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ABSTRACT

For several decades, the topics of the title have had a fruitful interaction. This survey will describe some
of these connections, including the GB/GC classification of convex bodies, Ito-Nisio singularities from a
geometric viewpoint, Gaussian representation of intrinsic volumes, the Wills functional in a Gaussian context,
and inequalities.
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INTRODUCTION

For several decades, the topics of the title have
had a fruitful interaction. This survey will describe
some of these connections, including the GB/GC
classification of convex bodies, Ito-Nisio singularities
from a geometric viewpoint, Gaussian representation
of intrinsic volumes, the Wills functional in a Gaussian
context, and inequalities. For fuller discussions and
references, the interested reader is urged to consult the
bibliography.

GEOMETRIC PRELIMINARIES

AND NOTATION

The setting is either finite dimensions or infinite
dimensions, that is, IRd or ℓ2. Schneider (1993) gives
an excellent treatment of the classical theory of convex
bodies. The following items and notation will be
appear:

• Convex bodies K : compact, convex K,L, . . .

• Scaling: λK = {λx : x ∈ K} .

• Minkowski addition: K + L = {x+ y : x ∈ K,y ∈
L} .

• Closed unit ball: B, Bd .

• λ -parallel body: K+λB .

• Support function: hK(x) = supt∈K<x, t>.

• Hausdorff metric:

ρ(K,L) = inf{λ > 0 : K ⊆ L+λB,L⊆ K+λB}
= sup

‖u‖=1

|hK(u)−hL(u)| .

• Norm: ‖K‖ = maxx∈K ‖x‖ = max‖u‖=1 hK(u).

GAUSSIAN PROCESSES WITH

ISONORMAL INDEXING

For background and references on Gaussian

processes, one can consult, for example, Lifshits

(1995) and Bogachev (1998). We assume throughout

a sequence of independent standard (i.e., N(0,1))
Gaussian random variables:

Z = (Z1,Z2, . . .) .

For a convex body K ⊂ ℓ2 and t ∈ K, we consider the

map

t 7→ Xt = <t,Z> =
∞

∑
i=1

tiZi .

The image is an N(0,‖t‖2) variable, and the collection
{Xt , t ∈ K} is called an isonormally-indexed Gaussian

process in view of the isometric-isomorphism:

K ←→{Xt , t ∈ K} .

Specifically,

at+bt̂ ↔ aXt +bXt̂

‖t− t̂‖2 = E (Xt −Xt̂)
2 .

Another key point is the identification

hK(Z) = sup
t∈K

<t,Z> = sup
t∈K

Xt .
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LIMIT THEOREMS

Consider a random convex body X , which is a

measurable map from a probability space to its space

of values endowed with the Hausdorff metric:

X : {Ω,F ,P} −→ (K , ρ) .

If X is bounded in expected norm, E‖X‖ < ∞, then
one has an expectation EX ∈ K , which can be given

implicitly in terms of its support function

hEX(·) = EhX(·).

There is a strong law of large numbers:

Theorem 1 (Artstein and Vitale, 1975) If X1,X2, . . .
are independent and identically distributed random

convex bodies with E‖X1‖ < ∞, then

Xn =
X1 +X2 + · · ·+Xn

n

a.s.−→ EX1.

The formulation of an accompanying central limit

theorem takes into account that there is no convenient

notion of subtraction for convex bodies, and so the

identification with support functions is used:

Theorem 2 (Weil, 1982) If X1,X2, . . . are iid and

E‖X‖2 < ∞, then
√
n
[
hXn(u)−hEX1(u)

]
converges to

a centered Gaussian process with inherited covariance

function.

A different kind of limit theorem appears in

Bonetti and Vitale (2000).

THE STEINER FORMULA AND

INTRINSIC VOLUMES

The Steiner formula for the volume of the parallel

body to a convex body in IRd is

vold(K+λB) =
d

∑
j=0

vol j(B j)λ
j Vd− j(K),

where the constantsVj(K), j = 0,1, . . . ,d are known as

intrinsic volumes.

Following Vitale (1995), we give a derivation of

the formula, which also serves to display the nature

of the intrinsic volumes: consider iid isotropic line

segments L1, . . . ,Ln, such that EL1 = Bd . By the strong

law of large numbers,

(1/n)(L1 + · · ·+Ln) → Bd

as n→ ∞, and so

vold [K+(λ/n)(L1 + · · ·+Ln)] → vold (K+λBd) .

For one line segment (i.e., n = 1), one has

vold(K+λL1) = vold(K)+λ |L1| ·vold−1(ΠL⊥1
K),

where ΠL⊥1
signifies projection onto the subspace

orthogonal to the one spanned by L1. By induction,

vold [K+(λ/n)(L1 + · · ·+Ln)] =

∑
S⊆{1,2,...,n}
0≤|S|≤d

(λ/n)|S|vol|S| (LS)vold−|S|
(

ΠL⊥S
K

)
,

where LS = ∑i∈SLi. This can be re-expressed as

vold [K+(λ/n)(L1 + · · ·+Ln)] =
d

∑
j=0

(
n
j

)

n j
λ jU jn,

where

U jn =
1(
n
j

) ∑
|S|= j

vol j (LS)vold− j

(
ΠL⊥S

K
)

has the form of a U-statistic. Then

vold (K+λBd) = lim
n
vold [K+(λ/n)(L1 + · · ·+Ln)]

= lim
n

d

∑
j=0

(
n
j

)

n j
λ jU jn

=
d

∑
j=0

λ j

j!
lim
n
U jn

=
d

∑
j=0

λ j

j!
cd− jEvold− j

(
Πd− jK

)

=
d

∑
j=0

vol j(B j)λ
j Vd− j(K),

where Π j signifies projection onto a random subspace

of dimension j and

Vj(K) =

(
d

j

)
vold(Bd)

vol j(B j)vold− j(Bd− j)
Evol j (Π jK) .

(1)

A Gaussian version, shown below in Eq. 2, follows

from noticing that, in Eq. 1, a key property is that, for

an independent, random orthogonal O,

Π jO
d
= Π j.
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It is also true that

Z[ j,d]O
d
= Z[ j,d],

where Z[ j,d] ,is a j× d matrix of independent N(0,1)
variables. This can be used (Vitale, 2008) to show

Vj(K) =
(2π) j/2Evol j

(
Z[ j,d]K

)

j!vol j(B j)
. (2)

Next we identify some of the intrinsic volumes:

V0(K) = 1

V1(K) = intrinsic width

=
√
2πEhK(Z) =

√
2π E sup

t∈K
Xt

...

Vd−1(K) = 1/2 · surface area of K
Vd(K) = d-dimensional volume of K

Vj(K) = 0 for j > d

Vj

(
n

∏
1

[ai,bi]

)
= ∑

i1<i2<···<i j

(bi1 −ai1) · · ·(bi j −ai j)

V1(Bd) ∼
√
2πd.

EXTENSION OF INTRINSIC

VOLUMES TO CONVEX BODIES

IN ℓ2

The extension of intrinsic volumes to convex
bodies in Hilbert space and specifically to ℓ2 was
undertaken by Sudakov (1971) and Chevet (1976). To
begin, let us identify the following collections:

Kd = convex bodies in IRd

K = convex bodies in ℓ2
KFD = finite–dimensional convex bodies

in ℓ2.

In view of the monotonicity of the intrinsic
volumes under set inclusion, it is natural to extend
them to infinite dimensional convex bodies as follows:
for arbitrary K ∈ K , define

Vj(K) = sup{Vj(K̂) : K̂ ⊆ K, K̂ ∈ KFD}
KGB = {K ∈ K :V1(K) < ∞}.

GB stands for “Gaussian Bounded” (Dudley, 1967)
and refers to the following identification.

Theorem 3 K ∈ KGB ⇐⇒ {Xt , t ∈ K} is an

almost–surely bounded Gaussian process. That is

P(supt∈K0
Xt < ∞) = 1 for any denumerable subset

K0 ⊂ K.

The following also hold:

1. KFD ⊂ KGB ⊂ K .

2. K ∈ KGB ⇒Vj(K) < ∞, j = 2,3, . . .

3. K ∈ KGB ⇒ Vj(K) =
(2π) j/2Evol j

(
Z[ j,∞]K

)

j!vol j(B j)
,

where Z[ j,∞] is a j × ∞ matrix of independent

N(0,1) variables. Equivalently (Tsirel’son, 1985),

Vj(K)=
(2π) j/2Evol j

(
{(X1

t ,X2
t , . . . ,X j

t ), t ∈ K}
)

j!vol j(B j)
.

Some canonical cases are given in the next example.

Example Given a decreasing sequence of positive

constants {an} and an orthonormal set {en, n =
1,2, . . .}, set

K = conv{an en , n = 1,2, . . .}.

Then

K ∈ K ⇐⇒ an ↓ 0,
K ∈ KFD ⇐⇒ an = 0 eventually,

K ∈ KGB ⇐⇒ an = O

[
(logn)−1/2

]
.

Example An example of an infinite-dimensional

convex body that has no finite-dimensional analogue

is as follows. Consider a map

f : [0,1] → H (Hilbert space)

that satisfies

1. 0≤ x1 ≤ x2 ≤ x3 ≤ x4 ≤ 1⇒

[ f (x2)− f (x1)] ⊥ [ f (x4)− f (x3)]

2. ‖ f (x2)− f (x1)‖2 = |x2−x1| for all 0≤ x1≤ x2≤ 1.

The associated Brownian Motion Body is defined to be

conv{ f ([0,1])} ⊂ H .

All Brownian motion bodies are the same, of course,

up to an isometry. A particular realization in L2[0,1] is

{g : [0,1] → IR1 | 0≤ g≤ 1, g ↑ }.

Theorem 4 (Gao and Vitale, 2001)

Vj(BMB) =
vol j(B j)

j!
j = 1,2, . . .

15



VITALE RA: Gaussian Processes and Convex Bodies

SINGULARITIES

Although intrinsic volumes are defined, and finite,

for all GB convex bodies, they are not continuous. That

is, it is possible to have GB bodies with Kn → K, but
Vj(Kn) 6→Vj(K). In particular, one can have

Kn ↓ {p}, but V1(Kn) 6↓ 0 =V1({p}).

This leads to the following definition.

Definition t∗ ∈ K ∈ KGB is a singularity of K if

V1(K∩B(t∗,ε)) 6↓ 0 as ε → 0.

Definition KGC = {K ∈ KGB : K has no singu-

larities}.
One has

KFD ⊂ KGC ⊂ KGB ⊂ K .

GC stands for “Gaussian Continuous” (Dudley, 1967),

and the following gives the connection.

Theorem 5 K ∈ KGC ⇐⇒ {Xt , t ∈ K} is an almost–

surely continuous Gaussian process. That is tn → t ⇒
Xtn → Xt almost–surely.

Example (continued)

K = conv{an en, n = 1,2, . . .} ∈ KGC

⇐⇒ an = o
[
(logn)−1/2

]
.

ITO-NISIO THEORY

Theorem 6 (Ito and Nisio, 1969) Suppose that t∗ ∈
K ∈ KGB. The oscillation of X at t∗, given by

0≤ 2 ·osc(t∗) = lim
ε↓0

[
sup

t∈K∩B(t∗,ε)

Xt − inf
t∈K∩B(t∗,ε)

Xt

]
,

is almost surely constant. Further, osc(t∗) > 0 ⇐⇒ t∗

is a singularity of K.

The following elaborates this observation.

Theorem 7 (Vitale, 2001) Suppose that osc(t∗) > 0.
Then

1. osc(t∗)
a.s.
= 1√

2π
limε↓0 V1(K∩B(t∗,ε)).

2. For each j,

lim
ε↓0

Vj(K∩B(t∗,ε)) > 0. (3)

3. K ∩ B(t∗,0+) ≈ 1√
2·π·∞B∞(t∗,osc(t∗)) in the

sense that for each j, the limit in Eq. 3 is equal

to

lim
d→∞

Vj

(
1√

2 ·π ·d
B(t∗,osc(t∗))

)

(both being
osc j(t∗)

j!
).

4. Define osc(K) = sup{Eosc(t∗) : t∗ ∈ K}. Then

osc(K) = lim
j→∞

( j+1)Vj+1(K)

Vj(K)
.

THE WILLS FUNCTIONAL AND

BOUNDS FOR GAUSSIAN

PROCESSES

In the context of a question in lattice point

enumeration, Wills (1973) defined the following

functional. It has come to play an important role in the

connection between the theories of convex bodies and

Gaussian processes.

W (K) =
∫

IRd

1

(2π)d/2
e−

1
2dist

2(x,K) dx .

An alternate representation can be derived as follows:

W (K) =
1

(2π)d/2

∫

IRd
P(dist(x,K) ≤ Λ)dx,

where fΛ(λ ) = 1(λ ≥ 0)λe−(1/2)λ 2

=
1

(2π)d/2

∫

IRd
E1(dist(x,K) ≤ Λ)dx

=
1

(2π)d/2
E

∫

IRd
1(dist(x,K) ≤ Λ)dx

=
1

(2π)d/2
E vol(K+ΛB).

=
1

(2π)d/2
E

[
d

∑
i=0

voli(Bi)Λ
iVd−i(K)

]

=
1

(2π)d/2

d

∑
i=0

voli(Bi)
[
EΛi

]
Vd−i(K)

=
1

(2π)d/2

d

∑
i=0

voli(Bi)

[
(2π)i/2

voli(Bi)

]
Vd−i(K)

=
d

∑
j=0

1

(2π) j/2
Vj(K) .
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A second alternate representation proceeds as follows:

W (K) =
∫

IRd

1

(2π)d/2
e−

1
2dist

2(x,K) dx

=
∫

IRd

1

(2π)d/2
e−

1
2 inft∈K ‖x−t‖2 dx

=
∫

IRd
esupt∈K[<x,t>− 1

2‖t‖2] 1

(2π)d/2
e−

1
2‖x‖2 dx

= Eesupt∈K[Xt−
1
2σ2

t ].

One then has

Eesupt∈K[Xt−
1
2σ2

t ] =
d

∑
j=0

1

(2π) j/2
Vj(K) .

This can be extended by writing rK, r > 0, in place of
K, which itself can be taken to be an element of KGB:

Eesupt∈K[rXt−
1
2 r

2σ2
t ] =

∞

∑
j=0

(
r√
2π

) j

Vj(K) .

The Alexandrov-Fenchel inequality (Schneider, 1993)
implies that

Vj(K) ≤ 1

j!
V

j
1 (K) =

1

j!

[√
2πE sup

t∈K
Xt

] j

,

and hence

∞

∑
j=0

(
r√
2π

) j

Vj(K) ≤ erE supt∈K Xt .

Thus we have shown the following:

Theorem 8 (Tsirel’son, 1985; Vitale, 1996, 2001 ) If

{Xt , t ∈K} is a mean-zero, bounded Gaussian process,
then

Eesupt{Xt−(1/2)EX2
t } ≤ eE supt Xt .

An immediate consequence is a deviation bound:

Theorem 9 (Pisier, 1986; Vitale, 1996, 1999)

P(sup
t
Xt −E sup

t
Xt ≥ a) ≤ exp[−(1/2)(a2/σ2)]. (4)

Proof: Set σ2 = supt∈K σ2
t . It is direct to show

Eer[supt∈K Xt−E supt∈K Xt ] ≤ e
1
2 r

2σ2

.

Then

P(sup
t∈K

Xt −E sup
t∈K

Xt ≥ a) =

= P(r[sup
t∈K

Xt −E sup
t∈K

Xt ] ≥ ra)

= P(er[supt∈K Xt−E supt∈K Xt ] ≥ era)

≤ Eer[supt∈K Xt−E supt∈K Xt ]e−ra

≤ e
1
2 r

2σ2−ra,

which is minimized at r = a/σ2, and the assertion

follows.

CONCLUSION

We have surveyed topics that combine elements of

the theory of convex bodies and Gaussian processes.
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