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Fontainebleau cedex, France
e-mail: Hellen.Altendorf@itwm.fraunhofer.de, Dominique.Jeulin@cmm.ensmp.fr
(Accepted September 9, 2009)

ABSTRACT

In this paper we present algorithms for measuring local characteristics of random fiber systems. The
calculation of the local directions and radii is based on directional distance transforms and evaluation of the
inertia moments and axes of the resulting extremities of thecentralized, directed chords. The method provides
continuous results while minimizing the runtime by using few sampled directions. Furthermore several steps
of improvement for the computation of orientation and radius information are presented. The algorithms are
evaluated using synthetic data and applied to images of realmicrostructures obtained by computer tomography.

Keywords: directional distance transform, fiber networks,fiber separation, inertia moments and axes, local
orientation, mathematical morphology.

INTRODUCTION

Fiber-reinforced composites are nowadays
frequently used for building the enclosure of aircrafts,
boats or cars. Our application concentrates on fiber-
reinforced plastics comprising a polymer matrix
reinforced with glass or carbon fibers. The aim of
our study is to predict the physical behavior of the
material from the knowledge of its microstructure,
reconstructed from micro or nano tomography images.
One physical property of this very light material
is the stiffness, which is highly influenced by the
anisotropy of the included fibers. The material will be
optimized by changing the parameters of an adapted
random geometric model and evaluating the physical
properties using numerical simulations.

Local geometric characteristics are essential
information for the modeling of random fiber
networks. Without this information the virtual
material, derived from a random fiber model, is not
realistic. It is therefore important to start with a model
fitted to the real structure, to adapt the calculation of
the physical behavior to the real physical properties of
the material and then to start changing the modeling
parameters to improve the physical behavior. The
most important characteristic for the modeling is
the orientation distribution, computed from local
information.

The basis of our method is a sufficiently good
binarization of a 3D image of a fiber system with
solid and not too thin fibers. More precisely, the fiber
radius should exceed the length of 3 pixels. Below

that thickness, the discretization will have too much
influence on the results. On these binarized images
(with square or cubic grid), we compute the directional
diameters in a fixed amount of orientations (4 in 2D
and 13 in 3D) using directional distance transforms.
The main inertia axes of the endpoints, given by the
local centralized chords, provide an estimate of the
local orientation. This estimate is biased towards the
sampled directions. We present methods to correct
this deviation in 2D and to reduce it in 3D. The
inertia moments provide additionally the possibility of
estimating the fiber radius and of smoothing the results
by making use of the ratio of inertia moments.

Finally, our method is extended to gray
level images using thresholded quasi distance. A
preprocessing considerably reducing bias in estimation
is suggested.

There exist already several methods to compute
the local orientation in images, like the Gaussian
orientation space by Robbet al. (2007) and the chord
length transform by Sandau and Ohser (2007). The
chord length transform is not yet studied on 3D images
so we will compare our method to the Gaussian
orientation space. The main idea of both approaches is
to sample a certain amount of directions with different
directional operators and referring to the direction with
the highest filter response. Thus the results are always
limited to the chosen amount of sampled directions and
for more exact results their amount has to be increased,
resulting in a considerable rise of computation time.
Moreover, in order to increase the number of sampled
directions, it is necessary to choose a finite number
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of directions as evenly as possible, which is a non-
trivial problem on its own. Our approach avoids these
problems as it is fixed to a small amount of sampled
orientations (4 in 2D and 13 in 3D), whereas the results
are obtained in the continuous Euclidean space.

ANALYSIS ON BINARY IMAGES

INERTIA MOMENTS OF DIRECTIONAL
DISTANCE TRANSFORMS

In this section the calculation of local
characteristics like fiber orientation and radius is
treated. The algorithms are based on computing the
directional distances to the background for every
object point. The sampled directionsvsi of the
directed distance transform are chosen as the complete
neighborhood (in 2D 8 neighbors, in 3D 26 neighbors),
see Altendorf (2007). In order to achieve a nearly
constant result in a cylindrical fiber, the arithmetic
average of the two calculated distances for inverse
directionsd(vsi) andd(−vsi) is considered, which is
equal to the half chord lengths defined in Sandau and
Ohser (2007)

dc(vsi) =
1
2
(d(vsi)+d(−vsi)) .

The directed distance transform can be calculated
efficiently following an adapted version of the
algorithm introduced by Rosenfeld and Pfaltz (1966).
The chord lengths are achieved by walking twice
through the image: the first time forwards with
increasing the distances in the image depending
on the distance, assigned to his predecessors in
the backward directions (neighbors which have
been already visited); the second time by walking
backwards through the image, we assign to the pixel
the increased distance, assigned to his predecessors
in forward directions, if those are inside the object.
This algorithm runs in linear time with respect to
the number of image pixels and assigns to every
foreground pixel the directional thickness of the fiber.

From the endpointsPi = dc(vsi) ·vsi , derived from
the centralized distances in all sampled directions,
we calculate the moments defined by Duda and Hart
(1973). In our case the moments can be reduced to:

M(2)
pq =

7

∑
i=0

(Pi,x)
p(Pi,y)

q for 2D and

M(3)
pqr =

25

∑
i=0

(Pi,x)
p(Pi,y)

q(Pi,z)
r for 3D.

The inertia matrices adapted to our case are:

IM (2)
f =

1
8

(

M20 M11

M11 M02

)

for 2D and

IM (3)
f =

1
26





M020+M002 −M110 −M101

−M110 M200+M002 −M011

−M101 −M011 M200+M020



 ,

for 3D. The inertia moments are the eigenvalues of
these matrices and the inertia axes are the eigenvectors
as defined by Bakhadyrov and Jafari (1999). Because
of the different structure of the inertia matrices in
2D and 3D, the main inertia axis in 2D is the
eigenvector to the highest eigenvalue (which indicates
the elongation in the according direction), whereas
in 3D the main inertia axis is the eigenvector having
the lowest eigenvalue (which indicates the inertia by
rotating the object around this axis).

The defined main inertia axis gives a first estimate
of the fiber orientation, which is however biased
towards the sampled directions.

CORRECTING THE BIAS

Evaluation of the presented method shows a certain
deviation in the orientation estimate as presented in
Fig. 1. By considering the endpoints just in a few
sampled directions, those directions receive a high
weight. This causes an attraction towards the sampled
directions, explaining the deviation. The orientation
estimate is perfect in those orientations lying on or in
the middle of two sampled directions.

This nature of the bias motivated a theoretical
study of the problem. The fiber is assumed to be a
spherical cylinder with radiusr, infinite length and
orientationv, represented by the angleθ (in 3D θ and
φ , derived from the spherical coordinates).

The centralized distances are given by:

dc(vsi) =
r

sin(∠(v,vsi))

in 2D
=

r
sin(∠(θi,θ ))

, (1)

from which we can calculate the endpoints

P(2)
i =

(

dc(vsi)cosθi
d(vsi)sinθi

)

for 2D and

P(3)
i =





dc(vsi)sinθi cosφi
dc(vsi)sinθi sinφi

dc(vsi)cosθi



 for 3D.
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To calculate the inertia moments and main inertia
axes in 2D, we adapt the existing formula to our case:

λ1,2 =
M20+M02±

√

4M2
11+(M20−M02)2

16
, (2)

θ ′ =
1
2

arctan

(

2M11

M20−M02

)

. (3)

Replacing the formula forMpq depending on the
fiber parametersr andθ and after applying multiple
steps of simplification for trigonometrical functions, it
was possible to achieve the following equations, which
depend only on the main parametersr andθ :

λ1 = r2

(

2+
√

3cos2(4θ )+1

sin2(4θ )

)

, (4)

λ2 = r2 f (θ ) , (5)

with

f (θ ) =







2+
√

3cos2(4θ)+1

sin2(4θ)
, sin2(4θ ) 6= 0

3
4 , otherwise

(6)

θ ′ =
1
2

arctan
(

tan3(2(θ − i
π
4

))
)

+ i
π
4

, (7)

for i
π
4
≤ θ < (i +1)

π
4
, i ∈ N .

The maximal possible deviation is limited to 10◦

in both cases 2D and 3D. From Eq. 7 it is possible to
correct the deviation by inverting it. The orientation
can be derived from the estimateθ ′ as follows:

θ =
1
2

arctan

(

3

√

tan(2(θ ′− i
π
4

))

)

+ i
π
4

,

for i
π
4
≤ θ ′ < (i +1)

π
4
, i ∈ N .

The deviation and the corrected angle for the 2D case
are illustrated in Fig. 1.

There exist also theoretical solutions for the
eigenvalue problem in 3D (Jeulin and Moreaud, 2008).
With this, it is possible to deduce an equation for
the inertia moments and the inertia vectors. However,
we did not achieve a simplification of these complex
equations and reduction to the main parameters, which
would provide the possibility to correct the orientation.
Still there is a way to improve the orientation
estimation also in the 3D case. Based on the idea
of approximation in 2D, we reduce the deviation of
the calculated direction by pushing it away from the
closest sampled directions.

Fig. 1.Deviation of the direction calculated by inertia
moments. True angle of a fiber with length-radius ratio
of 1000 vs. calculated and corrected angle.

The attraction to a close sample direction is
dependent on the distance between it and the real fiber
orientation. Therefore, pushing away the computed
orientations from the closest sampled directions is
controlled by forces depending on the associated
distance. First of all we define the forces, whose
formula emerged from several tests based on the two
dimensional correction curve.

t(d) =

{

−0.2sin(π(4d/π)0.424), for d < π/4,

0 , otherwise.

To complete the approach we need to define the
direction in which the force operates. We have defined
the force direction to be the projection of the sampled
direction on the 2D subspace orthogonal to the
calculated orientationv, pn(vsi,v). The approximate
orientationv′ is then calculated as follows:

v′ = v+∑
i

t(∠(vsi,v))pn(vsi,v) .

This procedure reduces the maximal error from
9.97◦ to 4.78◦ and the mean error from 6.40◦ to 1.27◦.
The reduction of the deviation is visualized in Fig. 2
on the unit sphere in colors from 0◦ in blue to 10◦ in
red.

(a) Deviation of main inertia
axes.

(b) Deviation of improved
orientation.

Fig. 2.Visualization of the deviation of the calculated
fiber orientation on the unit sphere.
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Another aspect which needs to be considered only
in the 3D case is the non-consistency of chord lengths
for different points in the same fiber. In 2D the chord
lengths stay constant for every point inside a fiber,
except edge effects at the fiber ends. This situation is
shown in Fig. 3(a). In 3D the fiber structure is more
complex and therefore the assumption is not fulfilled,
as shown in 3(b) for a section of a 3D fiber. We can
observe that the chord lengths scale down by moving
the point of interest closer to the fiber border. It is thus
necessary to find another way to create stable measures
for every point in the fiber. Near to the fiber core the
directional distances stay stable, that’s why we base
our calculations not on the measures at the point of
interest, but at the center of mass of the extremities,
derived from the directional distances at the point of
interest.

(a) Constant chord lengths in
2D.

(b) Varying chord lengths in
section of a 3D fiber.

Fig. 3. Illustration of the constant chord lengths in
a 2D fiber vs. the variation in a section of a 3D
fiber. In both images chord lengths are drawn for two
foreground points and the centralized chord lengths
are presented additionally outside the fibers, with the
main inertia axes in color.

RADIUS MAPS

The second inertia momentλ2 ∈ [0.75,1] can be
used in the 2D case to recalculate the fiber radiusr
based on Eq. 5,

r ′ =
√

λ2/ f (θ ′) .

There is no equivalent formula in 3D, thus we
present a second method to estimate the radius, which
can be calculated using the centralized distances
dc(vsi), as they hold already the information of the
radius, see Eq. 1:

r̃ i = dc(vsi)sin(∠(v,vsi)) .

Based on these radius estimates, there are various
possibilities to compute the final radius estimate.
We have chosen a trimmed mean value: discarding
the lower radius estimates reduces wrong estimates

due to noise or border regions and discarding the
higher radius estimates reduces wrong estimates due
to crossing regions. The final estimate is computed as
follows:

r ′ =
1
8

10

∑
i=3

r̃ i .

The evaluation showed that this method yields
better results than the recalculation from the inertia
moments, especially in regions, where fibers cross.

IMPROVEMENT BY SMOOTHING

The resulting direction and radius maps can be
smoothed by using a mean filter based on the inertia
ratio. The inertia moments indicate the elongation of
an object in the direction of the inertia axes. For a ball,
all inertia moments are the same, whereas for a fiber
the first inertia moment differs significantly from the
second (in 3D the second and third are similar). In
a point, where two fibers cross, the first and second
inertia moments are similar. Therefore we use the
ratio of the first two inertia moments to indicate the
relevance of the orientation information. The moment
ratio for the 2D case (whereλ1 ≥ λ2) is defined as:

MR2(λ1,λ2) =
λ1

λ1 +λ2
∈ [0.5,1) ,

and for the 3D case (whereλ1 ≤ λ2 ≤ λ3), we define
the moment ratio as:

MR3(λ1,λ2,λ3) =
λ2

λ1 +λ2
∈ [0.5,1) .

To reduce the difference of orientation and radius
information of neighbor pixels we smooth the images
using a smoothing filter with a structuring element
made of a ball with radius given by the radius map and
filter weights given by the moment ratio. It is advisable
to apply this smoothing first on the radius map and
then on the orientation information to avoid mixing the
orientations too much, due to a too large structuring
element in crossing regions.

RESULTS

Working on synthetic data and knowing the ground
truth, yields the possibility to evaluate the methods
with an error histogram. Perfect results would show
just one column on 0. The method, which has a higher
peak near 0 and decreases faster, provides the better
results. The error histogram of the angle maps for
2D and 3D synthetic images (Figs. 4 and 5) shows
the improvement between the different steps of our
method.

146



Image Anal Stereol 2009;28:143-153

error 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Gaussian Method with 18 1077 1560 1312 1567 873 228 547 463 247 206 248 185 83 156 138 82 98 82 44 17 69 53 15 24 17 10 19 20 11

Gaussian Method with 18 1136 506 0 413 1695 0 0 1897 0 0 1087 0 0 802 869 0 0 0 336 0 0 204 0 0 0 0 161 61 0

Gaussian Method with 8 d1213 0 0 422 1086 0 0 0 0 0 0 0 0 0 0 0 0 0 1795 0 0 1181 0 0 0 0 1730 0 0

Moment Method 923 497 407 703 713 490 245 387 240 538 194 547 344 458 666 392 260 138 114 90 65 64 120 67 45 50 71 57 33

with Correction 1255 1162 1121 1230 636 503 471 295 273 298 299 219 150 130 98 106 120 107 121 52 34 34 41 21 11 33 65 13 14

with Correction and Smoo 841 1708 1334 1202 544 403 302 202 155 154 120 106 121 114 105 102 90 90 102 76 74 82 72 72 79 67 64 89 82

error [degree] 0 0.71 1.41 2.12 2.82 3.53 4.24 4.94 5.65 6.35 7.06 7.76 8.47 9.18 9.88 ### ### 12 12.71 ### ### 14.82 ### ### ### ### 18.35 ### ###

Chord Length Transform 2361 2094 2025 1283 1120 217 163 94 32 10 20 8 1 4 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0
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Fig. 4. Error histogram of the angle maps on 2D
synthetic data, created by a boolean capsule process.
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Fig. 5. Error histogram of the angle maps on 3D
synthetic data, created by a cherry-pit cylinder modell.

Furthermore, we compare our method to the
Gaussian orientation space, which uses several
elongated Gaussian filters in given directions and
assumes the local orientation to be the one, which
yields the highest filter response, see Robbet al.
(2007). This method can be applied directly to the
gray-level images and it is thus not necessary to find
a binarization. The results are limited to the chosen
directions, whereas our method computes angles in
continuous space. That implies that the Gaussian
method will need much more directions to achieve
comparable results, which increases computation time,
especially in 3D. The evaluated error histograms are
shown in Fig. 6 for 2D and in Fig. 7 for 3D synthetic
images.

On the chosen 3D model in an image of 2003

pixels, our method finishes in about one minute,
whereas the Gaussian method needed two hours for
comparable results.
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Fig. 6. Comparison of our method (4 sampled
directions) to the Gaussian orientation space on a
synthetic 2D model, created by a boolean capsule
process.
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Fig. 7. Comparison of our method (13 sampled
directions) to the Gaussian orientation space on a
synthetic 3D model, created by a cherry-pit cylinder
modell.

APPLICATION ON DATASETS

In Fig. 8 the method is applied on a SAM-
image (Scanning Acoustic Microscopy) of a glass-
fiber reinforced polymer used for the wheel rim of cars.
The sample has a volume fraction of 30% of 1 inch
long fibers. Imaged is the projection of a thin slice
focussed in a depth of 0.1 mm.

The cutout in Fig. 8d illustrates, that also for very
thin fibers we can get a reasonable direction estimate.
Nevertheless, as mentioned earlier, in too thin fibers
(radius less than 2 pixels) the estimated directions are
reduced to the sampled directions. This effect is visible
in the direction distribution shown in Fig. 8e. For the
4 sampled directions we get unreasonable high peaks,
which are caused by discretization limits.

147



ALTENDORF H ET AL : 3D directional mathematical morphology for analysis of fiber orientations

(a) Binarized Image

(b) Direction Map

(c) Color Coding (d) Cutout

(e) Angle Distribution

Fig. 8.Application to a 2d SAM-image of a glass-fiber
reinforced polymer (GRP): (a) initial binary image,
(b) the direction map coded using colors, which are
explained in (c). (d) zoomed cutout of the image. (e)
distribution of the calculated directions.

In Fig. 9 we apply our method to the CRP plate. In
the direction distribution on the unit sphere, shown in
Fig. 9f, the two main distributions from the different
layers are indicated by red marks. Theθ angle maps
can be used to separate the layers. A 3D rendering of
the separated layers is shown in Fig. 9e.

(a) CRP Plate (b) Rendering of Cutout

(c) CT-Data of Cutout

(d) Theta Angle Map

(e) Separated Layers (f) Orientation Distribution

Fig. 9. Application to a 3D CRP plate (carbon-fiber
reinforced polymer): (a) visualization of the whole
specimen, where the structure of the four layers is
visible, (b) 3D rendering of the treated cutout (cube
of 300 pixel side length), (c) structure of the original
CT image, (d) colored presentation of theθ angle
map (φ is in this material nearly constant): red the
background, blue and green the two different layers.
(e) rendering of the separated layers, (f) direction
distribution on the unit sphere, where red indicates a
high and blue a low presence of these directions.
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ANALYSIS ON GRAY LEVEL
IMAGES BY QUASI DISTANCE

In dense parallel fiber networks it appears often,
that fibers merge at their borders and that thin frontiers
disappear during the binarization process. Applying
the directional distance transform directly on the gray
level images could yield the advantage to detect these
thin frontiers. Three different approaches were chosen.
The first possibility to measure distances on gray level
images is the quasi distance transform, invented by
Beucher (2007), with an additional contrast threshold.
The second approach uses Gaussian filters of adapting
size. The third approach is based on the comparison of
a shape model to the existing fiber structure.

QUASI DISTANCE DEFINITION

The quasi distance evaluates pixelwise for sizesi ∈
N the residual operatorτ , derived from the difference
between erosions or dilations with a structuring
element of varying sizei andi +1

τ = sup
i∈I

(εi+1− εi ,δi −δi+1) .

The quasi distance is defined as the sizeid for
which the dilation or erosion yields the highest residue
when compared to the next sizeid + 1. In our case,
as we want to measure the directional distance, the
structuring element is a directed segment. In this case
the image can be treated as several 1D signals. For a
1D signal or gray level functionf : R

+ → R we can
define the distance for a pointx0 in −X direction with
help of the underbuild function

f̂x0 = sup
g:[0,x0]→R,

g increasing

(g≤ f ) .

This function is increasing and keeps the value
in x0: f̂x0(x0) = f (x0). The definition of f̂x0 equals
the reconstruction by dilation from the pointx0,
like it is known in mathematical morphology (see
Vincent, 1993 or Salembier and Serra, 1995). The
quasi distance is the distance to that point which has
the highest gradient:

d(x0) = inf
{

h∈ (0,x0)|gx0(x0−h) = Gmax
x0

}

with

Gmax
x0

= sup
y∈(0,x0)

{gx0(y)} ,

gx0(y) = max(| f̂x0(y)− f̂x0(y−1)|, | f̂ c
x0

(y)− f̂ c
x0

(y−1)|) ,

and f c the inverted image (in theory− f , on 8-bit
images 255− f ).

The implementation can be simplified by defining
an image walker in the requested direction and
buffering the gray level values in a decreasing and in
an increasing vector for one line, which needs to be
updated respectively.

Furthermore the distance can be influenced by
giving a threshold for the significant gradientG1. Thus
the distance is defined as

dGl (x0) =

inf
{

h∈ (0,x0)|gx0(x0−h) ≥ min(Gmax
x0

,Gl )
}

.

This threshold treats the case where regions are
separated just by a weakly contrasted line and a larger
region of background farther is higher contrasted.
In the standard case the distance will cross the low
contrasted background line and stop at the higher
contrasted background. If the threshold is lower than
the contrast of the line separating the regions, the
distance measure will stop at the line and detect the
real fiber end.

GRAY VALUE DISTANCES BY
ADAPTING GAUSSIAN FILTERS

This approach makes use of Gaussian filters of
adapting size with respect to the distance to the point
of interest. Leth(s) = (hi(s)), i = 0, . . . ,sbe the vector
of Gaussian filter weights withσ(s) = (s+ 1)/4 and
µ = 0.

hi(s) =
1

σ(s)
√

2π
e
− i2

2σ(s)2 .

The filter (with filtersize sx0(y) =
√

x0−y) is
applied to the reconstruction by dilation̂fx0 with
respect to the distance tox0:

f̃x0(y) =

∫ sx0(y)
0 f̂x0(y−x) ·hx(sx0(y))dx

∫ sx0(y)
0 hx(sx0(y))dx

.

The distance is considered to yield the highest
difference in f̃x0(y):

dg(x0) = inf
{

h∈ (0,x0)| f̃x0(x0−h) = Gmax
g (x0)

}

,

with Gmax
g (x0) = supy∈(0,x0)

| f̃x0(y)− f̃x0(y− 1)| . By
increasing the size of the filter with increasing
distance, the borders are more smoothed in far
distances, thus close distances are preferred.
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GRAY VALUE DISTANCES BY MODEL
COMPARISON

The third approach considers a shape model for
the fiber, which takes not only into account the local
decrease of the gray level, but also the regularity
of the values considered to be fiber foreground. The
evaluation of a certain distanceh from x0 is dependent
on the regularity of the values betweenx0 − h and
x0 and the decrease at the pointx0 − h. The curve
is expected to be constantly high on fiber foreground
(betweenxs(h) = (x0 − h) + s/2 andx0), whereas it
should decrease fromxs(h) to xe(h) = xs(h)− s. The
strength of the decrease can be chosen with respect to
the image, on the treated images the minimal choice
of s = 2 was optimal. The smoothed model decrease
is considered to be likehs(x) = 1

2 sin( (x−(x0−h))π
s )+ 1

2.
Evaluation is done with

It(x0,h) = max

(

0, Ig(x0,h)−
√

I1(x0,h)2 + I2(x0,h)2

)

,

I1(x0,h) =
f∆

x0−xs(h)

∫ x0

xs(h)

(

f (x)− f̄ )
f∆

)2

dx,

I2(x0,h) =
f∆

xs(h)−xe(h)

∫ xs(h)

xe(h)

(

f (x)− fmin

f∆
−hs(x)

)2

dx ,

Ig(x0,h) =

√
f∆

x0−xs(h)

∫ x0

xs(h)
min(1,

f (x)− fmin

f∆
)dx ,

+

√
f∆

xs(h)−xe(h)

∫ xs(h)

xe(h)
min(hs(x),

f (x)− fmin

f∆
)dx ,

with the mean valuef̄ = 1
x0−xs(h)

∫ xs(h)
x0

f (x)dx, the
minimal value the curve does decrease tofmin =
infx∈(xe(h),xs(h)) f (x) and the difference between these
two valuesf∆ = f̄ − fmin. The final distance is

dI (x0) =

inf{h∈ (0,x0)|It(x0,h) = max
d∈(x0,h)

It(x0,d)} .

EVALUATION ON GRAY VALUE LINES

The presented approaches are evaluated on an
original and preprocessed gray value line from the
CRP data set. As preprocessing we used toggle
mapping to enhance the contrast. The main idea of this
filter is to build upper and lower bounds by dilation
and erosion, and fit the original gray level in every
point to the nearest of the bounds. For more details,
see Fabrizio and Marcotegui (2006). Note that this
operator can enhance salt and pepper noise.

On the preprocessed values only the thresholded
quasi distance and the integral model approach are

showing perfect results as presented in Fig. 10. For the
approach with the Gaussian filters we can already see
that the results are not as stable in neighboring points
as for the other approaches.

(a)

(b)

Fig. 10. Comparison of the approaches on a TM4
preprocessed value line. (a) Distances for x0 = 4 in
X-direction, (b) Distances in every point.

On the original gray value line (without
preprocessing) only the approach of the integral model
shows acceptable results (Fig. 11).

RESULTS AND COMPARISON

The presented algorithms are tested on a 2D
section of a 3D dataset of the carbon fiber reinforced
polymer, which was introduced in Fig. 9. During the
binarization process, thin contours between fibers are
getting lost (see Fig. 12a). Therefore distance measures
can cross several fibers, which distorts the calculation
results. The thin frontiers between the fibers visible in
the gray level image are enhanced by morphological
toggle mapping of size 4 (Fig. 12b).
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(a)

(b)

Fig. 11.Comparison of the approaches on the original
value line. (a) Distances for x0 = 4 in X-direction, (b)
Distances in every point.

(a) (b)

Fig. 12. Preprocessed gray level image and
binarization of dense parallel fibers in CRP slice.
(a) Binary Image, (b) Preprocessed with Toggle
Mapping of size 4.

For the standard quasi distance it is still possible
that the contrast between fiber and thin division line
is too low, thus a higher contrast positioned further
away is considered as object end. This circumstance
causes similar problems in the measurement as in
the binary case. The resulting direction maps for the

standard quasi distance are shown in Fig. 13b. By using
the thresholdG′ = 15 for a sufficient gradient, the
thin border lines between the fibers can be detected
as object ends and improve the measurements (see
Fig. 13c). The comparison of the resulting direction
map from Gaussian filters (see Fig. 13d) to the results
by thresholded quasi distance is not trivial. The right
part seems to have smoother values whereas the left
part shows greater deviation to the real orientation.
More detailed evaluation can be done from the radius
maps presented in Fig. 14. Despite good expectations
from the results on the gray value line, the approach of
the model shape does not show convincing results in
Fig. 13e. The problem with such dense fiber systems
is that if the detection of the foreground end fails
in just one direction, this direction will carry a too
large weight, and intensively influence the estimated
orientation.

(a) (b)

(c) (d)

(e) (f)

Fig. 13.Direction analysis for gray level images with
different approaches. (a) Binary Version, (b) Standard
Quasi Distance, (c) Thresholded Quasi Distance ( f0 =
15), (d) Difference of Gaussian Filters, (e) Shape
Model, (f) Gaussian Orientation Space with size(1,3).
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Irregularities in the direction measurement can be
smoothed with the adaptive smoothing depending on
the moment ratio (introduced in section “Improvement
by smoothing”. These final results can compete with
the result of the Gaussian orientation space applied on
the gray level images with filter size(1,3) (presented
for comparison in Fig. 13f.

In Fig. 14 the resulting radius maps are presented,
which yield the possibility to evaluate the detection
of fiber ends. High estimates for the radius indicate
errors in the detection of fiber ends. In parallel fiber
systems the measurement error caused by merged
fibers has a higher influence on the radius calculation
than on the direction calculation. Therefore evaluation
of the directional foreground end detection is more
reasonable on the radius maps. Obviously the approach
with the thresholded quasi distance (presented in
Fig. 14b) shows the most stable results here.

(a) (b)

(c) (d)

Fig. 14. Radius analysis for gray level and binary
images. (a) Binary Version, (b) Thresh. Quasi
Distance, (c) Difference of Gaussian, (d) Shape Model.

Regarding the computational complexity, the
approach of quasi distance which runs in linear time
(worst caseO(nlogn)) yields an advantage compared
to the approaches with Gaussian filters (O(n2)) or
with model shape (O(n2 logn)). The given times are
estimated for one line with length ofn pixels.

CONCLUSION

We have seen that the presented method provides
stable results, even for the few sampled directions.

The presented analysis tool for binary images works
automatically without any parameters and returns
maps of local direction and radius estimation. The
results are reasonable as shown in the error histograms
on synthetic data. Also the computation time is
acceptable, for example for an image of 3003 pixels
our algorithm took 9 min, whereas the Gaussian
orientation space in fine resolution took about two
hours.

The main advantage of the Gaussian orientation
space was the direct application on gray level images,
for cases where a sufficiently good binarization cannot
be achieved. With the thresholded quasi distance
method, we have found a reasonable and efficient
alternative. Quantitative analysis is in progress.
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