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ABSTRACT

According to Crofton’s formula, the surface areaS(A) of a sufficiently regular compact setA in Rd is
proportional to the mean of all total projectionspA(u) on a linear hyperplane with normalu, uniformly
averaged over all unit vectorsu. In applications,pA (u) is only measured ink directions and the mean is
approximated by a finite weighted sum̂S(A) of the total projections in these directions. The choice of the
weights depends on the selected quadrature rule. We define anassociated zonotopeZ (depending only on the
projection directions and thequadrature rule), and show that the relative error̂S(A)/S(A) is bounded from
below by the inradius ofZ and from above by the circumradius ofZ. Applying a strengthened isoperimetric
inequality due to Bonnesen, we show that the rectangular quadrature rule does not give the best possible error
bounds ford = 2. In addition, we derive asymptotic behavior of the error (with increasingk) in the planar case.
The paper concludes with applications to surface area estimation in design-based digital stereology where we
show that the weights due to Bonnesen’s inequality are better than the usual weights based on the rectangular
rule and almost optimal in the sense that the relative error of the surface area estimator is very close to the
minimal error.

Keywords: associated zonotope, Crofton formula, digitization, isoperimetric inequality, minimal annulus,
perimeter, surface area.

INTRODUCTION

One common approach to approximate the surface
area S(A) of an unknown setA ⊂ Rd from its
digitization is based on a discretization of Crofton’s
formula. We discuss the worst case error introduced
by the discretization of the rotational integral in
dependence of the quadrature rule chosen. As the
methods apply generally to surface area estimators
based on Crofton’s formula, we describe them in a
general framework and return to its application to
digital images in thethird section, entitled “Error
Bounds for Digital Surface Area Estimators”.

Throughout the paper adirection is a vector on
the unit sphereSd−1 in Rd. If u is a direction,u⊥

denotesthe linear hyperplane with normalu, ander,u

is the straight line with directionu throughr ∈ u⊥. Let
A⊂ Rd be afull-dimensionalcompact set in the class
UPR; (definitions can be found in the next section). A
special case of Crofton’s formula (Rother and Zähle,
1990) expresses the surface areaS(A) of A in terms of
the Euler characteristicχ of linear sections

S(A) =
2
γd

∫

Sd−1

∫

u⊥
χ (A∩er,u)dr µ (du) . (1)

Hereγd = (2κd−1)/(dκd), whereκd is the volume of
the d-dimensional unit ball, andµ is thenormalized

Haar measureon the unit sphereSd−1; see, e.g.,
Schneider and Weil (1992, p. 18), but note the different
normalization.For setsA that are not full-dimensional,
Eq. 1 still holds if its left hand sideS(A) is defined
in such a way that lower dimensional parts ofA are
counted twice.The inner integral ofEq.1,

pu =
∫

u⊥
χ (A∩er,u)dr , (2)

is called total projection of A in direction u, as it
is obtained by measuring the(d−1)-volume of the
orthogonal projection ofA on u⊥ with multiplicities.
In Eq. 2 the integration is understood with respect
to the Lebesgue measure onu⊥. If total projections
can be determined exactly for finitely many directions
u1, . . . ,uk ∈ Sd−1, say, ak-point quadrature rule can be
used to discretize the outer integral inEq. 1 and one
obtains the approximation

Ŝd
k (A) =

2
γd

k

∑
i=1

ci pui , (3)

which depends on the choice of weightsc1, . . . ,ck ≥ 0.
To assure that the quadrature rule is exact whenever
A is a ball, we assume throughout that the weights
sum up to 1. If, for example, the rectangular rule
is chosen in the planar case, then the weights are
proportional to the arc-lengths of the corresponding
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spherical Voronoi cells generated by{u1, . . . ,uk} on
S

1. This geometric interpretation generalizes readily
to higher dimensions. If{P1, . . . ,Pk} is the spherical
Voronoi tessellation ofSd−1 generated by the set of
projection directions{u1, . . . ,uk} with ui ∈ Pi then the
weights

cV
i = µ (Pi) , i = 1, . . . ,k,

will be called Voronoi weights associated to
{u1, . . . ,uk}. These weights are commonly used in
applications ford = 2,3. In the special case where
d = 2 andu1, . . . ,uk are equidistant, the weights for the
rectangular quadrature rule (Voronoi weights) coincide
with those for the trapezoidal quadrature rule.

The discretization of the spherical integral
introduces a bias, which typically depends on the setA.
We are interested in the worst case behavior. Already
Steinhaus (1930) treated the special case whered = 2,
k is even, and{u1, . . . ,uk} forms an equidistant set of
points inS1. For Ŝ2

k (A), given by Eq. 3 with Voronoi
weights cV

1 , . . . ,cV
k , he derived sharp bounds for the

relative error:

π
k

cos(π/k)
sin(π/k)

≤ Ŝ2
k (A)

S(A)
≤ π

k
1

sin(π/k)
. (4)

The left hand side and the right hand side ofEq. 4
are the endpoints of the interval of all possible relative
errors, asA varies. Such an interval can be established
without the assumption of equidistant directions and
in all dimensions. We refer to this interval aserror
interval in the following.

Using a translative Crofton formula in Section
“Error Bounds forŜd

k (A)” , we will define an origin-
symmetric convex bodyZ ⊂ Rd associated to the
discretization, only depending on the projection
directions and the quadrature rule. We will show in
Lemma 1 that the relative error̂Sd

k (A)/S(A) is in a
sharp way bounded from below by (a multiple of) the
inradius ofZ and from above by (a multiple of) the
outer radius ofZ. Thus, the thickness of the minimal
annulus ofZ is proportional to the length of the error
interval and describes the quality of the estimator.
Given k projection directions, the quadrature rule (in
other words, the values of the associated weights) that
minimizes the minimal thickness ofZ can typically
only be determined numerically. In the planar case,
we suggest to bound the thickness of the minimal
annulus ofZ from above by an isoperimetric deficit
using a strengthened isoperimetric inequality due to
Bonnesen. This isoperimetric deficit can be minimized
with respect to all quadrature rules in closed form. The
weights minimizing the isoperimetric deficit will be

called Bonnesen weightsand are proportional to the
lengths of the edges of a polygon circumscribing the
unit disk and touching it exactly at the pointsu1, . . . ,uk.
We will show that Voronoi weights are not minimizing
the length of the error interval by giving an example
where the Bonnesen weights yield better error bounds.
We will determine the asymptotic behavior (ask →
∞) of the relative error for the Bonnesen weights in
Theorem 4. At the end of the second section we will
consider the case where the directionsu1, . . . ,uk ∈ S

1

are obtained using systematic random sampling onS1.
We will show that the coefficient of error of̂S2

k (A)
can be bounded from above by a geometric quantity
involving Z, namely a multiple of theL2-distance
betweenZ and its Steiner ball.

In the subsequent section we discuss error bounds
for digital surface area estimators. The digitization of
A on a randomly translated, rectangular grid will be
considered. Asymptotic bounds for the expected value
of the estimator forS(A) in the grid will be established.
”Asymptotic” relates here to increasing resolution of
the grid. The vectorsu1, . . . ,uk are chosen as grid
directions,i.e., normalized vectors connecting two grid
points. These two grid points are usually neighbours
and we will consider the4-, 8- and 16-neighborhood in
2D and the 6- and 26-neighborhood in 3D. For all these
settings the Voronoi and Bonnesen weights together
with the corresponding in- and circumradiir and R,
respectively, will be computed analytically, except for
the 26 directions in 3D where numerical methods will
be used. We will compare the relative errors with the
minimal error achieved by numerically optimizing the
weights and show that the Bonnesen weights lead, at
least in 2D, to smaller errors than the widely used
Voronoi weights.We then restrict to quadratic grids
in the plane and consider boundary length estimators
based on pairs of grid points that are contained in
some(n− 1) × (n− 1) square of grid cells,n ≥ 2.
This generalizes the casen = 2, which corresponds to
the boundary length estimator based on 8-neighbours.
Theorem 7 considers such estimators for generaln≥ 2
and shows that the asymptotic mean relative error of
Ŝd

k (A) for Bonnesen weights decreases asn−2.

The application of Bonnesen’s improved
isoperimetric inequality restricts many of the above
arguments to the two-dimensional case. In the last
section we discuss the possibility of extensions to
higher dimensions.

ERROR BOUNDS FOR Ŝd
k (A)

A set A ⊂ R
d is full-dimensional, if its tangent

cone ata spansRd for almost alla ∈ A with respect
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to (d − 1)-dimensional Hausdorff measure. IfA is
topologically regular (A is the closure of its interior)
and convex, it is also full-dimensional. The setA has
positive reach if there isanε > 0 such that each point
in theε-neighborhood ofA has a unique closest point
in A.

Throughout the following we assume thatA is an
element of the familyUPR of all sets inRd which can
be written as a finite union of compact setsA1, . . . ,Am
with positive reach such that any intersection

⋂
i∈I Ai

with I ⊂ {1, . . . ,m} is either empty or a set of positive
reach, as well. In particular,convex bodies(nonempty
compact convex subsets ofRd) and polyconvex sets
(finite unions of convex bodies) are elements ofUPR.
For A ∈ UPR the surface area measureS(A, ·) of
order d− 1 is defined, and Eq. 1 holds withS(A) =
S(A,Sd−1). If A is in addition full-dimensional,S(A)
coincides with the usual surface area ofA. In view of
the applications in digital stereology, it is convenient to
extend the total projection mappingv 7→ pv to Rd \{o}
by positive homogeneity of degree 0. The translative
Crofton formula

pv =
1

2‖v‖

∫

Sd−1
|〈u,v〉|S(A,du) (5)

holds for almost allv∈ Rd; see Rataj (2002, Theorem
2.1 and Theorem 2.3), where〈u,v〉 is the usual inner
product ofu andv. If A is polyconvex,Eq.5 holds for
all v ∈ Rd \{o}.

If v1, . . . ,vk ∈ Rd \ {o} are such thatEq. 5 holds
with v = vi for all i = 1, . . . ,k, then the definition of
Ŝd

k (A) in combination withEq.5 yields

Ŝd
k (A) =

1
γd

∫

Sd−1
h(u)S(A,du) , (6)

with

h :=
k

∑
i=1

ci

‖vi‖
|〈vi, ·〉| . (7)

The key observation is that the integrandh is the
support function of a convex body. We refer the reader
to Schneider (1993) for relevant notions and concepts
in convex geometry and only recall the most important
facts here. The support functionhK of a convex body
K is given by

hK (u) = max{〈x,u〉 : x∈ K} , u∈ S
d−1.

Here and in the following, we consider the support
function as a function on the unit sphere. For convex
bodiesK andM and scalarsα ,β ≥ 0, we have

αhK +βhM = hαK⊕βM , (8)

where theMinkowski addition⊕ of sets and the
multiplication of a set with a scalar are understood
pointwise. We will repeatedly use the monotonicity
property,

K ⊂ M ⇐⇒ hK ≤ hM , (9)

and the fact that the support functionhBd of the
Euclidean unit ballBd in Rd is the constant 1. Eq. 9
implies in particular that any convex body is uniquely
determined by its support function. Consequently, the
definition,

δ 2
2 (K,M) :=

∫

Sd−1
(hK (u)−hM (u))2 du ,

for convex bodiesK andM, gives rise to the so-called
L2-metric δ2(·, ·) on the family of convex bodies.
The support function of the line segment[−x,x] with
endpoints−x and x ∈ Rd is |〈x, ·〉|. Due to Eq. 8,
the functionh in Eq. 7 is the support function of a
finite sum Z of line segments. Such sets are called
zonotopesand play a prominent role in functional
analysis, convex and stochastic geometry (see,e.g.,
Goodey and Weil, 1993 and the references therein).
Explicitly, we have

Z = c1 [−u1,u1]⊕ . . .⊕ck [−uk,uk] , (10)

with the unit vectorsui = vi/‖vi‖ for i = 1, . . . ,k.
In view of Eq. 6 the approximation̂Sd

k (A) can be
expressed in terms of the associated zonotopeZ, as

Ŝd
k (A) =

1
γd

∫

Sd−1
hZ (u)S(A,du) . (11)

To obtain lower and upper bounds ofŜd
k (A), we have

to find maxima and minima ofhZ. Due to Eq. 9,
r ≥ 0 is the minimum ofhZ on Sd−1 if and only
if rBd is the largest ball contained inZ. Similarly,
R≥ 0 is the maximum ofhZ, if and only if RBd is the
smallest ball containingZ. With these optimal values
of 0 ≤ r ≤ R, the setRBd \ rBd is called theminimal
annulus of Z. The differenceR− r is called thewidth
of the minimal annulusand denoted byT(Z). For later
reference we summarize this geometric interpretation
for polyconvex sets (for whichEq.5 holds for arbitrary
v 6= o). As formulations forUPR-sets are obtained in a
straightforward manner, we will restrict to polyconvex
sets from now on.

Lemma 1 Let A ⊂ Rd be a polyconvex set with
positive surface area, and fix k≥ 2 and v1, . . . ,vk ∈
Rd \ {o}. Let γd = (2κd−1)/(dκd). If Ŝd

k (A) is given
byEq.3, then the sharp bounds

r
γd

≤ Ŝd
k (A)

S(A)
≤ R

γd
, (12)

for the relative estimation error hold, where r is the
smaller and R is larger radius of the minimal annulus
of the zonotope Z given byEq.10.
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Proof As R is the maximum ofhZ on S
d−1, it

follows from Eq. 11, that

Ŝd
k (A) ≤ R

γd
S(A) ,

which yields the upper bound. The lower bound
follows analoguously from Eq. 11 and the fact thatr
is the minimum ofhZ onSd−1.

That the bounds in the above Lemma are sharp
follows from the next example.

Example 2 Fix k ≥ 2, u1, . . . ,uk ∈ Sd−1 and weights
c1, . . . ,ck ≥ 0 for a quadrature rule. Define Z
according toEq. 10. Due to symmetry, the ball rBd

touches the boundary of Z in at least two antipodal
points rw and−rw, w ∈ Sd−1. Let A be a ball of
(d−1)-volume1/2 in the hyperplane w⊥. (As A is
lower dimensional, the proper interpretation of S(A)
is twice the (d−1)-dimensional Hausdorff measure,
so S(A) = 1.) The surface area measure of A is
concentrated on the points w and−w, and hZ coincides
in both of these directions with r, soEq.11 implies

Ŝd
k (A) =

1
γd

∫

Sd−1
rS(A,du) =

r
γd

S(A) ,

and equality holds on the left hand side ofEq.12.

Fig. 1 illustrates this for d= 2, k= 2, u1 = (1,0)⊤,
u2 = (0,1)⊤ and c1 = c2 = 1/2. Obviously A is not
topologically regular, but it can be approximated by
a sequence of topologically regular convex bodies
(Am) in such a way thatlimm→∞ Ŝd

k (Am)/S(Am) =

Ŝd
k (A)/S(A). This implies that the left hand side

of Eq. 12 cannot be improved, even if we restrict
considerations to topologically regular sets. To show
that the second inequality inEq.12 is sharp, a similar
argument can be used, if±w are directions for which
hZ becomes maximal, and thus coincides with R.

Fig. 1.A possible set A for the case where Z is the unit
cube; see Example 2.

THE TWO-DIMENSIONAL CASE

In the following, we will restrict to the cased =
2, although some of the concepts can be transferred
to higher dimensions.As the aim is to minimize
the length of the error interval of̂S2

k (A) in Eq. 6,
the differenceR− r should be as small as possible.
This can be achieved by an appropriate choice of the
weights c1, . . . ,ck. To obtain an exact value for the
integral inEq.6 in the case whereA is a disk, we must
assume that the weights sum up to one.It follows from
Schneider (1993), that c1 + . . . + ck = 1 is equivalent
to the condition that the zonotopeZ given byEq. 10
has perimeter 4. LetZ be the family of all zonotopes
that can be written as sum of line-segments parallel to
given unit vectorsu1, . . . ,uk. Let Z4 be the family of
thoseZ ∈ Z that have perimeter 4. We are therefore
faced with the problem of finding a zonotopeZ∗ ∈ Z4
that satisfies

T (Z∗) = min{T (Z) : Z ∈ Z4} . (13)

If
Z∗ = c∗1 [−u1,u1]⊕ . . .⊕c∗k [−uk,uk] ,

thenc∗1, . . . ,c
∗
k ≥ 0 are the best weights inEq. 3, in the

sense that among all weights summing up to one they
yield the shortest interval of possible relative errors.
A solution Z∗ of the optimization problemin Eq. 13
always exists due to a compactness argument based on
the Blaschke selection theorem.

For asymptotic results, it is enough to replace
the objective function inEq. 13 by a simpler
one. Bonnesen (1929) improved the isoperimetric
inequality for an arbitrary planar convex bodyK,
stating that

S2(K)

4π
−V (K) ≥ π

4
T2(K) , (14)

whereS(K) andV (K) are perimeter and area ofK,
respectively. ForK = Z∈Z4 we haveS(Z)= 4 and the
left hand side ofEq.14 is minimal for the zonotopẽZ∈
Z4 that has the greatest area. According to a classical
result of Lindelöf (1869),Z̃ is characterized among
all zonotopes inZ4 by the fact that it circumscribes
a circle. Due to origin-symmetry, this circle is the
incircle of Z̃, centered at the origin, and with radiusr̃k.
This allows an explicit construction of̃Z. Up to scaling
with the factor 1/r̃k the zonotopẽZ coincides with the
polytope

P̃ :=
k⋂

i=1

{
x∈ R

2 : |〈ui,x〉| ≤ 1
}

, (15)
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obtained by intersecting all supporting half-planes of
the unit disk with outer normal in{±u1, . . . ,±uk}. We
now assume without loss of generality that the vectors
u1, . . . ,uk all are located on the positive half-sphere
{(cosϕ ,sinϕ) : 0≤ ϕ < π} and are ordered according
to increasing angles.We write<) (u,v) ∈ [0,π] for the
(smaller) angle between the unit vectorsu andv. Letαi
be the outer angle of the vertex between theith and the
(i +1)st edge (i.e., αi is the angle of the normal cone
at this vertex, in other wordsπ −αi is the usual inner
angle; see Fig. 2). Explicitly, we have

αi =

{
<) (ui,ui+1) , i = 1, . . . ,k−1,

π− <) (u1,uk) , i = k,
(16)

as the normal of the(k+1)st edge is−u1.

Fig. 2.Construction of the anglesαi and the polytope
P̃ given byEq.15 with k= 4.

As the length of theith edge ofP̃ is tan(αi/2)+

tan(αi−1/2) andS(Z̃) = 4, we obtain

Z̃ = c̃1 [−u1,u1]⊕ . . .⊕ c̃k [−uk,uk] ,

with

c̃i = r̃k
tan(αi/2)+ tan(αi−1/2)

2
, (17)

and

r̃k =

(
k

∑
i=1

tan(αi/2)

)−1

, (18)

where we have putα0 = αk. This andV(Z̃) = 2r̃k
was also derived by Knebelman (1941). The weightsc̃i
are based on the application of Bonnesen’s inequality
Eq. 14 and will be calledBonnesen weightsin the
following. Theith weightc̃i is the relative length of the
ith edge of the polygon with facet normals±ui which
circumscribes a circle of radius̃rk. The outer radius̃Rk

of Z̃ is the largest distance of a vertex ofZ̃ from the
origin, and this is

R̃k = r̃k
k

max
i=1

1
cos(αi/2)

. (19)

Summarizing, we have shown the following. IfŜ2
k (A)

is an estimator ofS(A) > 0 given byEq. 6 with the
Bonnesen weightsci = c̃i , i = 1, . . . ,k, from Eq. 17,
then the relative errors obey

π
2

r̃k ≤
Ŝ2

k (A)

S(A)
≤ π

2
R̃k. (20)

These error bounds are sharp; see Example 2.

It should be noted thatEq. 14 is always a strict
inequality unlessK is a disk. AsEq. 14 is used for
zonotopes here, this approach will not necessarily lead
to the optimal choice of the weights. However, the
choice may be better than choices for the weights
motivated by usual quadrature rules.

Example 3 We consider the integrand inEq. 6 with
k = 3 and the directions ui =

(
cos(ϕi), sin(ϕi)

)
, i =

1,2,3, where

ϕ1 = 0, ϕ2 =
π
16

, ϕ3 =
π
8

.

As mentioned before, the rectangular quadrature rule
leads to the Voronoi weights cV

i : The ith weight is the
normalized length of the Voronoi arc corresponding to
ui (arc in S1 of all points closer to ui than to any other
point in{±u1,±u2,±u3}). This gives

cV
i =

ϕi+1−ϕi−1

2π
,

where we assumedπ-periodicity. For the present
example, we obtain

cV =

(
15
32

,
1
16

,
15
32

)
,

and the corresponding zonotope ZV has inradius
rV ≈ 0.18290 and circumradius RV ≈ 0.98199; see
Fig. 3. Thus, the width of the minimal annulus is
approximately0.79909.

Using instead the Bonnesen weights yields
approximately

c̃ = (0.49057,0.01885,0.49057) ,

leading to the inradius̃r ≈ 0.191412and circumradius
R̃≈ 0.981147, respectively. The width of the minimal
annulus is now approximately0.789735, which is an
improvement of about1%.
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1

–1 –0.5 0.5 1

Fig. 3. The zonoid from Example 3 associated to
Voronoi weights together with its minimal annulus.

To formulate an asymptotic result, we have to
specify how close the set of the directionsu1, . . . ,uk
is to a set of equidistant directions. Following Gardner
et al. (2006), we introduce thesymmetrized spread∆∗

k
of u1, . . . ,uk by

∆∗
k = max

u∈S1
min

1≤i≤k
min{‖u−ui‖ ,‖u− (−ui)‖} .

Geometrically,∆∗
k is the maximal distance of a unit

vector from the set{±u1, . . . ,±uk}. In particular,
{±u1, . . . ,±uk} is a ∆∗

k-net in S1. For αi defined by
Eq.16, we have

2sin
αi

4
≤ ∆∗

k, i = 1, . . . ,k. (21)

The following theorem shows that the choiceci =

c̃i leads to a relative error of̂S2
k (A) that depends

quadratically on∆∗
k. Here we only consider sampling

sets {u1, . . . ,uk} such that every closed sub-arc of
S1 of length π/2 contains at least one point of

{±u1, . . . ,±uk}. Equivalently,∆∗
k ≤

√
2−

√
2.

Theorem 4 Let A ⊂ R2 be a polyconvex set with
positive perimeter. Let k≥ 2 and {v1, . . . ,vk} ⊂ R

2 \
{0} such that the symmetrized spread of the vectors

ui = vi/‖vi‖, i = 1, . . . ,k, is∆∗
k ≤
√

2−
√

2. If Ŝ2
k (A) in

Eq.3 is calculated using the Bonnesen weights ci = c̃i,
i = 1, . . . ,k, fromEq.17, then the relative error obeys

∣∣∣∣∣
Ŝ2

k (A)−S(A)

S(A)

∣∣∣∣∣≤
π2

3
(∆∗

k)
2 . (22)

Proof FromEq.20 we get

π r̃k−2≤ 2

(
Ŝ2

k (A)−S(A)

S(A)

)
≤ πR̃k−2. (23)

We estimate the left hand side ofEq. 23. In view of
Eq. 21, we haveαi/2 ≤ 2arcsin

(
∆∗

k/2
)
≤ π/4 for all

i = 1, . . . ,k. Taylor’s theorem implies

tan(αi/2)≤αi/2+c′ (αi/2)3 , for all i = 1, . . . ,k,

where c′ = 8/3 is the third derivative of tan(x)/3!
evaluated atπ/4. Relations 18, 21 and arcsin(x)≤ π

2x,
0≤ x≤ 1, imply that

π r̃k ≥
π

∑k
i=1

(
αi
2

(
1+c′

(αi
2

)2
)) ≥ 2

1+ c′π2

4

(
∆∗

k

)2 ,

and this gives

π r̃k−2≥−2π2

3
(∆∗

k)
2 .

The right hand side ofEq. 23 can be estimated in an
even easier way using the fact that the perimeter of
the incircle ofZ̃ is bounded byS(Z̃) = 4 and hence
r̃k ≤ 2/π. Together withEq.19 this gives

πR̃k−2≤ 2

1−
(
∆∗

k

)2 (∆∗
k)

2 ≤ 2√
2−1

(∆∗
k)

2 ,

as∆∗
k ≤

√
2−

√
2. Putting things together we arrive at

∣∣∣∣∣
Ŝ2

k (A)−S(A)

S(A)

∣∣∣∣∣≤ c(∆∗
k)

2

with c = max
{

π2/3,1/(
√

2−1)
}

= π2/3.

Using the fact that Voronoi weights deviate only
slightly from Bonnesen weights ask increases, it can
be shown that the same order of convergence also
holds for the relative error of̂S2

k(A) if the estimator is
based on Voronoi weights.The example of equidistant
sampling shows that quadratic behavior is the best
possible.

Example 5 Consider the special case where u1, . . . ,uk
are equidistant on the upper half circle, meaning that
ui = (cos(iπ/k) ,sin(iπ/k)), i = 1, . . . ,k. Hence

∆∗
k = 2sin

π
4k

∼ π
2k

, k→ ∞.

By symmetry arguments, the weights leading to the
minimal width of the corresponding minimal annulus
must all be equal and thus c1 = . . . = ck = 1/k and
ci = c̃i for i = 1, . . . ,k. According toEqs.18 and 19,
the inner and outer radii of the associated zonotope
are

r̃k =
(

k tan
( π

2k

))−1
,
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and

R̃k = r̃k

(
cos
( π

2k

))−1
=
(

k sin
( π

2k

))−1
,

cf. Eq. 4. Therefore, the width of the minimal annulus
is

R̃k− r̃k =
π
4

k−2+O
(
k−4) , k→ ∞.

This shows that̃Rk − r̃k, and thus the relative worst
case error, are of order

(
∆∗

k

)2
.

Instead of using the above geometric arguments to
obtain asymptotics for the worst case error, one might
also use methods fromoptimum quantization(see
Gruber, 2004). Among other important applications,
this theory yields asymptotic minimum errors of
numerical integration for classes of Hölder continuous
functions. As the functiongu : v 7→ |〈v,u〉|, and hence
the function pv in Eq. 5 are Lipschitz continuous,
optimum quantization gives an upper bound for the
worst case error depending linearly on∆k. This
suboptimal rate is due to the fact that the class of
Hölder continuous functions with Hölder exponent 1
is considerably larger than its subspace spanned by{

gu : u∈ S1
}

.

A SEMI-RANDOMIZED APPROACH

The associated zonotope for quadrature rules
can also be used in the context of a semi-
randomized approach, which generalizes systematic
random sampling designs. The idea of this design
based approach is to evaluate the total projections of
the randomly rotated setϑA in k directions. In other
words, givenk vectorsv1, . . . ,vk ∈ Sd−1 and weights
c1, . . . ,ck, the estimator forS(A) is defined by

Ŝd
k (ϑA) =

2
γd

k

∑
i=1

ci pϑ−1vi
, (24)

where ϑ is a random rotation whose distribution is
the normalized Haar measure on the compact group
SOd of proper rotations. Clearly,Eq. 24 defines a
randomvariable and Crofton’s formula implies that
this variable is an unbiased estimator forS(A). In
particular, if d = 2 and the set{±v1, . . . ,±vk} is
equidistant inS1, the estimator̂Sd

k (ϑA) in Eq. 24 is
the one obtained from systematic random sampling.
Moran (1966) considered this special case and gave
worst case bounds for the variance ofŜd

k (ϑA). His
approach allows a geometric interpretation which is
not restricted to the planar setting: LetZ be, again, the

zonotope associated to a fixed quadrature rule. From
Eq.11 and the unbiasedness of the estimator, we get

Var
(

Ŝd
k (ϑA)

)
= Eϑ

(
Ŝd

k (ϑA)−S(A)
)2

= γ−2
d Eϑ

(∫

Sd−1
(hZ (ϑu)− γd)S(A,du)

)2

.

Hence

Var
(

Ŝd
k (ϑA)

)
=

γ−2
d

∫

Sd−1

∫

Sd−1
J(u,v)S(A,du)S(A,dv) , (25)

where

J(u,v) = Eϑ ((hZ (ϑu)− γd)(hZ (ϑv)− γd)) .

Hölder’s inequality implies that

J(u,v)≤
(

Eϑ (hZ (ϑu)− γd)
2
)1/2

×
(
Eϑ (hZ (ϑv)− γd)

2
)1/2

=
∫

Sd−1
(hZ (u)− γd)

2 µ(du) .

Hence

Var
(

Ŝd
k (ϑA)

)
≤ S(A)2

γ2
dϖd

δ 2
2

(
Z,γdBd

)
, (26)

where δ2(·, ·) denotes theL2-metric defined earlier.
This inequality is sharp, as equality holds here for
example wheneverA is a set of dimension d −
1. The quadrature rule is exact whenA = Bd and
thus Ŝd

k

(
Bd
)

= dκd, which implies that 2γd is the
mean width b(Z) of Z and γdBd is the Steiner
ball of Z; see Schneider (1993, p. 353). Hence,

the coefficient of variation

√
Var
(

Ŝd
k (ϑA)

)
/S(A)

is bounded from above by a multiple of theL2-
distance ofZ to its Steiner ball.Again, a geometric
inequality (Groemer, 1990) would allow to give an
upper bound of the right hand side of Ineq. 26.
However, a more direct evaluation is possible and was
carried out by Janáček (2001). In particular he found
optimal weightsc1, . . . ,ck to minimize the variance
in the case of a “totally anisotropic object”,i.e., a
setA contained in a hyperplane. The optimal weights
are obtained by inverting the covariance matrix of
(pϑ−1u1

, . . . , pϑ−1uk
).
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ERROR BOUNDS FOR DIGITAL
SURFACE AREA ESTIMATORS

In this section we consider digitizations of a
topologically regular polyconvexset A ⊂ R

d on
rectangular grids and assume that the directionsui are
givenas normalizeddifference vectors of grid points,
which usually are neigbours. For example, we consider
the common 4- and 8-neighborhoods in the plane.
We compute Voronoi- and Bonnesen-weights together
with the associated in- and circumradii explicitly and
give asymptotic error bounds for̂S(A) for increasing
resolution of the digitization.

To digitize A we consider the rectangular point
grid G = ζ1Z × ζ2Z × . . . × ζd−1Z × Z, where
ζ1, . . . ,ζd−1 > 0 are thegrid distances in the directions
of the axes, and we used thegrid distance in the
last coordinate direction as unit. Agrid cell is any
d-dimensional cuboidz + [0,ζ1] × . . . × [0,ζd−1] ×
[0,1] ,z ∈ G. Motivated by design based stereology,
we consider digitizations ofA by a randomly
translated grid. With the random variableξ , uniformly
distributed in an arbitrarily chosen grid cell, the
random gridξ + G is a stationary random closed set
and is called astationary grid in Kiderlen and Rataj
(2006).

In order to increase resolution, we scale the grid
by a factort > 0 and denote the digitization ofA in the
scaled gridt (ξ +G) by ∆t (A). Let Q be a non-empty
compact set, called thesampling element. We assume
that each grid pointx∈ t(ξ +G) is the center of a small
sampling windowx+ tQ, which can be thought of as
a pixel or voxel. Thepixel digitizationconsists of all
grid pointsx for which this sampling windowx+ tQ
hits the setA. Hence∆t (A) =

(
A⊕ tQ̌

)
∩ t (ξ +G),

where Q̌ is the reflection ofQ at the origin. For
Q = {o} the pixel digitization reduces to theGauss
digitization(sometimes calledhit-or-miss digitization)
containing all points of the scaled grid inA. All
results on error bounds in this section will be stated
for the pixel digitization and therefore also hold for
the Gauss digitization.In image processing, the term
digitization often denotes the union of pixels (grid
cells) which are centered at grid points in∆t(A). As
such pixel unions are in one-to-one correspondence
with the unions of their centers, one may equivalently
consider digitizations as subsets of the grid, and we
will do so througout the paper.

We fix a setA and estimate its surface areaS(A)
from the information available in its digitization∆t (A)
using a discretized Crofton formula; cf. Ohser and
Mücklich (2000). We will focus on the asymptotic
error of this estimator when the grid spacing gets

finer, i.e., when the digitized set∆t (A) becomes a
better approximation of the original setA. The function
pv given by Eq. 2 can easily be estimated from
the digitized set∆t (A) by comparing the values of
neighboring points, ifv is a gridpoint. For any vector
v∈ G\{o} such an estimator is given by

p̂v(t) =

td−1

‖v‖ #{x∈ t (ξ +G) : x∈ ∆t (A) ,x+ tv /∈ ∆t (A)} .

This estimator counts the number of pointsx in
the digitized set∆t (A) such thatx+ tv does not lie
in the digitization of A. From Kiderlen and Rataj
(2006, Theorem 5) it follows that this estimator is
asymptotically unbiased,i.e.,

lim
tց0

Ep̂v(t) = pv. (27)

Having chosenk vectorsv1, . . . ,vk ∈ G and scalars
c1, . . . ,ck ≥ 0, one can define

Ŝd
k (A; t) =

2
γd

k

∑
i=1

ci p̂vi (t) , (28)

and it follows from Eq. 27 that Ŝd
k (A; t) is an

asymptotically unbiased estimator forŜd
k (A), ast ց 0.

Note that the estimator given byEq. 28 can be
calculated from the knowledge of the digitization
∆t (A) of A alone.Ŝd

k (A; t) behaves approximately like
a discretized Crofton integral, whent is small. Thus,
the methods and resultsof the previous sectioncan be
applied to obtain asymptotic error bounds.

To illustrate this approach we discretize the
Crofton integral using only directions parallel to the
coordinate axes: inRd we choose the 2d grid points
vi = −vd+i = ζiei, i = 1, . . . ,d−1 andvd =−v2d = ed
whereei denotes theith unit vector. Due to symmetry,
the weights leading to a minimal error interval are all
equal,ci = 1/(2d) , i = 1, . . . ,2d, and coincide with
the Voronoi weights. The zonotopeZ defined inEq.
10 is given byZ = [−1/d,1/d]d and it has inradius
r = 1/d and circumradiusR = 1/

√
d. Lemma 1 and

the asymptotic unbiasedness ofŜd
2d (A; t) imply

1
dγd

≤ lim
tց0

EŜd
2d (A; t)

S(A)
≤ 1√

dγd
.

In the planar case we haveγ2 = 2/π and

0.785≈ π
4
≤ lim

tց0

EŜ2
4 (A; t)
S(A)

≤ π
4

√
2≈ 1.111,
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which means the asymptotic relative error is 21.5%
in the worst case. In three dimensions, the asymptotic
relative error is at most 33.3% asγ3 = 1/2 and

0.667≈ 2
3
≤ lim

tց0

EŜ3
6(A; t)

S(A)
≤ 2

3

√
3≈ 1.155.

Due to Stirling’s formula we have
√

dγd →
√

2/π as
d → ∞. As

√
dγd is decreasing ind, we have

0≤ lim
tց0

EŜd
2d (A; t)

S(A)
≤
√

π
2
≈ 1.253,

for all d, where
√

π/2 is the best upper bound that
holds for arbitrary dimensiond. We do not obtain a
non-trivial uniform lower bound, as there ared ∈ N

and setsA in R
d with S(A) = 1, but such that̂Sd

2d (A) is
arbitrarily close to 0. Due to the large worst case error
even in low dimensions, the above choice ofgrid points
is not recommended for practical applications. Instead,
a larger number of gridpointsshould be used. On the
other hand, the estimator ofS(A) in Eq.28 is based on
asymptotic considerations and becomes less reliable
when the lengths of the vectorsvi are large. One would
therefore restrict to vectors with bounded length,i.e.,
vectors contained in a smallEuclidean disk around
the origin. For computational reasons it is easier to
replace the Euclidean disk by a disk with respect to the
maximum norm.To be specific, we choose{v1, . . . ,vk}
in the set

V
(d)

n := [−ζ1(n−1) ,ζ1 (n−1)]× . . .

× [−ζd−1(n−1) ,ζd−1(n−1)]× [−(n−1),n−1]\{o} .

For n = 2, the most common choice in
applications, we have

V
(d)

2 = {−ζ1,0,ζ1}× . . .

×{−ζd−1,0,ζd−1}×{−1,0,1}\{o} , (29)

and k = #V
(d)

2 = 3d − 1. We determine asymptotic
worst case errors forn= 2 andn= 3 in the planar case
and forn = 2 in dimensiond = 3.

THE TWO-DIMENSIONAL CASE

In the planar case forn = 2, the k = 32 − 1 =
8 grid points of the set in Eq. 29 are just the
8-neighbours of the origin, and the corresponding
directions are parallel to the edges and diagonals
of a grid cell. Both the Voronoi weights and the
Bonnesen weights can be computed analytically. It
turns out that the Voronoi weights and the Bonnesen
weights do not coincide, and the corresponding in-

and circumradii are different. In the following letβ =
arccos(ζ1/

√
ζ 2

1 +1). For the Voronoi case, the inradius
rVor (ζ1) and the circumradiusRVor (ζ1) are given by

rVor (ζ1) =





1
π β + ζ1

2
√

ζ 2
1 +1

, if ζ1 ≤ 1,

1
2 − 1

π β + 1
2
√

ζ 2
1 +1

, otherwise,

and

RVor (ζ1) =






1
π

[
β 2 +

(
π
2 −β + π

2
√

ζ 2
1 +1

)2
]1/2

,

if ζ1 ≤ 1,

1
π

[(
β + π

2
ζ1√
ζ 2

1 +1

)2

+
(π

2 −β
)2

]1/2

,

otherwise,

respectively. In the Bonnesen case the inradius
rBon(ζ1) is given by

rBon(ζ1) = ζ1

(
2
√

ζ 2
1 +1(ζ1 +1)−2

(
ζ 2

1 +1
))−1

and the circumradiusRBon(ζ1) is given by

RBon(ζ1) =





rBon(ζ1)
√

2

(
1+
(

1
ζ 2

1
+1
)−1/2

)−1/2

,

if ζ1 ≤ 1

rBon(ζ1)
√

2
(

1+
(
ζ 2

1 +1
)−1/2

)−1/2
,

otherwise.

Neither the Voronoi nor the Bonnesen weights are
optimal in the sense that they minimize the length
of the asymptotic error interval. The optimal weights
were found by numerically solving a constrained
minimization problem using MATLAB . It turns out that
the Bonnesen weights are very close to the optimum
as can be seen from Fig. 4 which shows the thickness
of the minimal annulus for Voronoi, Bonnesen, and
optimized weights, respectively, depending onζ1 > 0.
Interchanging thex- and they-axis, if necessary, we
may restrict toζ1 ≤ 1.
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Fig. 4. Thickness of the minimal annulus for eight
directional vectors on a rectangular grid in 2D
depending onζ1 for Voronoi, Bonnesen, and optimized
weights, respectively (see the text for details).

Fig. 5. Thickness of the minimal annulus for 16
directional vectors on a rectangular grid in 2D
depending onζ1 for Voronoi, Bonnesen, and optimized
weights, respectively (see the text for details).

It is easy to see that in the case of a square grid
(ζ1 = 1) the width R− r of the minimal annulus is
minimal if and only if all weights are equal,c1 =
. . . = c8 = 1/8, a choice which coincides with the
Voronoi and the Bonnesen weights. The corresponding
zonotopeZ is a regular octagon with side length
1/2 and facets parallel to the vectorsv1, . . . ,v8. Z

has circumradiusR =
√

4+2
√

2/4 and inradiusr =(
1+

√
2
)

/4. With γ2 = 2/π we get

0.948≈ π
8

(
1+

√
2
)
≤ lim

tց0

EŜ2
8(A; t)
S(A)

≤ π
8

√
4+2

√
2≈ 1.026.

This was also obtained in Kiderlen and Jensen (2003).

We consider also the casen = 3 in the plane,i.e.,
we use all 16 directionsobtained by normalizing the
grid points inthe cuboid[−2ζ1,2ζ1]× [−2,2] \ {0}.
Now even in the special case whenζ1 = 1 the 16
weights leading to a shortest asymptotic error interval
are not equal. We refrain from explicitly stating the
formulas for the in- and circumradii because of their
complexity. The results are qualitatively similar to the
casen = 2. The use of the Bonnesen weights yields
a smaller thickness of the minimal annulus than the
use of the Voronoi weights. The minimal thickness
achieved with optimized weights is only slightly better
than for Bonnesen weights (Fig. 5).

THE THREE-DIMENSIONAL CASE

In three dimensions, we restrict considerations to
the cubic grid (ζ1 = ζ2 = 1) andn = 2. The directions
associated to thek = 33 − 1 = 26 grid pointsvi of
the set in Eq. 29consist of the 6 directions along
the edges (i = 1, . . . ,6), 12 diagonals of the faces
(i = 7, . . . ,18) and 8 spatial diagonals (i = 19, . . . ,26)
of the unit cube [0,1]3. Hence, the surface area
estimatorin Eq. 28is based on comparison of pixels
with neighbors in the so-called 26-neighborhood. The
Voronoi weights can be calculated as the relative sizes
of the Voronoi cells on the unit sphere generated
by {v1/‖v1‖ , . . . ,vk/‖vk‖} . They can be derived
by computing the area of the Voronoi cells on the
unit sphere analytically with the help of spherical
trigonometry, and are given by

ci =





1
2 − 2

π arccos

( √
2+

√
3√

2
√

3−
√

3
sin
(π

8

))
≈ 0.0457779,

if i = 1, . . . ,6,

1
2 − 1

π arccos

( √
6−2

2
√

3−
√

6
sin
(π

8

))
≈ 0.0369806,

if i = 7, . . . ,18,

1
2 − 3

2π arccos

(
(2−

√
3)(2−

√
6)+2

4
√

3−
√

3
√

3−
√

6

)
≈ 0.0351956,

if i = 19, . . . ,26.

The zonotopeZ is the convex hull of all points of the
form ∑26

i=1εivi/‖vi‖, where(ε1, . . . , ε26) runs through
all vectors in {−1,0,1}26. The quickhull-algorithm
(Barber et al., 1996) was used to find this convex
hull. Z has 96 vertices, inradiusrVor ≈ 0.463312,
circumradius RVor ≈ 0.511386, and thickness of
minimal annulusTVor ≈ 0.0480748. Asγ3 = 1/2 we
obtainthe bounds

0.927≤ lim
tց0

EŜ3
26(A; t)

S(A)
≤ 1.023.

Although the definition of the Bonnesen weights
was restricted to the planar case, it can naturally
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be generalized to higher dimensions. We will do so
for comparison with the established Voronoi weights.
Recall the construction for the Bonnesen weights in
the plane for givenvectorsv1, . . . ,vk ∈ R2 \ {o}. We
defined ui = vi/‖vi‖, i = 1, . . . ,k, and constructed
the polygon P̃ in Eq. 15 with outer unit vectors
±u1, . . . ,±uk circumscribing the unit ball. We then
chosẽci proportional to the length of the edge ofP̃ with
outer unit normalui. In higher dimensions, for given
v1, . . . ,vk ∈ Rd \{o}, we setui = vi/‖vi‖, i = 1, . . . ,k,
and

P̃ :=
k⋂

i=1

{
x∈ R

d : |〈ui,x〉| ≤ 1
}

,

in complete analogy toEq.15. HencẽP is the polytope
circumscribing the unit ball with facet normals in
{±u1, . . . ,±uk}. We then choosẽci proportional to
the (d−1)-dimensional volume of the facet of̃P
which has outer unit normalui. In the present three-
dimensional example (withζ1 = ζ2 = 1 and all grid
pointsin V

(3)
2 ) the Bonnesen weights were computed

with quickhulland are given by

c̃i ≈






0.0465894, if i = 1, . . . ,6,

0.0367439, if i = 7, . . . ,18,
0.0349421, if i = 19, . . .26.

The associated inradius isrBon ≈ 0.462424, the
circumradius isRBon ≈ 0.511243, and thickness of
minimal annulus isTBon ≈ 0.0488187. This shows
that Bonnesen weights are not better than Voronoi
weights for the 3d −1 directions in dimensiond = 3.
But this is not surprising because they are based on
Bonnesen’s inequalityEq. 14 which is valid only for
two-dimensional convex bodies. In thelast section
we discuss how the approachdeveloped in this paper
could be extended to higher dimensions.

Finally, we show how the asymptotic relative error
bounds in the case of a quadratic (ζ1 = 1) planar grid
depend on the choice ofn. To do so, the symmetrized
spread of the normalized vectors ofV

(2)
n must be

determined.

Lemma 6 For n ≥ 2 the symmetrized spread of{
x/‖x‖ : x∈ V

(2)
n

}
is equal to

dn =

√√√√√√2−

√√√√√2


1+

n−1√
1+(n−1)2


≤ 1

2(n−1)
.

(30)

Proof Let ∆ be the symmetrized spread ofD :={
x/‖x‖ : x∈ V

(2)
n

}
and setm := n− 1. Clearly, the

arc C ⊂ S1 in the first quadrant with endpoints

(1,0)⊤ ,
(
m2 +1

)−1/2
(m,1)⊤ ∈D does not contain any

other points inD and thus the spread∆ is at least the
distance of the midpoint ofC to one of its endpoints.
Hence

∆ ≥
√

2
(

1−cos
ϕ
2

)
=

√√√√2

(
1−
√

1+cosϕ
2

)
= dn,

whereϕ = arccos
(

m/
√

1+m2
)

is the length ofC.

This interpretation ofdn also shows the inequality in
Eq. 30, asdn cannot be larger then half the distance
of (1,0)⊤ from (1,1/m)⊤. To show that∆ ≤ dn,
let v,v′ ∈ D two points such that the sub-arc ofS1

connecting them does not contain any other points
of D. Using reflections and translations leavingZ2

invariant, we may assume thatv = x/‖x‖ and v′ =

x′/‖x′‖ wherex,x′ ∈ V
(2)

n and the angles they form
with the x-axis are at mostπ/4. We refer to Fig. 6 for
a sketch of the situation. The cone between the rays
spanned byx andx′ cannot contain any other points
of V

(2)
n in its interior. Lety (y′) denote the point in

V
(2)

n ∩ {(m,t) : t ≥ 0} with largest (smallest) second
coordinate below (above) this cone. Then the length
of the arc inS1 with endpointsv andv′ is at most the
length of the arcC′ ⊂ S1 with endpointsy/‖y‖ and
y′/‖y′‖. The segment[y,y′] does not contain any points

of V
(2)

n , so y and y′ are distance one apart, and the
length ofC′ is bounded from above by the length of
C. Here we use the fact that among all unit intervals in{

(m,t)⊤ : t ≥ 0
}

, the interval
[
(m,0)⊤ ,(m,1)⊤

]
has

the largest gnomonic projection. This gives∆ ≤ dn, as
v andv′ where arbitrary inD.

In view of Theorem 4, Lemma 6 yields an estimate
for the asymptotic relative error using the Bonnesen-
weightsci = c̃i whenevern≥ 2.

Theorem 7 Let A⊂ R
2 be a topologically regular

polyconvex set with positive perimeter, n≥ 2, and
ζ1 = 1. Let Ŝ2

k (A; t) be defined byEq. 28, where

{v1, . . . ,vk} = V
(2)

n and ci = c̃i , i = 1, . . . ,k, are the
Bonnesen weights. Then the asymptotic relative mean
error obeys

lim
tց0

∣∣∣∣∣
EŜ2

k (A; t)−S(A)

S(A)

∣∣∣∣∣≤
π2

12
(n−1)−2 .
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Fig. 6. Construction to determine the symmetrized

spread in Lemma 6: the points x and x′ in V
(2)

n

are contained in the cube[0,n−1]2 and their
normalizations v,v′ in S1.

EXTENSION TO HIGHER
DIMENSIONS

Large parts of the present worst case analysis for
quadrature rules, including the use of an associated
zonotopeZ, are not restricted to the two-dimensional
setting. In order to find an easily accessible upper
bound for the width of the minimal annulus, a
joint extension of Bonnesen’s refined isoperimetric
inequalities Eq. 14 and the geometric inequality
of Groemer (1990)to higher dimensions (which is
known) is not suitable, as it involves the surface area
of Z. Instead, a strengthened version of Uhrysohn’s
inequality is appropriate. It reads

(
b(Z)

b(Bd)

)d

− Vd (Z)

Vd (Bd)
≥ cd (Z)δ 2

2

(
Z,γdBd

)
. (31)

Here cd is an explicitly known constant, depending
on d, the mean widthb(Z) of Z, and the second
intrinsic volume ofZ. This inequality is a special case
of a whole family of geometric inequalities derived by
Groemer and Schneider (1991), who also showed that
it implies the Bonnesen type inequality

(
b(Z)

b(Bd)

)d

− Vd (Z)

Vd (Bd)
≥ c′d (Z)(R− r)(d+3)/2 . (32)

The constantc′d, again, depends ond, b(Z) and the
second intrinsic volume ofZ. For d = 2 Ineq. 32
is of the same form asIneq. 14, but with a weaker
exponent.This apparently suboptimal exponent, and
the problem to determine the zonotope with given
mean width which minimizes the left hand side of Eq.
32 ford > 2, limits the usefulness of these inequalities
for applications.
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