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ABSTRACT

Volume data, such as 3D reconstructions from histological sections or MRI and CT data, are commonly used in
studies in biology and medicine. The quantification of morphological parameters and changes within a region
of interest is a key concern in such studies. Specifically, it is often required to measure the distance between
two points. These distance measurements have to follow a track through the tissue when measuring in sheet-
like or contorted organs like the developing heart. A tool was developed that enables this kind of distance
measurements. Three existing neighborhood estimators were compared; two of Verwer and one of Kiryati,
all originally designed to compute chamfer distances in data sets with isotropic, cubic voxels. The estimators
were therefore adjusted to handle non-isotropic data sets. Moreover, the shortest path along a track within
a given tissue was calculated. The measurement of known distances, through a simplified model of an early
heart tube, with anisotropic voxels was used decide which of the three estimators should be implemented. The
observed Root Mean Square (RMS) errors were similar to the ones reported in literature in the unrestrained
isotropic case. The adjusted Verwer estimator measuring in a 53 neighborhood performed best by far with the
lowest mean and RMS errors.
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INTRODUCTION

In biology and (bio)medicine volume data, such as

3D reconstructions from histological sections or MRI

and CT data, is commonly used and the quantification

of morphological parameters and changes within

a region of interest is a key concern. Geometric

parameters, like volume, length and number of

distinct tissue components can be estimated using

stereological methods (Howard and Reed, 1998),

while morphogenetic parameters like cell proliferation

and cell size can be quantified and 3D visualized using

more recently published methods (Soufan et al., 2001;

2006; 2007).

The latter studies showed that the cells inside

the early developing heart do not proliferate while

the heart itself is growing rapidly. Therefore, a key

question in the study of the embryonic heart is

how this primitive heart grows. We hypothesized

that the addition of cells from surrounding tissue

was responsible for this rapid growth. To test this

hypothesis it was needed to measure the speed

by which cells migrate into the heart and thus to

compute the distance traveled by these cells during

a specified period of time (van den Berg et al., 2009).

Such migration of cells between and within organs

and tissues is one of the processes in control of

morphogenesis. The measurement of the length of

migration paths through the tissue is required for

the quantification of this process. These distance

measurements have to follow a track through the

tissue in a non-convex space. This is especially true

when distances are measured in sheet-like or contorted

organs, like the developing heart.

The software currently used for making

reconstructions, such as Amira, only allows the

measurement of Euclidean distances in the convex

space. However, measurement of distances in the

non-convex space, thus taking tissue boundaries into

account, is not possible in any of the available software

packages. To fill this gap we decided to develop a tool

that enables such measurements.

Existing distance estimators form the basis

of our tool. In the past, these algorithms for

distance estimation were thoroughly investigated.

Most published estimators are restricted to 2

dimensional images and are used to compute

distance transformations. Distance computations

in volume data with the purpose to compute
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a shortest path are only dealt with in a few

articles (Kiryati and Szekely, 1993). The 2D and

3D algorithms are mostly designed to handle data

sets with isotropic, cubic, voxels. Handling of non-

isotropic datasets is described by Coquin and Bolon

(1995) for pixels and Sintorn and Borgefors (2004)

and Fouard and Malandain (2005) for voxels.

Chamfer distances are commonly used to estimate

distances (Borgefors, 1984). Chamfer distances are

based on the principle that the distance from one pixel

or voxel to another can be determined via its neighbors.

The values assigned to each neighbor relation should

be carefully chosen to reach an unbiased estimation

and small estimation errors. Chamfer distances have

been described for the computation of distance

transform images and for estimation of a shortest

path. The difference between these approaches is

the underlying algorithm. For distance transformation

the distance is estimated as the distance from each

position within an image to the nearest object within

it. This estimation can be performed relatively fast

by propagating forward and backward through the

image once (Borgefors, 1984). In contrast to distance

transforms, shortest paths do not follow straight

lines but are restricted by object boundaries. When

estimating such shortest paths, an algorithm should

be used which propagates through the image from

a starting point. Such an algorithm can be based on

Dijkstra’s shortest path algorithm (Dijkstra, 1959).

Verwer (1991) found optimal values to compute

chamfer distance transformations by minimizing the

maximum error as well as the unbiased mean square

error. These optimal values were determined using

a set of Euclidean distances from the origin to an

Euclidean circle or ball, for two and three dimensions,

respectively. Kiryati and Szekely (1993) optimized the

values for estimation of the shortest path using a set

of digitized surfaces. The distance estimation values

found by Kiryati and Verwer are given in Fig. 2.

The paths and distances we want to measure in

the developing heart are neither straight lines, nor

are they digitized surfaces. Knowing that the early

primitive heart tube does look like a kind of folded

sheet we expected that the approach of Kiryati and

Szekely might give the best results. They, however,

determined only a set of estimator values for the 33

neighborhood, while Verwer also found a solution for

the 53 neighborhood which had a significantly lower

Root Mean Squared (RMS) error (Verwer, 1991).

The performance of the different estimators, which

we adjusted for anisotropy, was tested. Using test

models having different degrees of anisotropy, we

based our tests on the RMS errors and mean errors

(bias) of the estimators. In all tests the adjusted 53

neighborhood estimator of Verwer performed best. The
distances required to answer the biological question
of van den Berg et al. (2009) were measured using this
estimator.

MATERIAL AND METHODS

TEST MODEL

We designed a model with the geometric
characteristics of a primitive heart tube to compare
the performance of the different estimators. Similar
to a real primitive heart tube (Fig. 9A), our model
(Fig. 1) had a height of 600 µm, an outer diameter of
309 µm and a wall thickness of 18 µm. We “unfolded”
the test model to compute the expected distances;
transforming the tube to a plane with a width equal
to the inner circumference of the tube (Fig. 1) and a
height equal to the height of the tube. The expected
distances for lines making an angle of 0◦ to 90◦

with the xy-axis were then easily computed. Relative
to these expected distances the performance of the
different adjusted estimators was tested in terms of
Root Mean Squared (RMS) errors and bias (mean
errors)

Fig. 1. The model, representing the embryonic heart

tube, used to test the performance of the adjusted

distance estimators trough non-convex space with

anisotropic voxels. Its unfolded counterpart is shown

to illustrate the calculation of the expected distances.

ANISOTROPY EFFECT

The effect of different degrees of anisotropy was
determined using a constant voxel size in the xy

direction of 6 µm and three different voxel sizes (6,
7.5, and 12 µm) in the z direction.

To test whether it is better to down-sample volume
data when having a voxel size that is much smaller in
the xy direction than in the z direction we also tested
voxel sizes of 3 µm in the x and y direction and 6 µm
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in the z direction and compared the results with the test

with the cubic voxels of 6×6×6 µm3.

Down-sampling to reach isotropic voxels is

sometimes hampered by tissue components that are

too thin to avoid their partial loss. The use of models

with anisotropic voxels is then unavoidable. Our

microscopic images have a resolution of 1.22×1.22×
7 µm3. To compare this degree of anisotropy with the

other tests, voxel sizes were used of 3 µm in the x and

y direction and 20 µm in the z direction.

DISTANCE ESTIMATORS

We tested the performance of the 33 neighborhood

estimator of Kiryati and Szekely (1993), called

Kiryati3 estimator in this text, and the 33 and

53 neighborhood estimators of Verwer (1991),

dubbed Verwer3 and Verwer5 estimator, respectively.

Euclidean chamfer distances in the 33 neighborhood,

Euclidean3, are included for illustrating purposes. All

estimators were adjusted for anisotropy as shown in

Fig. 2.

IMPLEMENTATION

Matlab (The Mathworks, Inc.) was used to

implement most functions, tests, and a user interface.

Only a priority queue was implemented in Java to

enable propagation through the voxels within the

tissue while assigning distance values. To compare

the adjusted distance estimators, each estimator was

implemented using Dijkstra’s shortest path algorithm

(Dijkstra, 1959) to determine the shortest path based

on the values of the studied estimator. Note that

the different estimators will not result by definition

in the same shortest path. The algorithm used was

implemented as follows:

for all position neighboring start position do

compute distance from start position

enqueue position

end for

current pos← queue.dequeue
while current pos 6= endposition&& queue 6= ∅ do

for all position neighboring current pos do

compute distance from current pos

if distance to position was computed &&

distance to position in queue > distance to

position then

delete position from queue

end if

enqueue position

end for

current pos← queue.dequeue
end while

trace back path from endposition to start position

BIOLOGICAL APPLICATION

It was recently shown that the early heart tube

does not proliferate (Soufan et al., 2006) and that

growth of this tube is therefore due to addition of

cells from the dorsal mesoderm (van den Berg et al.,

2009). Because the newly added cells have recently

divided they can be labeled with BrdU which is

incorporated into nuclei prior to division. To this

end, chicken embryos were exposed to BrdU in ovo.

After predetermined exposure times, these embryos

were harvested, fixed and embedded in paraplast.

Serial sections were stained to enable discrimination

between myocardium, BrdU-labeled nuclei, and all

nuclei (Soufan et al., 2007; van den Berg et al., 2009).

The resulting sections were used to generate

quantitative 3D reconstructions of the BrdU positive

nuclear fraction (Soufan et al., 2007). In this timed

series of reconstructions (Fig. 9), a widening zone of

high BrdU-positivity visualizes the migration of newly

divided cells into the heart (van den Berg et al., 2009).

The voxels of the reconstructions were down-sampled

to 6.1 µm in the xy plane and 7 µm in the z direction to

measure the lengths of the paths, from the base to the

top of the migration front.

RESULTS

ADJUSTMENT OF THE ESTIMATOR

VALUES FOR ANISOTROPY

The anisotropic voxel sizes made it necessary

to adjust the estimator values used to compute the

local distances. The optimized local distances in

the published estimators (Dopt) which are based on

voxels of length 1 in the x, y and z direction form

the basis for this compensation (Fig. 2). The actual

Euclidean distances are computed for the anisotropic

voxels in the 33 or 53 neighborhood (DEuclidean), and

divided by the corresponding Euclidean distances of

isotropic voxels of length 1 (DEuclideaniso) to compute

the compensation factor (λ , Eq. 1) for each position

in the 33 or 53 neighborhood. The values of Dopt

are multiplied by λ as in Eq. 2 to determine the

new estimator values (Dadjusted). Fig. 2 tabulates the

published estimator values and illustrates how these

equations are applied.

λ =

DEuclidean

DEuclideaniso

(1)

Dadjusted = λ ·Dopt (2)
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Fig. 2. Distance estimators and anisotropy adjustment. At the left side the 33 and 53 neighborhood is shown with

the corresponding values of the published distance estimators which are valid for isotropic data sets. At the right,

an adjustment, that has to be applied to each of the neighboring voxels in the 33 neighborhoods of the center

voxel is illustrated. This adjustment factor λ equation (1) for voxel b is computed as λb = bEuclidean/bEuclideaniso =√
5/

√
2 = 1.5811. Subsequently the adjusted value can be determined: badjusted = λb·bKiryati3 = 1.5811·1.289 =

2.038.

PERFORMANCE OF THE DIFFERENT

DISTANCE ESTIMATORS

Fig. 3 shows the distances observed when using the

Euclidean3, without any optimization. The distances

were continuously overestimated and a RMS error of

over 9% for the isotropic model and up to 24% for

the model with the highest degree of anisotropy was

found. Only in the case of a straight line, at an angle of

90◦, the estimated distance was correct.
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Fig. 3. Euclidean3 estimator. For each tested

resolution of the reference model the relative error

compared to the expected distances is computed for the

Euclidean3 estimator.

Fig. 4 shows the distances observed when using

the adjusted Kiryati3 estimator. For the cubic model

the errors were nicely centered around 0%. In a

model with slightly anisotropic voxels the errors were

somewhat increased. In the test models with voxel

sizes twice as large in the z direction as in the xy

direction the errors increased significantly. Especially

for distances measured at smaller angles, the estimator

gave a large overestimation of the actual length.

Comparison of the results of the two models with a

factor 2 difference in xyz resolution shows that a higher

resolution (smaller voxels) gives slightly lower errors.

A more pronounced difference is seen in the noise

of the errors; the largest voxels result in a saw-tooth

pattern of the error graph. In the model in which the z

size of the voxels was about 7 times larger than the xy

size much higher errors than in all previous tests were

observed. The errors are especially high for angles

between 20◦ and 60◦.

As shown in Fig. 5, the pattern of errors observed

for the adjusted Verwer3 estimator was very similar to

those of Kiryati3, although the RMS errors found were

all slightly higher.
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Fig. 4. Kiryati3 estimator. For each tested resolution

of the reference model the relative error compared to

the expected distances is computed for the adjusted

Kiryati3 estimator.
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Fig. 5. Verwer3 estimator. For each tested resolution

of the reference model the relative error compared to

the expected distances is computed for the adjusted

Verwer3 estimator.
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Fig. 6. Verwer5 estimator. For each tested resolution

of the reference model the relative error compared to

the expected distances is computed for the adjusted

Verwer5 estimator

The 53 neighborhood estimator of Verwer has

much lower errors in all tested models which

is immediately clear from the comparison of the

test results (Fig. 6) to those found with the 33

neighborhood estimators (Figs. 4 and 5). There was

only a minor effect of slightly increasing the level of

anisotropy (an 0.12 percent point higher RMS error

between 6×6×6 µm and 6×6×7.5 µm voxels). Even

with voxel sizes twice as large in the z direction as in

the xy direction, the errors of the Verwer5 estimator

stay below the error levels of both 33 neighborhood

estimators in the case of isotropic voxels. Again, when

comparing the results of the test with a factor 2

difference in xyz resolution it is found that a higher

resolution gives slightly lower errors, and the same

saw-tooth pattern of the error graph is seen in the

lower resolution. In the last model the z size of the

voxels was about 7 times larger than the xy size and

again much higher errors than in the previous tests

with this estimator were seen. However, the Verwer5
estimator still performed somewhat better than the

other estimators in this model.

RMS errors and mean errors of the 3 adjusted

estimators are summarized in Fig. 7. Up to anisotropy

of 2 times all estimators are almost unbiased but the

Verwer5 estimator was by far the most precise showing

the smallest RMS errors . All estimators fail when they

are applied to models with levels of anisotropy of 7

times.
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Fig. 7. The mean errors (bias) ± the RMS error for

every adjusted estimator and test.

IMPLEMENTATION AND APPLICATION

OF THE DISTANCE ESTIMATOR

The results prompted us to implement the Verwer5
estimator in an easy to use application dubbed

Distance3D. We used Matlab (The Mathworks Inc.)

to build the graphical user interface (Fig. 8). We

optimized the program to handle data sets from
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Amira (Visage Imaging), a program often used for 3D

reconstruction of biological tissue. 3D volume data

from Amira, exported as multi-page (3D) tiff files,

can be loaded into Distance3D whereby the voxel

size information is preserved. The same holds for the

surface data which is used for visualization. The latter

can be exported as ’*.m’-file, or when preserving color

information as VRML-file. By navigating through the

volume data data the way-points can be placed through

which the shortest path will be determined. The way-

points will be processed in the same order as they were

placed.

The program described above is used to measure

the length of the BrdU-positive zone within a timed

series of developing chicken hearts (Fig. 9). The

growth of the heart tube due to addition of cells from

a dividing precursor pool is reflected by the length of

this zone. From the measurements of these lengths at

different time points it can be inferred that the chicken

heart tube lengthens at a rate of 70 µm/h (Fig. 9) as

shown by van den Berg et al. (2009).

DISCUSSION

Comparison of published distance estimators

showed that our approach gave slightly higher RMS

errors than Verwer and Kiryati found in their

measurements when measuring in a cubic grid of

voxels; the RMS errors were 1.14 and 0.25 percent

point higher than the 2.33% and 2.88% originally

published by Verwer and Kiryati, respectively (Verwer,

1991; Kiryati and Szekely, 1993). The RMS error of

0.78% that Verwer determined for the 53 estimator

was only 0.3 percent point lower than what we found

in our measurement with the Verwer5 estimator in

isotropic voxels (Verwer, 1991). Our test included a

line exactly in the z-direction, which in a distance

estimator has the maximum possible error, and also

lines close to this angle. This and the limited number of

test directions that we used might have lead to an over-

representation of paths with relatively large errors in

our test set. Additionally we opted for a representative

test and therefor used a test set with limited lengths

which might be another reason for these increased

RMS errors; the limited number of voxels included

in each path could have lead to extra error due to

rounding-off of the pixel locations.

The reason that the Kiryati3 estimator performs

slightly better than the Verwer3 estimator is probably

caused by the basic principles of these estimators. The

estimator of Kiryati is optimized for curved paths,

whereas the estimators of Verwer are optimized for

straight lines. The lines in the models that we have

tested are almost all curved, which favors the Kiryati3
estimator.

Fig. 8. Screenshot of the user interface of Distance3D.

The user can navigate through the volume data by

handling the sliders (top left). When the desired

position is found, way-points have to be placed on the

cross section (bottom left). When at least two way-

points (a start and end position) are placed the shortest

path can be determined and the distance computed.

When more way-points are placed, the shortest path

follows the way-points in the order in which they are

placed.

Fig. 9. Distance measurements of the length of

the BrdU-positive zone in the developing embryonic

chicken heart. BrdU-negative tissue is shown in blue.

A lengthening of approximately 70 µm/h can be

derived from this measurement. (figure adapted from

van den Berg et al., 2009)

58



Image Anal Stereol 2010;29:53-60

An elongation of 25% in the z-direction would be

a reasonable value for reconstructions of microscopic

images resampled to near-cubic voxels. Compared to

cubic voxels the RMS errors increase slightly, although

this is hardly noticeable in the Verwer5 estimator with

an increase of only 0.12 percent point. The estimators

in the 33 neighborhood suffer more from this low

level of anisotropy with an increase of 0.8 percent

point. When measuring within biological tissue such

error rates are still within an acceptable range and

because the mean error stays close to zero (Fig. 7) the

estimators can still be considered unbiased up to this

25% anisotropy.

The error rates of the 33 neighborhood estimators

double when elongating the voxels to a height twice as

long as the xy-sizes, and their mean error is no longer

close to zero (Fig. 7). On the other hand the Verwer5
estimator still shows error rates that are slightly lower

than the error rates found in cubic voxels with the

33 neighborhood estimators (Fig. 7). The Verwer5
estimator is still precise at this degree of anisotropy

while it is unbiased with a mean error close to zero

(Fig. 7).

Two observations can be made when comparing

the results of the two tests with the doubled z-size.

Firstly, the relative errors in the test model with the

lower resolution (6× 6× 12 µm) show saw-tooth-like

variations whereas the graphs of the test model with

higher resolution (3× 3× 6 µm) are much smoother.

The rounding-off error, which is larger when using

larger voxels, easily explains this difference. More

interestingly, the error graphs of the estimators in the

lower resolution model are consistently slightly higher

than those of the higher resolution model. For all

estimators this leads to a higher mean overestimation

of the actual length by approximately 0.5 percent point

in the model with the larger voxel sizes (Fig. 7).

To decide whether the loss of resolution due to

down-sampling data is worse than the error introduced

by the anisotropy of the voxels, it is interesting to

compare the tests with voxel sizes of 3× 3× 6 µm

and 6× 6× 6 µm (Fig. 7). In the case of cubic voxels

the mean error of all estimators is close to zero while

in the elongated voxels only the error of the Verwer5
estimator is unbiased. The RMS errors of all estimators

are higher in the case of the elongated voxels, although

the RMS error of the Verwer5 estimator stays in

an acceptable range. This leads to the conclusion

that generally the effect of down-sampling to larger

isotropic voxels, and the loss in associated spatial

resolution, is not as bad as the effect of anisotropy.

The performance of all estimators in the test

model with strongly elongated voxels is poor. A large

overestimation of the distance is observed especially

for the lines with an angle between approximately 20◦

to 60◦. Using these elongated voxels would result in

a strongly biased estimation with mean errors around

10% (Fig. 7). Reasonable error rates are only observed

for the Verwer5 estimator above an angle of 65◦.
This shows that measuring in the direction of the

voxel elongation gives lower errors, although this is

associated with a bias to underestimation of the actual

path. It is therefore not recommended, to estimate

distances in such strongly elongated voxels . However,

sometimes it is required to do measurements through

very thin tissues, where down-sampling might lead

to the loss of connectivity. Without this connectivity

the shortest path cannot be computed. In these cases

one could consider to use the highly anisotropic data

set and restrict the measurements to the z-direction.

However, downs-ampling to voxels that are up to twice

as high in the z direction as in the xy direction should

always be attempted because at that level of anisotropy

the adjusted 53 neighborhood estimator of Verwer,

showed errors that are acceptable for all directions.

The tests we performed using a model representing

a simplified early heart tube resulted in length

measurements over curves. Similar tests have to

be performed to test the performance in structures

with other geometric characteristics. We expect that

the Verwer5 estimator will perform even better in

structures with a more solid composition because it

was originally optimized for such straight lines.

The approach we used to adapt the published

optimized values for anisotropic voxels does not by

definition result in the best values for every degree of

anisotropy. However, the results are sufficiently precise

for biological applications as long as voxel sizes in the

z direction are not longer as twice the xy size.

Using Farey sets, Fouard and Malandain (2005)

computed optimal integer approximations for

anisotropic voxels. These estimators were found by

minimizing the maximum error, without taking the

RMS error and mean error into account. Only when

the application requires a higher precision than usually

required in biology, this computationally expensive

approach would be worth considering.

CONCLUSION

Existing length estimators can be very simply

adjusted for the use within an anisotropic non-convex

space using our approach.

Two conclusions can be drawn from the test

results. Firstly, anisotropy of voxels has a big influence
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on the error of the estimated length of the shortest
path. Secondly, the estimator that performed best in
all tests was the anisotropy-adjusted 53 neighborhood
estimator of Verwer.

Because this estimator performed almost unbiased,
with acceptable RMS errors, within levels of
anisotropy up till voxels that are twice as high as they
are wide it is recommended to re-sample data sets to
such, close to cubic, voxels .
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