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ABSTRACT

According to Crofton’s formula, the surface ar86) of a sufficiently regular compact sét in RY is
proportional to the mean of all total projectiopg (u) on a linear hyperplane with normal uniformly
averaged over all unit vectors In applications,pa (u) is only measured ik directions and the mean is
approximated by a finite weighted SLﬁ@A) of the total projections in these directions. The choicehef t
weights depends on the selected quadrature rule. We defiagsaniated zonotope(depending only on the
projection directions and thguadrature rule and show that the relative err8A) /S(A) is bounded from
below by the inradius oZ and from above by the circumradius 8f Applying a strengthened isoperimetric
inequality due to Bonnesen, we show that the rectangulairatizre rule does not give the best possible error
bounds ford = 2. In addition, we derive asymptotic behavior of the erraitifincreasing) in the planar case.
The paper concludes with applications to surface area attimin design-based digital stereology where we
show that the weights due to Bonnesen'’s inequality are i the usual weights based on the rectangular
rule and almost optimal in the sense that the relative erfrthe surface area estimator is very close to the
minimal error.

Keywords: associated zonotope, Crofton formula, digiiirg isoperimetric inequality, minimal annulus,
perimeter, surface area.

INTRODUCTION Haar measureon the unit spheresd-1; see, e.g,
Schneider and Weil (1992, p. 18), but note the different
One common approach to approximate the surfacgormalization For setsA that are not full-dimensional,
area S(A) of an unknown setA C RY from its Eqg. 1 still holds if its left hand sid&(A) is defined
digitization is based on a discretization of Crofton’sin such a way that lower dimensional parts/fare
formula. We discuss the worst case error introducedounted twiceThe inner integral oEq. 1,
by the discretization of the rotational integral in
dependence of the quadrature rule chosen. As the pu=/ X (ANey)dr, )
methods apply generally to surface area estimators ut
based on Crofton’s formula, we describe them in ds called total projection of A in direction pas it
general framework and return to its application tois obtained by measuring th@ — 1)-volume of the
digital images in thethird section, entitled “Error orthogonal projection of on u’ with multiplicities.
Bounds for Digital Surface Area Estimators” In Eq. 2 the integration is understood with respect

Throughout the paper direction is a vector on 0 the Lebesgue measure on. If total projections
the unit sphereSd—1in RY. If u is a direction,ul  €an be determined exactly for finitely many directions

d—1 :
denoteghe linear hyperplane with normal ande ul"d' ,ukdg ST, sa;;; ak-pomt'quadr?turelruledcan be
is the straight line with direction throughr € ut. Let used to discretize the outer integralfi. 1 and one

A C RY be afull-dimensionalcompact set in the class °PtaINS the approximation

pR; (definitions can be found in the next secfioA 2 k
special case of Crofton’s formula (Rother and Zahle, S == lei Pu;» (3)
1990) expresses the surface aB¢A) of A in terms of Vs
the Euler characteristig of linear sections which depends on the choice of weights. .., ¢ > 0.

2 To assure that the quadrature rule is exact whenever
S(A) = —/d L] X(Ane)dru(du). (1) Ais a ball, we assume throughout that the weights
Yo Js@=t Ju sum up to 1. If, for example, the rectangular rule
Hereyy = (2k4-1) / (dKq), Wwhereky is the volume of is chosen in the planar case, then the weights are
the d-dimensional unit ball, angl is thenormalized proportional to the arc-lengths of the corresponding
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spherical Voronoi cells generated Kys,...,ux} on called Bonnesen weightand are proportional to the
St. This geometric interpretation generalizes readilylengths of the edges of a polygon circumscribing the
to higher dimensions. I}Pl,...,Pk} is the spherical unitdisk and touching it exactly at the poinis. .., Uk.
Voronoi tessellation o§%~! generated by the set of We will show that Voronoi weights are not minimizing
projection directionqug,...,uc} with u; € B then the the length of the error interval by giving an example
weights where the Bonnesen weights yield better error bounds.
We will determine the asymptotic behavior (ks—
o/ =u(R), i=1,...k o) of the relative error for the Bonnesen weights in
Theorem 4. At the end of the second section we will
will be called Voronoi weights associated to consider the case where the directiens...,u, € St
{us,...,u}. These weights are commonly used ingre obtained using systematic random samplin§®on
applications ford = 2,3. In the special case where e will show that the coefficient of error & (A)
d =2 anduy, ..., ug are equidistant, the weights for the 3y pe hounded from above by a geometric quantity

rectangular quadrature rule (Voronoi weights) coincidgnyolying z, namely a multiple of thel,-distance
with those for the trapezoidal quadrature rule. betweer? and its Steiner ball.

The discretization of the spherical integral |nthe subsequent section we discuss error bounds
introduces a bias, which typically depends on theé’set for digital surface area estimatofBhe digitization of
We are interested in the worst case behavior. Already on a randomly translated, rectangular grid will be
Steinhaus (1930) treated the special case wiet€,  considered. Asymptotic bounds for the expected value
kis even, anduy, ..., uc} forms an equidistant set of of the estimator foB(A) in the grid will be established.
points inSt. For§k2(A), given by Eq. 3 with Voronoi "Asymptotic” relates here to increasing resolution of
weightscy,...,c/, he derived sharp bounds for thethe grid. The vectorsy,...,ux are chosen as grid

relative error: directionsj.e., normalized vectors connecting two grid
points. These two grid points are usually neighbours

rtcos(11/K) - QE(A) I 1 4 and we will consider thd-, 8- and 16-neighborhood in
k sin(r/k) = S(A) ~ ksin(rr/k) (4) 2D and the 6- and 26-neighborhood in 3D. For all these

settings the Voronoi and Bonnesen weights together
The left hand side and the right hand sideExf. 4  with the corresponding in- and circumradiiand R,
are the endpoints of the interval of all possible relativaespectively, will be computed analytically, except for
errors, aA varies. Such an interval can be establishedhe 26 directions in 3D where numerical methods will
without the assumption of equidistant directions ande used. We will compare the relative errors with the
in all dimensions. We refer to this interval asror  minimal error achieved by numerically optimizing the
intervalin the following. weights and show that the Bonnesen weights lead, at
Using a translative Crofton formula in Section least in. 2D.’ to smaller errors_than the W‘d?'y qsed
« ad / Am . . - Voronoi weights.We then restrict to quadratic grids
Error Bounds for§ (A)", we V‘(’j'” define an origin- i, the plane and consider boundary length estimators
symmetric convex body C R® associated t0 the pased on pairs of grid points that are contained in
discretization, only depending on the projectionsome (n— 1) x (n— 1) square of grid cellsn > 2.
directions and the quadrature Arule. We will show inThis generalizes the case= 2, which corresponds to
Lemma 1 that the relative err@& (A) /S(A) is in a  the boundary length estimator based on 8-neighbours.
sharp way bounded from below by (a multiple of) theTheorem 7 considers such estimators for gerreraP
inradius ofZ and from above by (a multiple of) the and shows that the asymptotic mean relative error of
outer I’adius OZ. ThUS, the thiCkneSS Of the minimal §3 (A) for Bonnesen We|ghts decreaseﬁag
annulus ofZ is proportional to the length of the error L L
interval and describes the quality of the estimator, 1h€ application —of Bonnesen's improved
Givenk projection directions, the quadrature rule (in!SOP€rimetric inequality restricts many of the above
other words, the values of the associated weights) th&f9uments to the two-dimensional case. In the last
minimizes the minimal thickness & can typically section we dl_scuss the possibility of extensions to
only be determined numerically. In the planar caseligher dimensions.
we suggest to bound the thickness of the minimal
annulus ofZ from above by an isoperimetric deficit ~
using a strengthened isoperimetric inequality due to ERROR BOUNDS FOR 5\? (A)
Bonnesen. This isoperimetric deficit can be minimized
with respect to all quadrature rules in closed form. The A set A ¢ RY is full-dimensional if its tangent

weights minimizing the isoperimetric deficit will be cone ata spansRY for almost alla € A with respect
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to (d — 1)-dimensional Hausdorff measure. & is  where the Minkowski addition® of sets and the
topologically regular A is the closure of its interior) multiplication of a set with a scalar are understood
and convey, it is also full-dimensional. The gethas pointwise. We will repeatedly use the monotonicity
positive reach if there iane > 0 such that each point property,

in the e-neighborhood ofA has a unique closest point KCM < hx <hy, 9)

in A. and the fact that the support functidmg of the

Throughout the following we assume thais an  Euclidean unit balB? in RY is the constant 1. Eq. 9
element of the familyZpg of all sets inRY which can ~ implies in particular that any convex body is uniquely
be written as a finite union of compact séts...,A, determined by its support function. Consequently, the
with positive reach such that any intersectiop, A, definition,
with | C {1,...,m} is either empty or a set of positive 2 . 2
reach, ai well. In}particula(;onvex bodiegnonempty % (K,M):= /Sd_l (N (u) = b (U))* du,
compact convex subsets &) and polyconvex sets for convex bodiek andM, gives rise to the so-called
(finite unions of convex bodies) are elements/adr. | ,-metric & (-,-) on the family of convex bodies.
For A € %pr the surface area measuBA,-) of  The support function of the line segmertx, x| with
orderd — 1 is defined, and Eg. 1 holds WI&A) = endpoints—x and x € RY is ‘<X7>‘ Due to Eq. 8,
S(A,S971). If A'is in addition full-dimensionalS(A)  the functionh in Eq. 7 is the support function of a
coincides with the usual surface areafofin view of  finite sumz of line segments. Such sets are called
the applications in digital stereology, it is convenienttozonotopesand play a prominent role in functional
extend the total projection mapping- p,toRY4\ {0}  analysis, convex and stochastic geometry (=ee,
by positive homogeneity of degree 0. The translativesoodey and Weil, 1993 and the references therein).

Crofton formula Explicitly, we have
1 Z=ci[-upu]®...®c[-u,ud,  (10)
=5 [, (W V)[S(A du) ® . .
2||v|| Jsd-1 with the unit vectorsu; = vi/||vi|| for i = 1,... k.

. _ In view of Eq. 6 the approximatiorS] (A) can be
2.1 and Theorem 2.3Where(u,V) is the usual inner

product ofu andv. If Aiis polyconvexEq.5 holds for § (A) = 1/ hz (U) S(A,du). (11)
allve RY\ {o}. Yo Jsd-1

If va,...,vik € R9\ {0} are such thaEq. 5 holds 10 obtain lower and upper bounds §f (A), we have
with v = v; for all i = 1,...,k, then the definition of t0 find maxima and minima ofiz. Due to Eq. 9,

r > 0 is the minimum ofhy on S9-1 if and only
if rBY is the largest ball contained id. Similarly,
R > 0 is the maximum ofy, if and only if RBY is the

S/ (A) in combination withEg. 5 yields

S(A) = 1 /d  h(u)S(A,du), (6)  smallest ball containing. With these optimal values
Ya Jsd- of 0 <r <R, the setRB!\ rBY is called theminimal
with annulus of ZThe differenceR—r is called thewidth
K ¢ of the minimal annuluand denoted by (Z). For later
h:= Zlm [(Vi, )] (7)  reference we summarize this geometric interpretation
=

for polyconvex sets (for whickq.5 holds for arbitrary
The key observation is that the integrahdis the V# 0). As formulations forZpgr-sets are obtained in a
support function of a convex body. We refer the readestraightforward manner, we will restrict to polyconvex
to Schneider (1993) for relevant notions and conceptgets from now on.
in convex geometry and only recall the most important

d .
facts here. The support functiow of a convex body Lemmal Let AC R® be a polyconvex set with
positive surface area, and fixk 2 and w,...,v €

K is given by N T
RY\ {0}. Letyy = (2kq_1) / (dKq). If S (A) is given
S (A
Here and in the following, we consider the support L < w < B, (12)
function as a function on the unit sphere. For convex o — S(A) yd
bodiesK andM and scalarsr, 3 > 0, we have for the relative estimation error hold, where r is the
smaller and R is larger radius of the minimal annulus
ahg + Bhv = hakepwm (8) of the zonotope Z given iBq. 10.
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Proof As R is the maximum ofhy on S92, it THE TWO-DIMENSIONAL CASE

follows from Eq. 11, that In the following, we will restrict to the case =

@(A) < BS(A) 2, although some of the concepts can be transferred
"W ’ to higher dimensionsAs the aim is to minimize

which yields the upper bound. The lower boundthe length of the error interval off (A) in Eq. 6,

follows analoguously from Eq. 11 and the fact that the differenceR—r should be as small as possible.
is the minimum ot onS9-1. m This can be achieved by an appropriate choice of the

weightscy,...,ck. To obtain an exact value for the
Fﬁtegral inEqQ. 6 in the case wherA s a disk, we must
assume that the weights sum up to dhéollows from
Schneider (1993)thatc; + ... +c¢x = 1 is equivalent
to the condition that the zonotopegiven byEg. 10
has perimeter 4. Let” be the family of all zonotopes
Ithat can be written as sum of line-segments parallel to
given unit vectorsuy,...,ux. Let 24 be the family of
thoseZ € % that have perimeter 4. We are therefore
faced with the problem of finding a zonotopé ¢ %4
that satisfies

That the bounds in the above Lemma are shar
follows from the next example.

Example2 Fix k> 2, ug,...,u € S9! and weights
C1,...,cx > 0 for a quadrature rule. Define Z
according toEq. 10. Due to symmetry, the ball ¥B
touches the boundary of Z in at least two antipoda
points rw and—rw, w € S9-1 Let A be a ball of
(d—1)-volume1/2 in the hyperplane w. (As A is
lower dimensional, the proper interpretation of A

is twice the (d — 1)-dimensional Hausdorff measure,
so SA) = 1) The surface area measure of A is

concentrated on the points w andv, and Iy coincides T(Z°) =min{T(2) : Z€ Za}. (13)
in both of these directions with r, $6g.11 implies It
Sm=— [, rs(adu="s@). 2 =cl-tn ] & & [t ud,
_ Ya s y‘_j thenci,...,c; > 0 are the best weights Eq. 3 in the
and equality holds on the left hand sideta. 12. sense that among all weights summing up to one they

Fig. 1 illustrates this for d=2, k=2, iy = (1,0) ", yield the sh*ortest interval of possible relative errors.
U = (0,1)" and g = ¢, = 1/2. Obviously A is not A solution Z* of the optimization problenn Eq. 13
topologically regular, but it can be approximated by always exists due tq a compactness argument based on
a sequence of topologically regular convex bodiedhe Blaschke selection theorem.
(Am) in such a way thatlimm .S (Am) /S(Am) = For asymptotic results, it is enough to replace
S'(A)/S(A). This implies that the left hand side the objective function inEq. 13 by a simpler
of Eq. 12 cannot be improved, even if we restrictone. Bonnesen (1929) improved the isoperimetric
considerations to topologically regular sets. To showinequality for an arbitrary planar convex body,
that the second inequality i&q. 12 is sharp, a similar  stating that
argument can be used, ifw are directions for which
hz becomes maximal, and thus coincides with R. S (K)

“V(K) > ’ZTTZ(K), (14)
whereS(K) andV (K) are perimeter and area &,
respectively. FOK = Z € 23 we haveS(Z) =4 and the
left hand side oEq.14 is minimal for the zonotop@ €
%4 that has the greatest area. According to a classical
result of Lindelof (1869),Z is characterized among
all zonotopes inZ; by the fact that it circumscribes
a circle. Due to origin-symmetry, this circle is the
incircle of Z, centered at the origin, and with raditis
This allows an explicit construction & Up to scaling
with the factor ¥ the zonotopé coincides with the
polytope

k
Fig. 1.A possible set A for the case where Z is the unit P:=){xeR?: [(u,x)| <1}, (15)
cube; see Example 2. i=1
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obtained by intersecting all supporting half-planes obf Z is the largest distance of a vertex dffrom the

the unit disk with outer normal ifituy, ..., £ux}. We

origin, and this is

now assume without loss of generality that the vectors

ui,...,Ux all are located on the positive half-sphere
{(cosp,sing) : 0 < ¢ < m} and are ordered according

to increasing angledie write < (u,v) € [0, r1] for the
(smaller) angle between the unit vectargndv. Let a;
be the outer angle of the vertex betweenitheand the

(i+1)st edgeice., a; is the angle of the normal cone

at this vertex, in other worde — @ is the usual inner
angle; see Fig. 2). Explicitly, we have

Qi — {%:(ui,uwl), i=1,...
T S uu), i=k

akila

(16)

as the normal of thék+ 1)st edge is-uj.

%)

ay us

A

Uy Ug

U1

sY|p

Fig. 2. Construction of the angles; and the polytope
P given byEqg. 15 with k= 4.

As the length of theth edge ofP is tan(a;/2) +
tan(ai-1/2) andS(Z) = 4, we obtain

Z==C1[—Up,U1] D... D C[—Uk, U ,

with
S—F tan(ai/2) +2tan(ori_1/2) ’ 17)
and
K -1
Tk= (_Ztan(ai/2)> , (18)

where we have putip = ax. This andV (Z) = 2r
was also derived by Knebelman (1941). The weights

K
R« =Tkma

_—. 19
|:1Xcos(ori/2) (19)
Summarizing, we have shown the foIIowing.Q}(A)
is an estimator o5(A) > 0 given byEq. 6 with the
Bonnesen weights; = G, i = 1,...,k, from Eq. 17,
then the relative errors obey

(A)
S(A)

AR

0 M~
T < < —Rx. 20
STk < _2Rk (20)

These error bounds are sharp; see Example 2.

It should be noted thaEq. 14 is always a strict
inequality unlesK is a disk. AsEq. 14 is used for
zonotopes here, this approach will not necessarily lead
to the optimal choice of the weights. However, the
choice may be better than choices for the weights
motivated by usual quadrature rules.

Example 3 We consider the integrand iBq. 6 with
k = 3 and the directions ju= (cog¢i), sin(¢i)), i =
1,2,3, where

T T

¢1 ¢2:1_6’ g

As mentioned before, the rectangular quadrature rule
leads to the Voronoi weightg’ c The ith weight is the
normalized length of the Voronoi arc corresponding to
u; (arc in St of all points closer to pthan to any other
point in {#uz, £up, +us}). This gives

=0, ¢3 =

CV _ ¢i+1*¢i—1

| 27.[ 9
where we assumedr-periodicity. For the present
example, we obtain

v 15 1 15
c'=(=,—= =
32'16'32) °’
and the corresponding zonotope, zhas inradius
ry ~ 0.18290and circumradius R ~ 0.98199 see

Fig. 3. Thus, the width of the minimal annulus is
approximately0.79909

Using instead the Bonnesen weights vyields
approximately

¢ = (0.490570.018850.49057 ,

are based on the application of Bonnesen'’s inequality

Eg. 14 and will be calledBonnesen weights the
following. Theith weight; is the relative length of the
ith edge of the polygon with facet normatsy; which
circumscribes a circle of raditg. The outer radiu&

leading to the inradiug ~ 0.191412and circumradius
R~ 0.981147 respectively. The width of the minimal
annulus is now approximately.789 735 which is an
improvement of aboit%.
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We estimate the left hand side Bfy. 23. In view of
Eq.21, we haven;/2 < 2arcsin(A;/2) < /4 for all
i=1,...,k Taylor's theorem implies

tan(a;/2) < a;/2+c (a;/2)%,  foralli=1,... k

95 1 where ¢/ = 8/3 is the third derivative of tafx) /3!
evaluated atr/4. Relations 18, 21 and arcgi) < 7X,
0<x<1,imply that

_ T 2
>

LG ®) TFE @

Fig. 3. The zonoid from Example 3 associated tognd this gives
Voronoi weights together with its minimal annulus.

. 2
. e —2> ——— (&%)°.
To formulate an asymptotic result, we have to 3

_spemfy how clos_;e_ the se_t of _the dlrectloqﬁ...,uk The right hand side oEq. 23 can be estimated in an
is to a set of equidistant directions. Following Gardner

. . even easier way using the fact that the perimeter of
et al. (2006), we introduce theymmetrized spreafy; .. =7, =
of Uy ( uk)by\;v ! N d 2 P the incircle ofZ is bounded byS(Z) = 4 and hence

Tk < 2/m. Together withEg. 19 this gives
N = in min{|lu—uil|,|lu— (—u)|}.
¢ = maxmin min lu—u]., Ju~ (~u)]] i ,
MR—2< ——— ({)° <
Geometrically,A; is the maximal distance of a unit 1— ()
vector from the set{+uj,...,%+uc}. In particular,
{*us,...,2ud is aBi-net in St For a; defined by  asar < /2— /2. Putting things together we arrive at
Eq.16, we have

2

%\ 2
mmk) :

@
Zsmz' <N, i=1,....k (21) ‘ A <c(by)
The following theorem shows that the choige=  With ¢ = max{m/3,1/(v2-1)} = /s, u
G leads to a relative error off(A) that depends Using the fact that Voronoi weights deviate only

quadratically o, Here we only consider sampling gjightly from Bonnesen weights asincreases, it can
si:ts {uz,...,u} such thgt every closed sub-arc ofhe shown that the same order of convergence also
S* of length 1/2 contains at least one point of 145 for the relative error dB(A) if the estimator is
{£u,...,2u}. Equivalently Ay < /2— /2. based on Voronoi weightsThe example of equidistant
sampling shows that quadratic behavior is the best
Theorem4 Let AcC R? be a polyconvex set with Possible.
positive perimeter. Let k 2 and {v1,...,v} C R?\
{0} such that the symmetrized spread of the vectorExample5 Consider the special case wherg u. , Uk
U=vi/|vill,i=1,....k isAf < V2 — V2. If Q(Z(A) in are equidi_stant on the upper half circle, meaning that
Eq.3 is calculated using the Bonnesen weights ¢, Ui = (cos(irt/k),sin(ir/k)), i=1,...,k. Hence
i=1,...,k fromEq.17, then the relative error obeys

Ay = 2sin T K— oo
k= e~ o — ®.

S(A) =3 By symmetry arguments, the weights leading to the
minimal width of the corresponding minimal annulus
must all be equal and thuse= ... = ¢x = 1/k and

Proof FromEg.20 we get Ci :_Gi fori=1,... k. A(_:_cordlng toEqs_.18 and 19,
the inner and outer radii of the associated zonotope
_ (A - S(A)) ~ are 9
mk2§2(7 <mR«—-2. (23) P I
SA) = (ktan())
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and zonotope associated to a fixed quadrature rule. From

_ T -1 a1 Eq.11 and the unbiasedness of the estimator, we get
Ain(oo()) = kon(3)) "

cf. Eq. 4. Therefore, the width of the minimal annulus

Var (éﬁ (3A)) —Ey <§ (9A) - S(A))2

2

is

] —ya%s ([, (00 - sad)

Rc— Tk = Zk*2+0(k*4), k— .
Hence
This shows thaR, — Ty, and thus the relative worst
case error, are of ordefA;). Var <§3 (SA)) =
~2
Instead of using the above geometric arguments to Ya /sd—l /Sd_lJ(u,v)S(A, du) S(A.dv), (25)

obtain asymptotics for the worst case error, one might

also use methods fronoptimum quantizationsee where

Gruber, 2004). Among other important applications,

this theory yields asymptotic minimum errors of 3y v)=Eg ((hz (SU) — ya) (hz (9V) — ) -
numerical integration for classes of Holder continuous

functions. As the functioy, : v— |(v,u)|, and hence 51qer's inequality implies that

the function p, in Eq. 5 are Lipschitz continuous,

optimum quantization gives an upper bound for the 1/2
worst case error depending linearly ak. This J(u,v) < (Es (hz (79U)*Vd)2)
suboptimal rate is due to the fact that the class of 1/2
Holder continuous functions with Holder exponent 1 X (Eg (hz (8v) — yd)2>
is considerably larger than its subspace spanned by
{gu:uest). = [y, (hz (W) = ve)* u(du) .
A SEMI-RANDOMIZED APPROACH Hence
The associated zonotope for quadrature rules S(AV2
can also be used in the context of a semi- Var(@(ﬁA)) < g_)ézz (Z,ydBd), (26)
randomized approach, which generalizes systematic Yq W

random sampling designs. The idea of this design
based approach is to evaluate the total projections a¥here & (-,-) denotes the ,-metric defined earlier.
the randomly rotated setA in k directions. In other This inequality is sharp, as equality holds here for
words, givenk vectorsvy,...,v € S9! and weights example wheneveA is a set of dimensiond —
C1,...,Ck the estimator fo6(A) is defined by 1. The quadrature rule is exact whén= B and
thus §' (BY) = dkg, which implies that % is the
_ _ mean width b(Z) of Z and y;BY is the Steiner
S(9A) = Yd i;C'pﬁ_l"i’ (24) ball of Z; see Schneider (1993, p. 353). Hence,

where d is a random rotation whose distribution is the coefficient of variation Var(Sﬂ(z?A))/S(A)

the normalized Haar measure on the compact groug bounded from above by a multiple of thHe-
SQy of proper rotations. ClearlyEg. 24 defines a distance ofZ to its Steiner ball Again, a geometric
randomvariable and Crofton’s formula implies that inequality (Groemer, 1990) would allow to give an
this variable is an unbiased estimator 8(A). In upper bound of the right hand side of Ineq. 26.
particular, if d = 2 and the set{+vi,....+Vv} is  However, a more direct evaluation is possible and was
equidistant inSt, the estimatorS;i (8A) in Eg. 24 is  carried out by Janacek (2001). In particular he found
the one obtained from systematic random samplingoptimal weightscs,...,cc to minimize the variance
Moran (1966) considered this special case and gava the case of a “totally anisotropic object’ge., a
worst case bounds for the variance §2f(z9A). His setA contained in a hyperplane. The optimal weights
approach allows a geometric interpretation which isare obtained by inverting the covariance matrix of
not restricted to the planar setting: L&be, again, the  (pg-1,,---,Pg-1q,)-

k
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ERROR BOUNDS FOR DIGITAL
SURFACE AREA ESTIMATORS

finer, i.e, when the digitized sef\; (A) becomes a
better approximation of the original s&tThe function
pv given by Eg. 2 can easily be estimated from
the digitized setA; (A) by comparing the values of
neighboring points, i/ is a gridpoint For any vector
v e G\ {o} such an estimator is given by

In this section we consider digitizations of a
topologically regular polyconvexset A ¢ RY on
rectangular grids and assume that the directigrzsse
givenas normalizedlifference vectors of grid points,
which usually are neigbours. For example, we consider () =
the common4- and 8-neighborhoods in the plane. td-1
We compute Voronoi- and Bonnesen-weights together (V]
with the associated in- and circumradii explicitly and
give asymptotic error bounds f(§(A) for increasing
resolution of the digitization.

—#{Xect({+G) xe b (A) X+IVED (A} .

This estimator counts the number of poimtsn
the digitized set; (A) such thatx+tv does not lie

To digitize A we consider the rectangular pointin the digitization of A. From Kiderlen and Rataj
grid G = (1Z x 7 x ... x {g1Z x Z, where (2006, Theorem 5) it follows that this estimator is
{1,..-,4d—1 > Oare thegrid distances in the directions asymptotically unbiasedlge.,
of the axes, and we used tlggid distance in the
last coordinate direction as unit. grid cell is any
d-dimensional cuboidz + [0,{1] %X ... x [0,{g_1] X
[0,1],z € G. Motivated by design based stereology,
we consider digitizations ofA by a randomly
translated grid. With the random varialfleuniformly
distributed in an arbitrarily chosen grid cell, the

ImE, (1) = pv (27)

Having choserk vectorsvy, ...
C1,...,Ck > 0, one can define

,Vk € G and scalars

k
random gridé + G is a stationary random closed set § (At) = 2 ciPu (t) (28)
and is called astationary gridin Kiderlen and Rataj Yd i; Y
(2006). .

In order to increase resolution, we scale the grioand It fgllows frgm Eq. 2,7 thatAsz (A is an
by a factort > 0 and denote the digitization @fin the asymptotically unbiased estimator & (A), ast \, 0.

scaled grid (£ +G) by A (A). Let Q be a non-empty
compact set, called theampling elementVe assume
that each grid point € t(¢ +G) is the center of a small
sampling windowx +tQ, which can be thought of as
a pixel or voxel. Thepixel digitizationconsists of all
grid pointsx for which this sampling window +tQ
hits the setA. Hencel (A) = (A®tQ) Nt(&+G),
where Q is the reflection ofQ at the origin. For
= {o} the pixel digitization reduces to th@auss
digitization(sometimes calletit-or-miss digitizatiof
containing all points of the scaled grid iA. All

Note that the estimator given biqg. 28 can be
calculated from the knowledge of the digitization
A (A) of A alone.§f<i (A;t) behaves approximately like
a discretized Crofton integral, wheris small. Thus,
the methods and resultd the previous sectiooan be
applied to obtain asymptotic error bounds.

To illustrate this approach we discretize the
Crofton integral using only directions parallel to the
coordinate axes: iiRY we choose the @ grid points
Vi=—Vgri=¢e,i=1,...,d—1andvy = —Vpq = &4
whereg denotes théth unit vector. Due to symmetry,

results on error bounds in this section will be statedhe weights leading to a minimal error interval are all

for the pixel digitization and therefore also hold forequal,c; = 1/(2d),i = 1,...

,2d, and coincide with

the Gauss digitizatiorin image processing, the term the Voronoi weights. The zonotope defined inEq.
digitization often denotes the union of pixels (grid 10 is given byZ = [— 1/d,1/d]d and it has inradius

cells) which are centered at grid pointsAa(A). As

such pixel unions are in one-to-one corresponden
with the unions of their centers, one may equivalently
consider digitizations as subsets of the grid, and we

will do so througout the paper.

We fix a setA and estimate its surface ar8gA)
from the information available in its digitizatiak (A)

=1/d and circumradiufR = 1/v/d. Lemma 1 and

ct‘tnﬁe asymptotic unbiasedness3Jf (A;t) imply

ES, (At) 1
S(A) \/_ dyg’

In the planar case we hayg= 2/mand

dyd t\O

using a discretized Crofton formula; cf. Ohser and

Mucklich (2000). We will focus on the asymptotic
error of this estimator when the grid spacing gets

ES(At)

0 < fz 1.111

0.785~ = < lim
4 —t\0
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which means the asymptotic relative error is3%  and circumradii are different. In the following I8t=
in the worst case. In three dimensions, the asymptotigrccog?/,/72+1). For the Voronoi case, the inradius

relative error is at most 33% asy; = 1/2 and fvor (Z1) and the circumradiuByer ({1) are given by
2  ES(AL) 2
0.667~ = < lim —8+ "~ < =\/3~ 1.155 1 41 :
300 SA 3 o (21) = B+ east if {1 <1,
vor(C) =141 _ iy 1 otherwise
2 1 ’

Due to Stirling’s formula we have/dyy — /2/m as 2/if+1

d — . As v/dyy is decreasing i, we have

: Egg (A1) s
0< lim—2>" < /= ~1253
- tl\r% S(A) — V2 ’

and

1
I

n1/2

b (1))
for all d, where/m/2 is the best upper bound that P 2 Pt3 ¢+l ]
holds for arbitrary dimensiord. We do not obtain a if ¢ <1,
non-trivial uniform lower bound, as there agec N Ryor (41) = B
and set#\ in RY with S(A) = 1, but such thaB, (A) is
arbitrarily close to 0. Due to the large worst case error 1
evenin low dimensions, the above choicgoé points n
is not recommended for practical applications. Instead,
a larger number of grighointsshould be used. On the
other hand, the estimator 8{A) in Eq.28 is based on
asymptotic considerations and becomes less reliabtespectively. In the Bonnesen case the inradius
when the lengths of the vectorsare large. One would rgy,({1) is given by
therefore restrict to vectors with bounded lengté,
vectors contained in a smatuclidean disk around _1
the origin. For computational reasons it is easier to _ 2 _ 2
replace the Euclidean disk by a disk with respect to therBon(Zl) @ (2 G+l =2 (Zl * 1)>
maximum normTo be specific, we choode, ...,V }

otherwise,

in the set and the circumradiuBgon (1) is given by
" =~ (-1),4(n-1)] ... , Y
x[~Zg-1(n—1) g 1(n— D) x [~(n—1),n— 1)\ {0} . (eon (1) V2 (1+ (&+1) ) |
For n = 2, the most common choice in if (1<1
applications, we have Reon({1) =
—1/2\~1/2
7/2(d):{—51,0,Z1}><-~- rBon(Zl)\/z<1+(le+1) / ) .
X {7Zd—l> Oa Zd—l} X {717 05 1} \ {O} ) (29) otherwise.
andk = #f/z(d) = 39— 1. We determine asymptotic
worst case errors far= 2 andn = 3 in the planar case
and forn = 2 in dimensiord = 3. Neither the Voronoi nor the Bonnesen weights are
optimal in the sense that they minimize the length
THE TWO-DIMENSIONAL CASE of the asymptotic error interval. The optimal weights

were found by numerically solving a constrained
8 grid points of the set in Eq. 29 are just themlnlmlzatlon problem using MTLAB . It turns out that

8-neighbours of the origin, and the correspondinéhe Bonnesen Weights'are very close to the optimum
directions are parallel to the edges and diagonal@S can be seen from Fig. 4 which shows the thickness
of a grid cell. Both the Voronoi weights and the Of the minimal annulus for Voronoi, Bonnesen, and
Bonnesen weights can be computed analytically. [@ptimized weights, respectively, dependingdan> 0.
turns out that the Voronoi weights and the Bonneseiterchanging the- and they-axis, if necessary, we
weights do not coincide, and the corresponding inmay restrict tof; < 1.

In the planar case fon = 2, thek = P _1=
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- We consider also the case= 3 in the planej.e,,

Ve we use all 16 directionsbtained by normalizing the
PN | grid points inthe cuboid[—2{1,2{1] x [-2,2] \ {0}.

nagr Now even in the special case whé&n = 1 the 16

weights leading to a shortest asymptotic error interval
are not equal. We refrain from explicitly stating the

formulas for the in- and circumradii because of their
complexity. The results are qualitatively similar to the

casen = 2. The use of the Bonnesen weights yields
a smaller thickness of the minimal annulus than the
use of the Voronoi weights. The minimal thickness
achieved with optimized weights is only slightly better

01 02 03 04 05 06 07 08 09 1 than for Bonnesen weights (Fig. 5).

delta

Fig. 4. Thickness of the minimal annulus for eight THE THREE-DIMENSIONAL CASE

016 -

014 -

012 -

01r

003+

0.08 -

0.04
0

directional vectors on a rectangular grid in 2D |n three dimensions, we restrict considerations to
depending orf; for Voronoi, Bonnesen, and optimized the cubic grid {; = {» = 1) andn = 2. The directions
weights, respectively (see the text for details). associated to thé& = 32 — 1 = 26 grid pointsy; of
the set in Eg. 2%onsist of the 6 directions along
R the edgesi(= 1,...,6), 12 diagonals of the faces
T e (i=7,...,18) and 8 spatial diagonals= 19,...,26)
0o oimized of the unit cube[0,1)®. Hence, the surface area

estimatorin Eq. 28is based on comparison of pixels
with neighbors in the so-called 26-neighborhood. The
Voronoi weights can be calculated as the relative sizes
of the Voronoi cells on the unit sphere generated
by {vi/|vall,...,w/||w||} . They can be derived
by computing the area of the Voronoi cells on the
unit sphere analytically with the help of spherical
trigonometry, and are given by

]

1] 0.1 0z 0.3 0.4 D.‘S 0.6 07 0.s 08 1 2 > 3 ) N
dela 3 —2arcco J%(/%f_\/ésm(’—g)) ~0.0457779

Fig. 5. Thickness of the minimal annulus for 16 ifi=1....6
directional vectors on a rectangular grid in 2D s
depending ord; for Voronoi, Bonnesen, and optimized . _ 3 — zarccoy 22 Si”('—sT)) ~0.0369806

. . . i = 2v/3-6
weights, respectively (see the text for details). ifi—7 18

It is easy to see that in the case of a square grid

. .. . 2—/3)(2—v6)+2

({1 = 1) the widthR—r of the minimal annulus is 3 %arCCOS<(4\/3f—)\(fT\/Q;6> ~ 0.0351956
minimal if and only if all weights are equat; = ifi—19 26

... = cg = 1/8, a choice which coincides with the _ _

Voronoi and the Bonnesen weights. The correspondind he Zonotope is the convex hull of all points of the
zonotopeZ is a regular octagon with side length form 32y &vi/[|vil[, where(es, ..., &) runs through
1/2 and facets parallel to the vectovs,...,vs. Z all vectors in{-1,0,1}?°. The quickhulkalgorithm

has circumradiu® = 4+ 2v2/4 and inradiug =  (Barberet al, 1996) was used to find this convex
\/_/ hull. Z has 96 vertices, inradiusyr ~ 0.463312,

<l+ ﬁ) /4. With y, = 2/ we get circumradius Ryr ~ 0.511386, and thickness of
minimal annulusTyyr &~ 0.0480748. Asys = 1/2 we

ESR(A: obtainthe bounds
0.948~ 7_8T(1+ \/é) < lim ESS (A

o S(A ESS. (At
0o S(A) 0.927< lim =26 AY _ 4 922

< 7—81 V4+2v2~1.026 0o S(A)

Although the definition of the Bonnesen weights
This was also obtained in Kiderlen and Jensen (2003jvas restricted to the planar case, it can naturally
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be generalized to higher dimensions. We will do so  Proof Let A be the symmetrized spread Df:=
for comparison with the established Voronoi V\{eightg.{x/ IXI| : % € 7/”(2)} and setm:= n— 1. Clearly, the
Recall the construction for the Bonnesen weights in 1 _ _ _
the plane for givervectorsvi, ..., v € R2\ {o}. We arc C C S in t?g first quadrant with endpoints
definedu; = vi/||vi|, i = 1,...,k, and constructed (l,O)T,(_mZJr_ 1) 2 (m, 1)" eDdoes not contain any
the polygonP in Eq. 15 with outer unit vectors Other points inD and thus the spreafiis at least the
+Uy,...,+Uy circumscribing the unit ball. We then distance of the midpoint ot to one of its endpoints.

chosee; proportional to the length of the edgeffvith ~ HeNCe

outer unit normaly;. In higher dimensions, for given

vi,..., W € R9\ {o}, we set = vi/|vi]l, i = 1,....K, A> 2(1—0059) _ $ 2<1 /l+cos¢> 4,
and 2 2

P:= {xeRd (LX) | gl} ,

LD~

where ¢ = arccos(m/\/ljL mz> is the length ofC.

. S This interpretation ofi, also shows the inequality in
in complete analogy t&q.15. HenceP is the polytope .
circumscribing the unit ball with facet normals in Eq. 30, ;%Sd” cannot be ITarger then half the distance
{£Uy,...,+u. We then choos€ proportional to ©f (1,0)  from (1,1/m) . To show thatA < dy,

the (d — 1)-dimensional volume of the facet d? let v,v’ € D two points such that the sub-arc ot :
which has outer unit normal;. In the present three- connecting them does not contain any other points

dimensional example (witd, = ¢, = 1 and all grid of D. Using reflections and translations leaviig

o (3) _ invariant, we may assume that= x/||x|| andV =
pointsin ¥,~’) the Bonnesen weights were computed , ; )
with quickhulland are given by X'/ |IX] wherex,x' € ¥4’ and the angles they form

with the x-axis are at most/4. We refer to Fig. 6 for
a sketch of the situation. The cone between the rays
spanned by andx' cannot contain any other points
of ”//n(z) in its interior. Lety (y') denote the point in
%2 N {(m,t) :t > 0} with largest (smallest) second
rdin low ve) thi ne. Then the length
The associated inradius isson ~ 0.462424, the g?(t)hg a{;lct:eianEi ?Nith(aebn%l;girgtss/ gr?d\(/a’ is a? mto:[ tﬁegt
circumradius iSRgon ~ 0.511243, and thickness of length of the arcC’ c ST with endpointsy/|ly|| and

minimal annulus is.TBon ~ 0.0488187. This shows v/l The segmeriy,y'] does not contain any points
that Bonnesen weights are not better than Voronol

(2) ;
weights for the 8 — 1 directions in dimensiod = 3. of 7n™, soy andy are distance one apart, and the

)7
But this is not surprising because they are based Olgngth ofC'is bf[)hun?e(il tft:O;n above tl)ly th.f. I(ingthl O.f
Bonnesen’s inequalitiq. 14 which is valid only for ' er?we usethe a_c a amongTa uni 'Q ervaisin
two-dimensional convex bodies. In tHast section {(m,t) 't ZO}, the interval [(m,O) ,(Mm 1) } has
we discuss how the approadeveloped in this paper the largest gnomonic projection. This giv&s< d,, as
could be extended to higher dimensions. v andv’ where arbitrary irD. ]

0.0465894 ifi=1,....6,
G ~{00367439 ifi=7,...,18,
0.0349421 ifi=19,...26

Finally, we show how the asymptotic relative error  In view of Theorem 4, Lemma 6 yields an estimate
bounds in the case of a quadrat{g & 1) planar grid for the asymptotic relative error using the Bonnesen-
depend on the choice of To do so, the symmetrized weightsc; = ¢; wheneven > 2.

spread of the normalized vectors of'? must be
determined. Theorem 7 Let Ac R? be a topologically regular
polyconvex set with positive perimeter,>n2, and

Lemma6 For n > 2 the symmetrized spread of {1 = 1. Let §(Ait) be defined byEq. 28, where

2 ~ .
{X/HX” :xe“//n(z)} is equal to Vi, W) = %7 and g = &, i = 1,... .k, are the

Bonnesen weights. Then the asymptotic relative mean
error obeys
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Fig. 6. Construction to determine the symmetrized
spread in Lemma 6: the points x and ix 7/,1(2)

are contained in the cubd0,n—1> and their
normalizations W' in S*.
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