-hand side of Eq. 11 is

a scalar product,

Vk

ps(L) = %Vpnkalé(é ME) -

k(K
a" ki
- UG A+X X)Ly +XEXY), (12)
XeLn
h(

4

property that there is a translatigre I." such that
CK+4y C C. Then it follows thatCk = (C—y) NL
and

X5 (CKN (X=X ) ) =
x(C-yn((x=x 1Y),
for all x € L". This yields

B (L) =vprie 3 XE((C—y)n ((X—xnFY).

xelLn

From Eq. 5 we obtain

X5(ZNF) = x§((& —y) NFY)

for all j € {0,...,w} and all? € {0,...,v} with
{j € é—yand(,,_j C é,_,—y. Furthermore, one
gets

v
hif9 = PR R e e

for j =0,...,w.
rewritten as

Using this, Eq. 12 can be

Bi(1) = 3 ven oX5(& —y) Y

—k.. (k
a" wg)
. Z L& +XCX)L(Ey_r+XC X,
xelLh
hy

defining the vectow® = (w).

. k . . .
with v, = 22" — 1 and the local pixel configurations (ji) Now we treat those section lattices having the

¢y € .Z°(CK) on LK, where the indexing of th&,
is chosen analogously to the one for the Notice

that the vecton®™ = (Wék)) depends on the adjacency
systemF* and the vectoh® = (h*)) depends on the
sampleX NILX of X on LK.

The computation of the vecto§ involves access
to all pixel values of the image. Therefore, this is

82

property that there is no translatigne L." with
CK+y c C. Then Definition 4(iii) ensures that
there are finitely manyx € L" such that the
intersectionsCk N (C — x) generate a face-to-face
tessellation of£X. This tessellation can be refined
into a tessellatiop = {Px,...,Pn} of CXinto k-
simplicesB, such that for eacl®, there is ay; €
L" with B +v; € C and .Z°(R +vyi) ¢ .Z#°(C).
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Then the adjacency systel is generated by the Summarising formulae Egs. 9, 13 and 14, we
tessellation%,. Making use of Eq. 7, it can be obtain the approximatiow, (X) of V,,_k(X) as

shown thatp (L) has the same form as above but
with the weights

V(X a k3w,
n-k(X) = QOnok Zl /Z
m n
Wék):Vpn—k Z)(i Ca k v me ik hg,
a”Ok /Zmzl
Eém( |+Y|)) K
(= ) P
for{=0,...,v where thewg’k) are the coefficients corresponding

to the adjacency systerriEik on the subspacek;

Summarising, we have shown that for all dimensikns according to Eq. 13.

and for all section latticekX, the translative integrals
p§ (L) in the Crofton formulae (Eq. 9) can be estimated
via

v
k(L) = a”*klz w¥h,, k=1,
=0

whereL = sparlLX is the corresponding subspace.

n—1, (13)

Table 1.Surface area weightgv(l), weightsvaE,z)
for computing the integral of the mean curvature and
the weights ¢?) for the Euler number. The weights for

the Euler number are given for the paif&g,[Fog),

OVER ALL SUBSPACES (F1a1,F141), (F142,F142) and (Fze,Fe) (from left

) _ _ o to right). The table shows the values fév(® for

From thel."-sampling ofX the estimatom}(Li)  ease of reading. The weights f¢F141,F141) and

DISCRETISATION OF THE INTEGRAL

many subspaces; = sparLk P=1...m only. the adjacency systerfiss 1 andF141 are not isotropic
Hence, one has to find an appropriate approxmatlon e., invariant w. . t. the linear transforms in7).
of [y PX(L)du(L).
Applying a simple quadrature yields i 0 4ng1) ZHV,EZ) 8v§3)
[ PLauL)~ [ B duit) 0 & MW 0 0 0000
K K 1 & @ 0376 0590 1111
me 2 & % 0659 0728 0000
~ (K) sk 3 & 0.646 0616 2 00-2
i;y' Pl (1) 4 &0 Il 0588 0687 20 0-6
5 & @ 0839 0446 -1-1-1-1
where y® are suitable weights. The choice of these 6 &3 [l 0.768 0426 1-1-1-3
weights is not trivial since the plands,...,Lm are 7 & [ 0813 0334 3-3-1-1
not uniformly scattered i”¥. Moreover, the estimates 8 &s O 0927 0O 0000
PX (Li) of the pk (L;) are not of the same accuracy for 9  &s {0914 0 -2-2-2-2
different subspaces. In 2D, therderiodic rectangle 10 &30 I 0.856 O -2-2-2-2
rule leads to weights which are proportional to the 11 &s3 l 0785 0 00-20
lengths of the Voronoi arcs corresponding to directions 12 105 0874 0 4-8 0 4
of the straight lined,;. This geometric interpretation 13 &g 0.843 0 0-2-20
can be extended to higher dimensions which leads to 14 214 0.813 -0.334 -1-3-1 3
a generalisation of the rectangular rule. For the special 15 124 Ul 0.768 -0.426 -3-1-1 1
case of a cubic primitive lattick® = aZ3, a> 0, we 16 &o4s 0.839 -0.446 -1-1-1-1
haveyi( ) = yi( ) for all i, and the numerical values are 17 &126 0.588 -0.687 -6 0 0 2
© . % 18 Eug 0.646 -0.616 -2 0 0 2
Yo = 0.091556 fori = 1,2,3; i = 0.073961 for 19 &, M1 0659 -0.728 0000
i=4,..9; yi(k) = 0.070391 fori = 10,...,13, see 20 &xsa NI 0376 0590 1111
Langet al.(2001). 21 & U O 0 0000
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The last equation shows that estimates of the In principle, the intrinsic volume densities of a
intrinsic volumes/,_g(X) can also be written as constituent can be estimated by the intrinsic volumes
related to the volume of the observation window, see

~ ank Chapter 4 in Ohser and Micklich (2000) and Lang
_ (k) — _
Vo-k(X) = O!nOkV h, k=1,...,n-1, (19 et al. (2001). Alternative approaches Klerdt al.
(2006), Mrkvicka and Rataj (2008), Schmidt and
with the scalar products®h of the vectorsv¥) =  Spodarev (2005) are based on solutions of systems

(vék)) andh. We complete the above set of estimatorf linear equations deduced from the local Steiner

by those of the volum¥, and the Euler numbad, of formula, see Section 4.4 in Schneider (1993), or
X the principal kinematic formula. These methods are

Vh(X) = aVvOh studied in detail for the 2-dimensional case but work
’ in principle in arbitrary dimensions. Comparisons for
with the coefficients/”’ = volC/a" for odd ¢, and Boolean models in 2D in Guderlett al. (2007) and
Mrkvicka and Rataj (2008) show, that the accuracy of
the resulting estimators is sometimes higher than of
those given in Chapter 4 of Ohser and Miicklich (2000)
using the present approach. However, so far none of

_ - ) these algorithms has been proved to work in practice
with the coefficients/,” := w, = x{(§,MF) whereF  in dimensions > 3.
is an adjacency system @'

Forn= 3 we getazo; = Q302 = 3. The intrinsic MACROSCOPIC HOMOGENEITY
volumesV, andVy, and thus the surface ar8and the
integral of the mean curvatuM, can be estimated as

S(X)
M(X)

v,(zo) = 0 otherwise;

Vo(X) =vWh,

Let = be a macroscopically homogeneous random
set onR" observed in a compact and convex window
~ W with nonempty interior. Assume now that the
25(X) = 4a*vh, realisations of= FE);J/Iong to the extended convex ring
V1 (X) = 2mav®h almost surely and thus their intersections withare
polyconvex sets. Furthermore, assume Mitlfils the
The surface area weightsv@, also published in integrability conditionE2#="K) < e for any compact
Schladitzet al. (2006), the weights a2 for the and convex seK, where & denotes the minimal
integral of mean curvature and the weigtft8 for the numbem such that the seX has a representatioh=
Euler number are presented in Table 1. The weights fdf1U. .. UKmn with compact and convex sefs, . ..., K.
the Euler number were first published in Ohstmal. Then theintrinsic volume densities\M of = exist and

(2002). can be defined by the limits
The surface area and the integral of mean curvature . BV(ENW)
are rotation invariant functionals. Thus the weights Wk(=) = 'IE‘LW’ k=0,...,n,

can be presented for the representativgsof the

congruence classeB; of the pixel configurations seege.g, Schneider and Weil (2008), p. 398.
&o,- - ., 255 Notice that for the surface area the weights

for complementary representativg$ are the same The random s_eEn may be observed on the
as for n; while in the case of the integral of mean N0mogeneous lattic&" with the unit cell C. By
curvature the sign switches. =NL" we denote thel."-sampling of = where "

is a equipped with a paifF,F.) of complementary
adjacency systems. Furthermore, as in Section 4.4
the section lattice&. of IL" are equipped with pairs
(FX,FX.) of complementary adjacency systemss

L . 1,....m, k=1,....n—1. Again, for the sake of
Instead of deterministic sets we consider now, M g

: : simplicity we concentrate on samplings on cubic
random sets widely used as geometric models for . ... :

: ) > primitive lattices.
constituents of microstructures. The characterisatio
of a constituent simplifies considerably in case of Now the method described in Section 4.2 is
macroscopic homogeneity and even further if theadapted to the measurement of the volume density. We
microstructure is isotropic, too. In these cases, thehoose a windoW such that."n (W eC) # 0, where
intrinsic volume densities are important geometridV © C is the windowW reduced by the reflection

characteristics of the constituents. of the unit cellC of L". Furthermore, leth = (h)

INTRINSIC VOLUME DENSITIES
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be the vector of numbers of local configurations inTable 2.The weightg_ﬁk) for the 22 congruence classes

=NWnL"Y, of the local pixel configurations in 3D-images. The
& - - first, second, third, fourth column @0) correspond
hy = 1 XCZ)1(éy_r+xC =, ' N ’
' XeLn%W@é) (&t vt ) to the pairs(Fz6,F6), (F141,F141), (F142,F142), and

(Fe,F26), respectively.
for £ = 0,...,v. Then estimators of the intrinsic

volumesW n_k can be given by _
n i n g—ﬁl) gEz) 8@?3)
T (Z) = avkv(Kh (16) 0 & 0 o 000 O
T LN (WS C) volC 1 & 00 o751 0751 111 1
for k=0,...,n. These estimators are usually biased 2 & % 0275 -0.861 -3 i z Z
for k > 0. Because of the macroscopic homogeneity 3 & 0314 -1076 0-3-3 -
of =, the expectations of theéA,, x depend on 4 &[0 0163 0314 0-1-1 -4
the probabilities that the local configurations 5 & B o 0549 0 6 6 12
belong to the foregroun& and the complementary 6 &3 0 0628 0 6 4 24
configurationsé,_, are in the backgroun&®. From 7 & I o 0325 00 2 8
_ n _
Gttt R S A LIS
= ovob== 9 & [ o 0 00-2-8
~ - 1 & — —c 10 &zl O 0 0-6-2-24
Ew,n—k(:) = anOkak /;Vg P(Eé c = EV—E c= ) ) 11 &5 @ 0 0 00 0 -6
(17) 12 &5 0 0 000 -2
fork=0,...,n. 13 &g9 0 0 0 0-2-24
In order to assess estimation errors in 14 <214 0 0 000 8
the theoretical considerations below, the above 15 &i24 0 0 0 0024
probabilities are expressed in terms Bfé, C =°). 16  &oug 0 0 0 0 024
For each local configuratiofy and a pointx € &, one 17 106 0 0 000 -4
gets 18 &g 0 0 00 0-12
P(& C =& CZ° 19 &2 0 0 0 0 0-12
= P(&\{}CZ& ,C=9) o S O SRR
~P(&\ {x} CZ,&_U{} C=°. 255 - -
Recursion yields the linear equation system
Vv
P(& C=& - C=%) = ZobjeIP’(E,- C=%, (18) MACROSCOPIC HOMOGENEITY AND
1= ISOTROPY

for/=0,...,v, where thebj, are integers. (We remark Let now = be macroscopically homogeneous,
that Eq. 18 as well as the explicit values of thhecan  jsotropic and the distribution o is invariant under
be derived from the inclusion-exclusion formula, t00.)yeflection at the origin. For cubic primitive lattices
Plugging (18) into (17) we obtain it is sufficient to restrict the following considerations
1 v v to the congruence classds; of the local pixel
EA k() = ﬁ/z v Z}bjé]p(gj Cc =%  configurations. Then the probabilities in Eq. 17 can be
anok @™ i= rewritten as

1 - < (k) —c = —c - ,C~——=C
= i - 19 P& C= ¢ /C=)=P(njC=,nyC="),
o j;govg bje P(& € =), (19) (=& =) =P S nfC =)
(Vk) forall ¢, € Dj and the linear equation system (18) takes
g the form
. K . Vo _

fofr_k: 0,...,n,wherethe welghtgg ) are independent P(n, C =,nf C =) = Z}bjﬂp(’?i c=°),

or =. =
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for £ = 0,...,v9 and with integer coefficientd;_)jg. BOOLEAN MODELS IN R"

. V
Obviously,5 2, 1(¢, € Dj) = 1 for all £and, thus, the Let ® = {x1,X2,...} denote a macroscopically
expectations of the intrinsic volumes can be eXpreSS%mogeneous Poisson point fieldRA (the point field
by of germ3 with point densityA > 0 and =1,=>,...
v a sequence of independent and identically distributed
~ -1 —(K) ——c (i.i.d.) random, compact and convex sets (gnaing
EWn-«(2) = Qnok 8 Jzogj P(njc=9,  (0) with nonempty interior and independent & The
corresponding Boolean model is defined as the random

with the coefficients closed set

o MY ==UE+x).
G =3 b 3 vi'U& D). =1

j=0 (=0 For more detailed definitions and explanations
i see Matheron (1975); Schneider and Weil (2008);
fori=0,...,voandk=0,...,n. Molchanov (1997). In the following we assume that

Now we restrict the considerations R?. Using the random grains=; are isotropic and invariant

the weights in the Table 1, appropriate estimators of- I- . reflection at the origin. Thes is isotropic, too,
the densitiesS,, My and xy of the surface area, the and invariant w. r. t. reflection at the origin. Moreover,

integral of the mean curvature and the Euler numbefSSUM&Vk(Z1) < fork=1,...,n.

are With probability one the intersection of two grains
~ ~ ~ is either empty or has nonempty interior. Then from
= _ 4h Ni — 2mvi?h Y = v¥h the consistency relation for the Euler number and
~ayh’ VT ash V7 @sh,  Crofton's intersection formulae (9) it follows that

Wi(Z) = (—1)" D, (Z€) fork=0,...,n— 1.

For Boolean models, the probabilities occurring on
the right hand side of Eq. 20 can be written as

respectively. Their expectations are

£ P(n, € =6 = e ABN(E®0) - p—0 .. v

The expectations of volumes occurring on the

right hand side of this equation can be calculated

approximately by the Steiner formula when

N 3 _ o ) _ .

Efy = — g—ﬁ )P(’?J‘ c =9, substitutingn, \éwth its conveé hullF, convry We
can assum¥p (=1 @ ny) =~ Va(=1® Fy) which follows

for particular cases from the following lemmas.

. K= .
respectively. The values oft}g;% are listed in Table 2. Lemma 1 Let K be a compact and convex set with
nonempty interior, then

INTRINSIC VOLUME DENSITIES V(K@ [0,au) —Va(K & {0,au}) = o(a), ue S+
OF BOOLEAN MODELS asal 0.

Now we consider Boolean models sampled orProof For the Minkowski addition ofK with the
a cubic latticeL" = aZ", a > 0. In this section segmenf0,au], a> 0, we have
we present relationships between the expectations of
the intrinsic volume densities of sampled Boolean Va(K & [0,au]) = Vq(K)+aVh-1(M(K, sparu)) ,
models, the density of the germs and the corresponding (21)
expectations of the intrinsic volumes of the grainsWhere M(K, sparu) is the orthogonal projection
Following Serra (1982) p. 492ff and p. 557, weof K onto then — 1-dimensional subspacesparnu
derive formulae foiL"-samplings of Boolean models Orthogonal to the straight line spanned tyOn the
connecting the parameters of the Boolean models witAther hand
the expectations of the estimatdgy of the densities _
of the intrinsic volumes. Comparisons with Miles’ V(K@ {0,au}) = V(KU (K +au)) (22)
formulae yields the asymptotic bias of the estimators. = 2Vn(K) —cov(K, au), a>0,
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where coyK,au) = V(KN (K + au)) denotes the
covariogram function of the s&t w.r. t. u. Now, since
V(K) = cov(K,0) and

[%cov(K,tu)]

see Section 4.3 in Matheron (1975), it follows that

Vi1 (N(K, "sparu)) = — t=0+4

Vn(K @ [Oa au]) *VH(K S {Oa au})
a
cov(K,au) — cov(K,0) d
- : - [reota] ..
and thus
im Ya(K@[0.20) ~Vn(K® {0.20) _
al0 a

O

We remark that Lemma 1 holds more generally for = Z K"K

configurationst C .#°(C) andF = convé. This is a

consequence of Corollary 2.(2) of Kiderlen and Rataj
(2006) as the support function of a general nonempt

compact set ifk" is defined as the support function of
its convex hull.

Lemma2 For n > 3, balls B with fixed radius
r, configurationsé C .#°(C) and F = convé with
dimF < 2one gets

Va(Br@F)—Vn(Br®&)=0(a?) as alo.

Proof First we observe that the distance betwéemd

for all x,y € & with x #y, the Steiner formula implies
that
dimF

Vn<(F oB)U(J Fr(x)) — Knt"+ k; Kn (" Vi (F) .

xeé&

Notice that since the intrinsic volumeg; are j-
homogeneous/; (%) = 2V;(F) for a> 0, where the

Vj(%) are independent of the lattice spaciagNow
from Eq. 23, thek-homogeneity ofx and with the
above choice fot we get the estimation

—Vh(Br @ &)

(F@Bt U F(x )

xe&

k_tn—k) Vi(F)

(1<~ff>”*) ()

(24)

0<Wh(Br@F)
SVn(Br S5 F)

dimF

k_
iéinally, the assertion of the above lemma follows from

lim
al0

asn > 2, andk > 0. O

In order to estimate the error introduced by
replacing n, with its convex hullF, = convn, we

have to derive lemmas similar to 1 and 2 but for the

F is smaller than the space diagonal of the unit cellrespective expectations.

max{||x—y| :xe F,y € £} <ayn. Foralla<r/\/n
we can choos# = v/r2—na?. Then it follows that

Lemma 3 Let X be a random compact and convex

FOB C{OB CFOB. set whose distribution is isotropic and invariant
Now we replaceF @ B; with a non-convex set W.r.t.reflection atthe origin and whose interior is a. s.
having enlarged spherical sectors at the vertices dfonempty. Assume tha¥,(X) < « and that there is
F. Let H(F,u) be a supporting hyperplane Bfwith ~an& >0suchthata.s. BC X, then
normal directioruand letN(F,x) = {u€ R"\ {0} : xe
H(F,u)} U{0} denote the normal cone &fatx € F, ~Wn(X®{0,au})) =
see Schneider (1993), p. 70. TheiiF,x) N B, is the
normal cone restricted to the bd}. The spherical
sectors ofF at the verticesx are given byF (x) =
{u+x:ueN(F,x)NB}. Using this one obtains

E(Va(X®[0,au]) o(a),

asa|Oforallue S,
Proof Egs. 21 and 22 imply

Vn(x ©® [Oa au] *Vn(x ©® {07 au})
<aVh_1(N(X, sparu)) a.s.forallue "%

(FeB) UUFr

xe&

X)CE®B CF®B . (23)

Since J (K (x) —x) = B and The assumptionBV,(X) < 0 andBe C X a.s. yield
xe&
Vn—l(Bs)
(intFr (x) —x) N (intF (y) —y) =0, EVh-1(X) <n Vn(Bs) EVn(X) <o,
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see Schneider (1993, p. 327), originally due to Willswherefz(') is theith derivative off,.

(1970). Together with the convexity aX this in

turn ensures thaEVy_1(MN (X, sparu)) < o for all From the above approach and Egq. 20, the
u e S"1 giving an integrable upper bound for the left expectatlon_s of the eSt'mat.OM.””*k(:) can be
hand side. This finally allows to interchange limit andexpressed in terms of the derivatives of the functions

expectation and the assertion follows from Lemma 1ff' Using Lemma 3 f?‘”d Lemma 4, respectively, we can
0 formulate the following theorems.

Theorem 1 Let = be a homogeneous and isotropic
Lemma 4 Forn> 3, let B, C R" be a ball of random Boolean model with random, compact, convex grains
diameter with r> £ > 0 a.s. andEr" < . Then for whose distribution is invariant w.r.t. reflection at the
all configurationsé C .#9(C) and F = convé with  origin. If there is ane > O such that a.s. BC =; and

dimF < 2 one gets EVh(Z1) < 0, then
E(Va(Br ®F) —Vh(B ® &)) =0(a?) . 1 % 0
&) B a3 = 5 3 87 (14 £0)) ol
Proof Eq. (24) and the assumptidir” < o yield (26)
asalO.

E(Va(Br & F) —Va(Br @ )

dimF ok na2 ” F Proof We recall that\/vn 1(Z) is estimated from the
< > Kn-kEr 1- <1 ) aVi <—> ; data sampled on 1D section lattices. As a consequence,

=1 dimF, is 0 or 1.

and thusE (Va(By © F) — Va(Br & &)) = o(a?) using ~ Now plugging the result of Lemma 3 into Eq. 20
the same argument as in Lemma 2. O Yyields

We remark that for every functioh: R — R with IE\/Vn 1(2) =

;}@‘; (P(F, C=°) +0o(a))

f(a) =o(a™) asa | 0,m> 0, it follows that 1— ef (@ = Ono1a
o(a™M.
As F; is convex, an application of the principal GnOla/;) ¢ )
kinematic formula to macroscopic homogeneous
Boolean models gives The assertion of the theorem now follows from the
series expansion Eq. 25. O
In ]P(Fg C _C) -A EVn( 1D Fg)
— _2A dEF/ anojVj (F2)EVa_ (1) | Theorem 2 Let = be a Boolean model iiR", n > 3,
“o with balls of random diameterr. If» € > 0a.s. and
Er" < o, then
see Schneider and Weil (2008), p. 380. From the
homogeneity of the intrinsic volumeg; it follows k+1 VYo
that the probabilityP(F, ¢ =°) can be considered as EWA/n—k OInOk /Z Z) |ak | +°

a functionf, of the lattice distanca,

dImFg
a):exp{— Z} anoj &V < )EVn i(= )}
Proof We make use of the fact thM/n 1(2) and

where theV;(%) are independent o&. Note that W.-2(Z) are estimated from 1D and 2D section
f,(a) = f,(0) for F, with dimF, = 0. For F, with lattices, respectively, and thus din< 2 meeting the

dimF, > 0 we now use a Taylor expansion bf assumptions of Lemma 4.
dimF, ¢ )(0) Then plugging the result of Lemma 4 into Eq. 20

_ e \Y) gdimF; and using Eqg. 25 in the same way as in the proof of
fe(@) = ;) i! BT +O< ) ) Theorem 1 yields Eq. 27. O

(27)
asa| Oand fork=1,2.
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BOOLEAN MODELS IN R3 Fork = 1, it can be seen from the values in the Tables
We specialise to the 3D case from now on. Let @nd 3 that

V, S b denote the expectations of the volume, the
expectation of surface area, and the expectation of 21 . L
the mean breadth of the grain, i.e,, EV3(Z1) =V, /Z g_fz ) — 0, /Z §§ )bg =—
2EV,(Z1) = S and 3EVi(Z1) = b. Then the surface =0

densitySy = 2W 2(=), the density of the integral of

the mean curvaturely = 7™\, 1(=), and the density of hich vields Ed. 29. Fok — 2 it foll h
the Euler numbegy =W o(=) of a Boolean model which yields Eq. 29. Fo It follows that
can be expressed in terms»fV, S andb by Miles’

formulae 21 ) 21 o)

s =eV2s, 2,07 =0, 2 97b=0,
_ — 7'[2)\2
— a AV _
My — e (ZrMb =5 §2)
_ A2=— Tm3
—AV
=e V(A -5 bSt oS 28 21 &
A (A-505+35S) . @9 Zg‘ﬁbﬁ:o.%llos, Zg‘f)sg:z,

see Miles (1976) and Theorem 9.1.4 in Schneider and -
Weil (2008). On the other hand the expectations of the
corresponding estimators according to Egs. 26 and 23nd from Eq. 27 one obtains Eqg. 30.
have a structure similar to Miles’ formulae,

ES, =e"VAS+to(1), (29) Finally, consider the case= 3. Independent of the

ENk, = e‘N(ZH)\ b— 0354297\ 2§2) +o(), choice of.a pair[F,F¢) of complementary adjacency
(30) systems, it can be seen that

Efy ~ e—N(AZ%éz A+ A2605+ %) ,
3 3

(31) /Z)g‘é)=0, ;}Q‘/WZO,

where the constants, c,, andcz depend on the chosen

pair of complementary adjacency systeffisF.), see
Table 4. Notice that the values fam, ¢, and cs

correspond to those ones published in Ohseal. a5 2 5
(2003) for a Boolean model with balls of constant /;gé s =0, /;gé ve=-1,
diameter. - -

In order to show that Egs. 29 and 30 follow directly . . -
from Egs. 26 and 27, respectively, we introduce thdVNich yields Eq. 31 where the coefficierts cz, s
volumev,, the surface ares, and the mean breadth aré computed via
b, of the set%Fg. Using these notations, the functién
can be rewritten as

18292 18 3
_ - 15 1= > 3 Ci=5 Y g, b7, C2=- ) 0, bs,
fg(a)—exp{—)\ (V+§Stya+ Ebs@a +vea )} 8,;) 4,;)
The first derivatives of, ata= 0 are
YV; 21
fg(O):e AV, 03:%8; g_§3)b?
7 1- =0
/ _ oAV =
£(0)=e ( 2 qu),
" AV - 2 153
f/(0)=e""| —Abs +A (55Q> ; Table 3.The mean width fthe surface area;and the

B 3= 1 3 volume y for the convex hulls of the representatives
f,(0) = eAV<)\ 6V, +A2>bsSh — )\3<_s_q> ) _ of the 22 congruence classes. The constant c is given
2 2 by c= tarctan/2.
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Table 4.The values of the constantsg, ©,, cz for the

OHSERJET AL: Miles formulae for observations on lattices

This corresponds to a result in Serra (1982), where the
estimation of the Euler number of a planar Boolean
model was shown to be asymptotically biased. In order
to assess the asymptotic bias f, the constants
C1, Cp, C3 have to be compared with the respective
ones in Eqg. 28. Obviouslyy is always biased. More
precisely, the asymptotic bias is even infinite for the
pairs(Fe,F2e), (F141,F141) and(F142,F142).

For (F26,[Fg) the coefficient; in Eq. 31 vanishes
and thus the difference of the right-hand sides of
Egs. 28 and 31 is finite. However, the error in Eqg. 31
can not be estimated and thus the asymptotic behaviour
of Xv is unknown for(Fg, Fg).

DISCUSSION

The probably most intuitive method for measuring
the surface area is based on rendering data, see,
e.g, Lindblad and Nystrom (2002), where the
areas of the surface patches serve as weights for
computing the surface area from local knowledge,
from the numbers of pixel configurations. However,
this type of estimator is not multigrid convergent.
There are alternative methods also based on an
explicit approximation of the boundary without further
assumptions but ensuring multigrid convergence, see
Klette and Rosenfeld (2004) for an overview. However,
these approximations are expensive since they are not
local.

continuous case, cf. Eq. 28, and the four considered

pairs of complementary adjacency systems.

10'3 C3
continuous 8.181...
(F2e,Fe) -0.75 15625
(F141,F141) —0.105... 12.770...
(F142,F142) —0.110... 13.918...
(Fe,Fog) —0.547... —9.449...

In order to assess the asymptotic behaviour fo
a | 0 of the estimatorsy, I\7IV, and xv, Egs. 29, 30,
and 31 are compared with Miles’ formulae. It can
bee seen thds, is asymptotically unbiased fa | O

As pointed out in Section 4.2, the surface area
can be measured directly from the binary volume
image without need to approximate the surface. We
are starting from the local knowledge represented
by the numbers of % 2 x 2 pixel configurations
on cubic primitive lattices and ask for the best
choice of surface weights. The weights suggested
by Lindblad (2005) minimise the estimation variance
of the surface area of a plane with random normal
direction uniformly distributed on the unit sphere.
This idea goes back to Mullikin and Verbeek (1993),
See also the discussion in Windreieh al. (2003).

A comprehensive treatment of the subject of surface
estimation is due to Ziegel and Kiderlen (2009). Their
weights minimise the asymptotic worst case error for

(multigrid convergent). This is related to the fact thatg, ity ce area estimation for decreasing lattice distances
the estimators of the Euler numbers of 1D Booleanmjiigrid convergence). This approach is based on a

models are asymptotically unbiased, see Serra (198

For Boolean models with balls of random
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MV is

lim EMly — My = —0.04587242F e V.

alo

ZI’general asymptotic result proved in Kiderlen and Rataj

(2006). It also allows a comparison of the various
ethods for surface estimation. As shown in Ziegel
and Kiderlen (2009), the maximum asymptotic relative
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