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ABSTRACT

We suggest a procedure for quantitative quality controlashdgraphic reconstruction algorithms. Our
task-oriented evaluation focuses on the correct repramtucf phase boundary length and has thus a clear
implication for morphological image analysis of tomograpttata. Indirectly the method monitors accurate
reproduction of a variety of locally defined critical imagafures within tomograms such as interface positions
and microstructures, debonding, cracks and pores. Tompbigrarrors of such local nature are neglected if
only global integral characteristics such as mean squageitibn are considered for the evaluation of an
algorithm. The significance of differences in reconstttfjuality between algorithms is assessed using a
sample of independent random scenes to be reconstructede e generated by a Boolean model and thus
exhibit a substantial stochastic variability with resptectmage morphology. It is demonstrated that phase
boundaries in standard reconstructions by filtered bagégtion exhibit substantial errors. In the setting of
our simulations, these could be significantly reduced byutbe of the innovative reconstruction algorithm
DIRECTT.

Keywords: metrology, morphological image analysis, nestductive testing, phase boundary, reconstruction
algorithm, tomography.

INTRODUCTION of the tomograms in a specific applicatioe,q,
from medicine or materials science. Typical FOMs

The principle of tomographic reconstruction of for medical applications are based on curves of
a volume from lower-dimensional projections as,the receiver operator characteristics. They allow to
e.g, app||ed in X-ray or electron tomography WasStUdy the detectability of different tissues and thus
mathematically discovered by Radon (1917). For dhe reliability of diagnostics (Herman and Yeung,
comprehensive introduction and important aspects ck989; Hanson, 1990). There is a large variety of
applications seee.g, Frank (2005), Banhart (2007), FOMs focusing on the correct reproduction of gray
and Buzug (2008). Tomographic reconstructions caialues. The most common representative of gray value
be computed by a variety of different techniques suclriented FOMs is the mean squared deviation
as filtered backprojection (FBP) (Feldkang al,

1984; Kak and Slaney, 1988), algebraic reconstruction \/ yrec_ yphan 2 \/ i phan 2 (1)
= X P)
NG R NADACEY

techniques (ART) (Gilbert, 1972; Caragbal., 2005),

geometric tomography (Gardner, 1995) or discrete

tomography (Batenburg, 2005; Herman and Kubawhich averages over the gray value differenef§s—
2007). The comparative evaluation of these algorithmsphan between all pixelsi in the reconstruction and
is naturally dependent on the choice of quality! P J

criteria. These are mathematically formulated by %?erﬂgzc;?mnfge{fzrbtéollugt?éiffg?g:(is?)lf’ ?go\%lues
figure of merit (FOM) measuring the deviation of aas well as dsé'viations of gray value means ar?d gariances
phantom data set from its reconstruction, which is gray

computed from simulated projections of the phantomsm the reconstruction from the respective values of the

Since ranking of the reconstruction quality providedphamom have been considered (Sorzenal, 2001).

by different algorithms is FOM-dependent (HermanMoreover, phase-specific mean gray values have been

and Odhner, 1991), FOMs need to be chosen in gsed to assess the detectability of different components

task-oriented way (Hanson, 1990). That means, th\tla\”thln a material (Sorzanet al, 2001).
FOM needs to detect differences in reconstruction Especially if — as in real experiments — the density
quality which are relevant to the further analysisto reconstructis unknown, reconstruction residuals can
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be a valuable source of information for assessing ththe advantage that specific features which typically

quality of a tomogram (Langet al., 2008). These present challenges for correct reconstructi@ng(
residuals are obtained by subtracting a simulatedertain gray value gradients) can be incorporated.
projection of the reconstruction from the measuredHowever, insights with respect to the statistical
projection for all rotation angles. significance of differences in reconstruction quality
All approaches described above focus on globa(fan on_ly' b? gained if msteaq Qf a small number of
deterministic phantoms a sufficiently large sample of

accuracy of the reconstruction, whereas evaluatiopanolom hantom data is investigated (Herman and
results can hardly be interpreted with respect to th P 9

. . . L 9eung, 1989; Hanson, 1990; Matef al, 1994 and
preservation of locally defined image characterlstlcig%, Herman, 2009). This way statistical tests can

such as little cracks in the material or the exact shapge applied to compare reconstruction errors caused

s e o Chiocasly cifetent aigorifms. Many types of atfcts i
omographic reconstructions such as smearing or

computation of morphological image characteristics ., . . o .
L Stripes result from the relative positions of single

such as connectivity, boundary length or surface area, . o
objects within the scene to be reconstructed (Hanson,

Quantitative information on these characteristics iS_'L99O) Thus, a sample of random phantoms resembling
a valugble_ source of information in a wide rangey e experimentally occurring range of scenes ensures
of applications such as metrology (Neuschaefer-Rub,

et al, 2008), pathology (Mattfeldtet al, 2007), that statistically significant errors of this type are

environmental health (Stoeget al,, 2006) or design taken into account, whereas they may not even

of materials (Froset al,, 2006). We therefore suggest o;:cur n determmls_tlc pha_ntom dat_a. To the best
. . . our knowledge in previous studies samples of
to directly incorporate measurements ofmorphologlca(I)h h v b d und d
image characteristics into the FOMs used to evaluat® antoms have only been generated under moderate
randomization with respect to object positioning.

tomographic reconstruction algorithms. Apart fromIn particular, objects were clearly separated from

measurements of phase boundary length and surface . . .
area (see,e.g, Park et al, 2000) many other éach other (Hanson, 1990). For studies discussing

: o .. detectability of tumors in biological tissue potential
morphological characteristics such as connectlvmf g ! o
. . . tumor locations were even fixea priori and random
(Ohser and Schladitz, 2008) and fractal d'menS'Or(]affects were limited to Bernoulli experiments markin
(Baumannet al, 1993) are sensitive to the shape of P 9

. . the sites as occupied by a tumor or by regular tissue
phase boundaries. We nevertheless decided to ass ,

i . . erman and Yeung 1989; Hanson, 1990). Compared

local reconstruction quality along phase boundaries b . . ,
. - . o0 these images the phantoms considered in our
measuring deviations in boundary length between the o . ; .
o . ? . Study exhibit a substantially higher morphological
original 2D phantom images and their tomographlcvariabilit They are realizations of a model from
reconstructions. Other approaches, which have beeln Y. y
: : . Stochastic geometry, namely a 2D Boolean model
suggested to study reconstruction quality with focus

on the vicinity of phase boundaries, are based oconsisting of overlapping discs (Molchanov, 1997;

weighted averaging of gray value deviations betwee%(:hne'der and Weil, 2008), which are placed at

phantom and reconsinucion (Sorzsepal, 200D (LT CIoSen beatons vt e age (o
where weighting is with respect to distance from ’ ’ P

phase boundaries. In contrast to this FOM our methogata reflect properties of composite or porous materials

. : ) -Wwith an irregular spatial structure, which nevertheless
provides a direct assessment of reconstruction quality . - . L .

: o C ._exhibit spatial homogeneity in the sense of stochastic
in terms of quantitative morphological image analysis.

Previous methods to locally evaluate reconstructioﬁeometry' Repeated sampling from the Boolean model

. . o - - sets us in a position to compare reconstruction errors
quality consider average gray value deviations within

certain regions of interest (Furugé¢al, 1994) and thus g{ :iéfsf;asrerr; a::]gigrw;ns d%etrvgg;zmiﬁle;ggg:;?j;}g‘;
have the additional disadvantage that these regions .~ Y,
o o guality of two algorithms can be assessed on a
need to be specified priori. .2 .

statistically sound basis. The approach we suggest

The two principle questions arising in comparisonoccurs particularly natural for the selection of

of reconstruction algorithms ask for the relevance antbmographic reconstruction algorithms in applications

for the significance of differences in reconstructionaiming at the quantitative analysis of complex
quality, respectively. Relevant differences can possiblynaterials. For a specific experimental setting, the
be detected by computation of an appropriately chosemethodology suggested in this study can be adapted to
FOM for a single phantom such as the well-knownphantom data sets resembling structural properties of

section of a head introduced in Shepp and Logathe experimentally investigated material. Additionally,
(1974). The use of such deterministic input offersartifacts related to the specific imaging technique or
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even to a specific experimental instrument need to bpattern {S,}n>1. In our specific setting we used a
taken into account. Simulations of projections wouldBoolean model which is defined as the uniBn=
thus,e.g, incorporate noise, beam hardening, limitedJ,,_; B(S,,r) of circles B(S,,r) of radiusr = 10
rotation or alignment problems (Caraeb al, 2005; centered atS,. The intensity of the homogeneous
Haibel 2008). Poisson process on “Rdetermining the random
- locations {Sy}n>1 was chosen such that the mean
In the following the suggested methodologynumloer of points iAW = [0,5002 was 1200. Since

will be applied to investigate the performance of i .
standard FBP algorithms in comparison to the €constructions are pixel images, throughout our study

innovative reconstruction technique DIRECTT (DirectWe :jn\/lestlgateg dlfssc(r);tlégg realllzat_llf)hns of this I|300Iefan
Iterative Reconstruction of Computed Tomograph)fno elonagndo PIXELS. The gray value o

Trajectories) (Langet al, 2008). The phantom data each pixel was chose_n proportional to its area fraction
will be two-dimensional. In many applications Suchcovered by the realization of the Boolean model.

as electron tomography, projections are acquired i otice that gray _values are _chosen ind.ependently of
’ e number of circles covering a location. All gray

parallel beam geometry. As a consequence, tomogra ) .
of 3D volumes are a stack of 2D reconstructions fromValues were rounded to integers and the maximum gray
alue was set to 255. In order to allow for statistical

1D projection data. Thus, in parallel beam geometr)y ; . e
our results on 2D datasets are also relevant for the 3 alysis, 100 [[ntiliepegg_ent rﬁah(zjatldns. - D100 Of
case. The exact consequences for 3D morphologica WE'€ 9enerated and discretized.

image analysis remain an interesting subject for future
applications of our methodology. SIMULATION OF IDEAL AND NOISY

We will see that the applied FBP algorithms PROJECTIONS
alter the structure of phase boundaries in such a way Projections were performed in parallel beam
that boundary length measurements are substantialjeometry. The sample was rotated in steps.bf Gp
affected whereas the DIRECTT reconstructiongo a maximum angle of 180For the ideal projections
preserve boundary structures in a much better waynodel elements were projected individually and added
In a first step we will demonstrate these effects fokg the sinogramj.e., we performed a projection of
projections of phantoms without noise (referred to asnass (or density, resp.) instead of intensities. This
‘ideal projections’ below). Afterwards we will show approach is equivalent to integration over strips of
that the superiority of the DIRECTT reconstructiondetector width, and thus reflects that detector elements
remains valid under the addition of simulated noise tgs well as the pixels of the phantom are not points but
the projection data. area elements. The detector elements had exactly the

The paper is organized as follows. After discussingg@Me Size as the reconstruction pixels. The original
phantom generation and simulation of projections w@bPservation window was extended by a two pixel
give an introduction to the investigated reconstructiorfdge Of zero entries on all sides. The rotation axis
techniques in order to illustrate their principle ideasVas Set at the windows’ center. In order to ensure
to a non-expert reader. Then we briefly discus§omplete visibility of the reconstruction pixels under
the estimation techniques for measuring boundar@l!l Projection angles, the length of the line detector was
length, leaving additional details for the appendix.chosen sufficiently large.

Furthermore, we introduce the FOMs serving as basis |n order to assess the impact of noise on
for the evaluation and the statistical tests we appliedhe reconstruction results we simulated intensity
We Con(.:lude bythe presentat|0n of the results and theﬁinograms under a noisy X_ray source. Other
discussion. experimental artifacts such as cross-talking, focal
smearing, beam hardening or limited dynamic range
(non-linearities in detection) were not simulated. For

METHODS the noisy intensity measured at detector locatfon
under rotation anglg’ one obtains the approximative
PHANTOM DATA formula
Iy (&) = Xe yexp(—py(&)) , (2)

The phantoms projected and reconstructed for
this study were discretized versions of realizations ofvhere the procesgX; ,} denotes Gaussian white
Boolean models in 2D, which were sampled on aroise with fixed expectatiorEXs , = y > 0 and
observation windowV = [0,5007 (Fig. 1(a)). Boolean variance VarXs , = 0?2 > 0 and py(&) denotes
models are a class of random closed sets whodbe corresponding ideal projection of density for a
construction is based on a homogeneous Poisson poigitven object. This approximates a Poisson-distributed
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Fig. 1. Sample phantom and its reconstructions from projectiom dahe right upper corner has been scaled by
factor 3.
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number of X-ray quanta with high expectation (Buzug,of the Fourier slice theorem yields the identity (for
2008). Notice that for each detector locatigh detailscf. Buzug, 2008)

and rotation angley the recorded intensityl, (&) N

has a normal distribution. However, expectation and _ ® TIi(xq cog )Xo Sin(y))

variance differ from the respective values of the initial T = /o /foo |q\Py(q)e2 dady.
intensity X , and are given byuexp(—py(¢)) and forallxe RZ. (5)
o?exp(—py(&))?, respectively. Thus, the stochastic

counting rate at the detector depends not only on the The most commonly used FBP algorithm is
input intensity but also on the projected object. Theyased on this formula and organized as follows.
noise level is expressed by the signal-to-noise-ratigh a first step the Fourier transforni3(q) of the
(SNR) 4. In an experimental setting under Gaussiarprojections are computed. These are subjected to
approximation of Poisson noise one has= \/l.  an inverse Fourier transform after radial weighting
However, for simulation purposes we fixqd and by the factor |q|, which yields filtered projection
varied g, since the parameter of interest was the SNRmages_ Backprojections without weighting result in
rather than the absolute value of the initial intensity. a convolution of the image to be reconstructed with
the point spread function/1x|| (Buzug, 2008). In
TOMOGRAPHIC RECONSTRUCTION practice, the transforms are naturally done by discrete
(inverse) Fourier transforms of the discretely sampled
ALGORITHMS signal. In the backprojection step, for every pixel of
the discrete output image the corresponding position
on each filtered projection image is determined and
A standard technique for the tomographicthe corresponding value is added to the sum which
reconstruction of projection data is filtered discretizes the outer integral in E&. Since this
backprojection (FBP) (Feldkampt al, 1984; Kak position will in most cases be a non-integer pixel
and Slaney, 1988). FBP is widely utilized in computedposition, interpolation schemes need to be applied to
tomography using X-rays (Buzug, 2008) as well agieighboring pixels. By Shannon’s sampling theorem,
electrons (Carazet al, 2005). In the following we at a given real space sampling distanté the

will briefly summarize the mathematical foundationssignal can only be correctly reconstructed up to a
of FBP. frequencyQ = (2A&)~1 in Fourier space. Thus, the

5 S radial weighting by the functionig| in Eq. 5 is
, Let f : R“ — [0, ) denote a density distribution on onjy reasonable forg < Q. In other words, the
R< with bounded support which is to be reconstructe%amp”ng scheme imposes a band limitation which
from the set of projectiongp, : y € [0,2r1)} wherey  npaturally determines the range of integration in the
denotes the rotation angle. A single projectmii) =  discrete approximation of the inner integral in Bx.
Jer f(x)dxis an integral taken along the line In applications high frequencies are often considered
& as noise. Therefore, in practice frequencies are not

cogy) —sin(y) weighted radially but the filter function is replaced
={¢ (sin(y)) (cos(y) > :seR}, (3) by a modified version/gW(q), where W(q) is a

window function that decreases the weight of the
which is perpendicular to the first axis rotated py M3N frequency band. Apart from a simple cutoff

and has distancé from the origin. The mathematical &t TeqUeNCYimax (i.e., setingW(q) = 1po q,(|d)))

key ingredient of FBP is the Fourier slice theorem. For\(/Rﬁ”;aCh?nd:ﬁn t?\m(rj kLari:]STn}inr?rﬁy?naﬂ’ V197b1). na
the Fourier transforn®,(q) = [, py(&)e 2M9¢dé& of ariety of smoother Kkernel functions have bee

a projectionp, (€ ) at a fixed rotation anglg € [0, 21) suggested, which suppress undesired local extrema

. / . . in the reconstructionsc{. Buzug, 2008). A less
tzhoeolg;)uner slice theorem states the ideniitly Buzug, commonly used alternative algorithm to the real space

) FBP outlined above directly exploits the sampling on

Py(a) = F(qcogy),gsin(y)) . (4)  a polar grid, which is determined by the Fourier slice

theorem (Sandbergt al, 2003). This Fourier space

That is, the Fourier transform of the one-algorithm is more efficient than real space FBP if the

dimensional projection at rotation angt€orresponds number of projections is sufficiently large. Moreover,

to the slice of the two-dimensional Fourier transformedt allows for higher order spline interpolation of the

object F passing through the origin in directiop  data without additional cost. In order to monitor the

Substituting polar coordinates in the formula of theimpact of the FBP algorithm, reconstructions were
inverse Fourier transform and a subsequent applicatiacomputed by the real space and the Fourier space

Filtered backprojection

%y
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approach. The latter will be referred to as ‘fast FBP’.be used to evaluate trajectories with focus on specific
For this study the implementation of the fast FBPaspects of interest such as mass or contrast. Switching
provided by the IMod software (Kremet al, 1996) filters between subsequent iteration steps can be used
was applied. Notice that the license for this componeriio incorporate a variety of different aspects of the
is not included in the standard version. In orderimage into the reconstructions step by step. Let the
to assess the influence of specific implementationdiscrete sinogram be given by the matfx= (s;j),

on the reconstruction quality of the commonly usedsuch thati = 1,...,N and j = —/,...,/, where N

real space FBP we computed real space FBPs Wjenotes the number of projection angles ac+2

two different software packages namely Inspect3Ds the number of detector elements. Then the filtered
(version 3.0, FEI compar¥) and the IMod software Sinogram is given by the matri®‘, where theith row
(version 3.11.2). s of S" is obtained by a convolution of thth rows; of

. e L S (extended by zeros at both ends) with the discrete
An unmodified radial filter with simple cutoff was fjjter function c - {~2¢,...,2¢} — R, more precisely

used for comparison of FBP to other reconstructior&_ =5t sk )

techniques. The cutoff frequency was set to the' k=—t k_ ' _ _
maximum spatial frequency that could occur in our ~Computation of the DIRECTT reconstructions in
image data. We will nevertheless demonstrate thée present study involved switching between two
effect on reconstructions which is caused by switchingjj'fferent filter functions. T_he _flrst six iteration steps
to a Gaussian decay of the filter function at varyingVere performed after application of the mass filter

cutoff frequencies. { _Flz forke {—2¢,...,2¢} \ {0},

Both software packages we applied are designegm(k) - 2252’_1%2 fork=0.
to reconstruct 3D volumes from 2D projections. B _ _
However, the software backprojects each 2D slice of "€ Subseéquent steps of iteration (fourteen for
the volume separately and thus each sample of our 2f§constructions of ideal projections) were based on
phantom data could be considered as a single slice GPntrast-filtered sinograms, where the contrast fdger

a 3D volume. Sample reconstructions can be found if? 9V€N by

Fig. 1. -1 forke{-1,1},
DIRECTT C(k)=¢ 2 fork=0,
0 else

The algorithm DIRECTT (Langest al, 2008)

represents a promising alternative to conventional The weights of all possible trajectories
reconstruction algorithms such as FBP or ART.(corresponding to integer reconstruction positions) are
Fig. 2 schematically displays the algorithm’s iterativecomputed by averaging along the respective traces
philosophy. The 2D algorithm is applicable to parallelwithin the optionally filtered sinogram. This involves
as well as fan beam geometry of projection. Ininterpolation between neighboring sinogram pixels
the following we study parallel beam projections ascorresponding to different detector elements. This is
illustrated in Fig.2, which are computed in strips for a substantial difference to FBP, where interpolation
each detector element. Figa (top left) indicates a is performed in Fourier space (fast FBP) or in the
model volume at the example of a 14 pixel objectbackprojection step after the sinogram has been
Fig. 2b (bottom left) represents the respective densit§inversely) Fourier transformed and filtered (real space
sinogram (Radon transform (Radon, 1917)) which-BP).

is either achieved by computed projection of model | the update step of DIRECTT, a fraction of
densities (Fig.2a) or is the initial experimental the trajectory weight is added to the respective area
intensity data converted according to Lambert-Beer'glement in the reconstruction array if the weight ranks
law (cf. Buzug, 2008). Demanding that each elemen{yithin a predefined top percentage of all trajectory
of the reconstruction array corresponds to exactlyveights. This is illustrated in Fig2c, where 11 out
one sinusoidal trajectory of the sinogram (F2p), of the 14 original elements in the example have
the DIRECTT algorithm selects pixeld,e, area been added. The projection (Radon transform) of the
elements, corresponding to trajectories of dominanteconstruction arrayi.e., a computed sinogram) is
weight for an update of the reconstruction. The giventhen subtracted from the original data set. The obtained
density sinogram can optionally be filtered along theesidual sinogram (Figd, containing trajectories of 3
detector direction. This is helpful to avoid artifact remaining elements in the example) is subject to the
formation equivalent to the effects of an unfilteredsame procedure in the subsequent iteration steps until
backprojection. However, an intriguing feature ofa pre-selected criterion of convergence is reached. This
DIRECTT is that adaptations of the filter function canprocedure can be described as an iterative Radon and
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inverse Radon transform. In contrast to FBP there is ntor the various reconstructed images. Notice that
integral computation along the line detector (includingwe are interested in the boundary length and area
limited sampling due to its element size) but anof the discretized version of the entire Boolean
optional over-sampling along the numerous projectioomodelB = |J;,_; B(S,,r) rather than in the cumulated
angles. One of DIRECTT's unique characteristics ignorphological characteristics of the single circles
its very precise projection of reconstruction element8(S,,r), n > 1. Comparison of morphological image
taking into account their actual size and shape&haracteristics requires a binarization of the images,
which is essential for enhanced spatial resolutionwhich was done by simple thresholding, where the
That is, reconstruction pixels are considered as threshold parameter was set to 50% of the maximum
set of densely packed elements instead of beingreyvalue. In order to exclude bias by pure scaling
(circularly smeared) point functions only. Hence, alldifferences, thresholding was done after normalizing
previously described calculations are performed basdfie gray values of each image in such a way that
on squared area elements in a Cartesian matrifhe average gray values occurring in the background
DIRECTT is of particular interest when the focus isand the foreground phase were set to 0 and 255,
on reconstruction of finely structured details or onrespectively.

precise location of reconstructed elements rather than Any attempt to measure morphological

on computing time. In contrast to FBP, DIRECTT doesgharacteristics of a discretized set faces the problem
not treat each (detector) projection individualiye.,  that the shape of the set before discretization cannot
it is not deconvolved globally or (Fourier) filtered, e reconstructed from the pixel image. In order to
put the 'entire trajectory of a re'construction elemengstimate the foreground area we applied the natural
is_considered over all projections. In contrast t0approach of counting the number of foreground pixels.
ART, DIRECTT does not modify the entity of all For estimating the original boundary length, different
reconstruction elements simultaneously. formulae from integral geometry and stereology
can be exploited. Nevertheless, estimation results
and consequently approximation errors are more
than likely to differ with respect to the estimation
method chosen. In order to ensure reliability of
our statistical results on reconstruction quality, we
therefore implemented two different methods for
measuring the boundary length of the foreground
phase.

The first method we applied has been introduced in
Klenk et al.(2006) and further discussed in Gudedei
al. (2007). It will be referred to as the Steiner method
since it is based on a discretized version of a Steiner-
type formula known from the geometry of polyconvex
sets. Details of this method are given in the appendix.

Fig. 2. Reconstruction principle of the iterative As input parameter the algorithm needs a sequence of
procedure applied by DIRECTT. (a) Model volume ofso-called dilation radirs ...,rn. Measurement results

a 14 pixel object. (b) Density sinogram of the model.are dependent on the choice mf...,rn. Therefore,
Each trajectory corresponds to one of the pixels. (cfor our investigations we used two different sets of
Intermediate reconstruction array, whetel out of dilation radii. The first choice = 42+ 1.3, i =

the 14 pixels have been added. (d) Residual sinogrand: - - -, 1000, was suggested in Gudertial. (2007),
after subtraction of the sinogram generated by thevhereas the second choiag = 0.4+ 0.09, i =

intermediate reconstruction in (c) from the sinograml,- .., 158, was optimized to obtain results whose mean
in (b). coincides with the theoretical mean boundary length

of the Boolean model used for phantom generation.
The corresponding mean value formulae of Boolean
models can be found in Schneider and Weil (2008).

ESTIMATION OF AREA AND

BOUNDARY LENGTH -
The second method we applied in order to measure
For the evaluation of reconstruction algorithmsthe boundary length of the input images and the
we compared the area as well as the boundameconstructed data is discussed in Ohser atidkiich
length as measured by two different computationa{2000) and will be referred to as the Cauchy method. It
methods in the discretized input data to values foundpproximates the boundary length of a discretized set
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by a discrete analog of Cauchy’s surface area formula; The Kolmogorov-Smirnov testhecks the null
which expresses the boundary lengtliK) of the seK hypothesis Hg : Fa,(X) = Fa,(X) forallx € R
as an integral of the total projection lengthkfover against the two-sided-alternative that the values
all directions (see appendix). The algorithms discussed of the two CDFs differ for somex € R. Any
in this section were implemented in the Geostoch differences between the two samples will lead

software library (Mayeet al., 2004). to the rejection ofHp if they are too large in
the statistical sense. In the one-sided version
STATISTICAL TESTS FOR of the KST the null hypothesi$dy : Fa,(X) >

Fa,(x) for all x € R is tested, which would imply
COMPARISON OF RECONSTRUCTION thét the first sample oA; statistically consists of

ERRORS smaller values than the second one. For details
Reconstruction algorithms were statistically see Conover (1971, p. 309) and Gibbons (1985,

compared via the empirical probability distribution p- 127).

of the reconstruction error. The error was defined as The Wilcoxon rank testis equivalent to the
relative deviation of the morphological characteristics Mann-Whitney U-test. It is especially sensitive to
on the reconstructions from the phantom data. deviations in the location parameters x; and
The morphological characteristics measured were Fa,, i.e, it is used to determine whether one of
boundary length and area of the foreground. The the distribution functions is shifted relative to the
following definition of reconstruction error is given other. If the random variable§ andX; have CDFs
for the example of a measurement method for the Fa, andFa,, respectively, the two-sided version of
boundary length which leads to an estimatorfor the WRT testHp : P(Xy > Xp) = % againstHy :
this morphological characteristic. Effects of different  p(x, > x,) 1. Thus, differences in variabilities
reconstruction algorithms on area measurements Were of reconstruction errors within the two samples

compared in an analogous way. will not lead to the rejection oy as easily as

Given two reconstruction algorithma; and A, differences in the means or medians of the two
and an estimatot for the boundary length, for the samplclas. The one-sided versmnfd#@s P(X1 <
phantomsb?™" . bPha" and their reconstructions  X2) = 3 againsty 1 P(X < Xp) < 3, i.e, whether
bk b k=12 the relati ucti the sample ofA; is statistically smaller than the

15+ Piop K= 4, 4, INETElalive reconstruction errors second sample. For mathematical details, seg,

Gibbons (1985, p. 164) and Lehmann and Romano

(6) — TheAnsari-Bradley tesassumes thdia, (x—m) =
Fa,(8(x—m)) for all x € R, an unknown nuisance
2 . .
e.A = parametem used to normalize the location of the
sample and some scaling ratth > 0. The test
were computed fori = 1,...,50. Since the focuses on the question if the distributions differ

hantomsbP™"  pPhan \ware discretized versions in_dispersion rather than in location. Thus, the
P 1 o-r 100 ABT testsHp : 8 = 1 againstH; : 6 # 1. One-

of independently sampled realizations of a Boolean . . ; .
P y P sided alternatives are possible but not considered in

model, the entire collection of errors from the two X ; S
samplesefl, B .,eéé,e/i\z, B .,eéé inherited stochastic :)hli%t;);dy. Details can be found in Gibbons (1985,

independence. Consequently, two-sample-goodness-
of-fit tests could be applied in order to compare For all tests in this study version 2.8.1 of tRe
the two distributions the error samplél,...,eéé programming language (R Development Core Team,
and eﬁz’“_’eécz) were drawn from. Given a pair of 2007) was applied. Test results are given in terms of
reconstruction algorithmg#\; and A, Kolmogorov- @ p-value, which is the largest level of significance at
Smirnov (KST), Wilcoxon rank (WRT) and Ansari- Which the null hypothesis is not rejected.

Bradley (ABT) tests were performed. For KST and

WRT two different null hypotheses were considered,

firstly that the cumulative distribution functions (CDF)  RESULTS

Fa, and Fa, of the error distributions are equal, and

secondly, that the error of algorithidy tends to be Reconstruction errors are visualized by boxplots
smaller than the one produced By in the stochastic (Figs. 3-6). The box depicts the median and the
sense defined below. (possibly approximated) quartiles of the data. The

L(bP"") L (™)
£ (pP"an)

{ (pPhany A2
L(bi+58)7|-(bi+50)

© .pha
L(biys0

68



Image Anal Stereol 2010;29:6/17

centered vertical lines show the smallest and largeshethod measured a decrease in boundary length of
observations if their distance from the box does nokround 15% and the Cauchy method a decrease of
exceed 1.5 times the box size. More extreme Va'Ueéround 05% in Comparison to the origina| phantomsl
within the sample are plotted as circles. Note that inyowever, the FBP algorithms produced significantly
the boxplots we consider signed relative errors, whergiqper rejative errors than DIRECTT as indicated by
these quantities are defined as in Bgbut without the p-values of the tests in their one-sided versions in

taking absolute values. However, all statistical tests ar .
based on unsigned relative errors. ‘?ablel_. T_h_e error produced by the fast FBP algorithm
was significantly smaller than the error produced by

PROJECTIONS ghtly g y

found in the FBP reconstruction done with Inspect3D.
For DIRECTT the classic FOM of MSD defined in

Eq.1had a value of @139, whereas the corresponding
values for the FBP algorithms were in the interval
between M69 and 074, with best results for the
Inspect3D software and the highest error measured, - —
for the standard FBP in IMOD (Fig3). Although
very small, the differences in MSD between the FBP
techniques were found to be statistically significant by £
KST and WRT. This is plausible since there was hardly §
stochastic variability in the single MSD samples. N —

0.010
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elative erro
0.006
1

0.002
Il

-0.002
L

T T T T
DIRECTT FBP IMod FBP Inspect3D  fast FBP

0.08
Il
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Fig. 4. Relative deviation of area measurements on
reconstructions from original phantoms.

For all reconstruction algorithms error levels
—_— depended on the method used to measure boundary
length. Averaging over all three FBP implementations,
DIRECTT  FBPIMod FBP Inspect3D  fast FBP the Steiner method yielded a slightly stronger decrease

in boundary lengths of around 13%. The choice

) o ~of radii for the Steiner method had only a hardly
Fig. 3. Mean squared deviations of reconstructions,yticeaple impact on the measurements of relative

from original phantoms. errors (Fig. 5a vs. Fig. 5b). In summary, it should
The area measurements of the foregrountbe emphasized that on the FBP-reconstructions all
phase behaved rather stable under all reconstructigiethods of measurement consistently indicated a
algorithms ar_1d relf_ﬂive errors were only at the levelecrease of boundary length in comparison to the
of few per mille (Fig.4). Errors fluctuated around 0 original phantoms, whereas the deviation on the

for DIRECTT and were only around.@?2 for the . P
fast FBP and the Inspect3D software. The standar IRECTT reconstructions was S|gn|f|can_tly _smgller.
Il p-values of tests for equality of error distributions

FBP implemented in IMod showed a slightly increase I that th I h
error level of around @06. KST and WRT classified Were so small that the KST as well as the WRT
the differences between the algorithms as statisticallfetected differences when the level of significance was
significant, though the absolute level was very small. Set toa = 0.001/2. This in particular implies that the
Boxplots in Fig. 5 indicate that the signed hypothesis of equal error distributions was rejected in

relative errors for measurements of boundary IengtfE Bonferroni-corrected setting_ for multiple testing gt
differed between reconstruction algorithms. StochastiteVe! @ = 0.01. The latter defines that a hypothesis
variability of the errors within the sample was similar Ho IS rejected at a levetr once a single one of

for all four reconstruction algorithms as indicatedtests performed on the same data rejetisat level

by the high p-values of the Ansari-Bradley test a/n. As a consequence, the probability of a false
(Tablel). In the DIRECTT reconstructions the Steinerrejection is bounded by, which in most cases is quite

mean squared deviation
0.02 0.04
1 1

0.00
L
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a conservative estimate for the type 1 error of the test(Fig. 6).
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Fig. 6. Relative deviation of boundary length
measurements on FBP reconstructions from original
_— : == phantoms for different cutoff frequencies. These
— — reconstructions were performed by the real space FBP
algorithm implemented in the IMod software. The
highest spatial frequency that could occur in the image
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signed relative error
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RECONSTRUCTIONS FROM NOISY

_ - PROJECTIONS
Fig. 5. Relative deviation of boundary length o i )
measurements on reconstructions from original The sensitivity of the relative error in boundary
phantoms. length measurements to noise in the projection data

was investigated for the DIRECTT algorithm and

The cutoff frequency, at which FBP algorithms FBP (Fig. 7). Since the errors of the different
switch from highpass to Gaussian filtering of theFBP algorithms were of similar order, we chose
Fourier transformed projections before backprojectinghe standard FBP implementation of IMod for the
them, had a noticeable impact on the error in boundargomparison. Empirical 96% confidence intervals were
length measurement. Suppression of high frequenciemsmputed from the two error samples under ideal
increased the relative deviation in boundary lengttprojections. SNRs were considered between 50 and
measurements on the reconstructions from the origingl00 in steps of 50. For each SNR a phantom
images independently of the method of measurementas picked at random and noise was added to its

(c) Cauchy method
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projections as described in Section “Simulation ofthe DIRECTT reconstructions under noise was not
ideal and noisy projections”. These were then used antained in the confidence interval of the error under
input data for DIRECTT and FBP. ideal projections. For SNRs higher than 150 the FBP
reconstructions from noisy input data stayed within
or close to the range of error under ideal projections.
Nevertheless, the relative loss in boundary length
caused by DIRECTT was in all cases less than in the
FBP reconstructions. SNRs of less than 20 did not
yield reasonable reconstruction results.

0.05
|

0
1

relative error
|

1

DISCUSSION

1
o

Our results demonstrate that standard FBP
- reconstruction algorithms for projection data may
50 100 150 200 250 300 350 400 alter the boundary structure of two-phase phantom
SNR images in such a way that measurements of boundary
length are substantially affected. As a standard
gray value oriented global measure of reconstruction
quality, MSD already indicated errors in the FBP
reconstructions. Locally defined image characteristics
such as phase boundaries and quantitative image
characteristics can however hardly be related to
global integral FOMs such as MSD in a direct

L

-0.2 -015 -0.1 -0.05

(a) Steiner method; dilation radii = 4.2+
1.3i,i=1,...,1000

0.05
|

0

6o o ©° ° ° o 7 way. Thus, for monitoring reconstruction artifacts
Xk distorting fine details and their consequences for
£ ° . guantitative image analysis it is important to consider
N S R alternative FOMs. In this context boundary length

4 measurements can be a valuable source of information
since they are sensitive to changes of local pixel
Y— configurations. Corresponding FOMs can thus provide
50 100 150 200 250 300 350 400 a more comprehensive view on reconstruction quality.

SNR

-02 -015 -01 -0.05

Apart from boundary length also other
(b) Cauchy method characteristics frequently considered in quantitative

. o . morphological image analysis and spatial statistics
Fig. 7. Sensitivity of relative errors of boundary length ¢ ,-h a5 connectivity (Ohser and Schladitz, 2008:

measurements to noise in the projections. The red linégjeqmanret al, 2009), spherical contact distribution
mark a 96% confidence interval of the error under ¢,,ction (Mayer, 2004; Thiedmanmt al, 2008)
ideal, i.e., noiseless projections found for FBP, the;ny fractal dimension are dependent on adequate
blue lines mark a corresponding confidence interva eproduction of phase boundaries. Since we have
];:Oélg) ;RE%-I;T' R_edl pomtj ar? rep(i(nsé[rur(]:tlon errors dOfseen that FBP algorithms alter the structure of phase
ound for single randomly picked phantoms undef,, qaries, estimation of these image characteristics
the noise level depicted on the x-axis. The blue pointgq, FRp reconstructions occurs to be problematic,
are the corresponding errors using DIRECTT. even if comparative studies of different materials

For noisy projections the quality of the DIRECTT OF Scenarios may still be possible. On the other
reconstructions improved in terms of MSD over thehand, foreground area shoyved very limited sensitivity
first iterations but from a certain point on decreased® the reconstruction artifacts produced by FBP

again. This deterioration of the reconstruction qualit2/90rithms. Thus, measlurer_nr?nts of foreground area
occurs when the residual sinograms are dominated N P€ regarded as stable with respect to standard FBP

noise and thus, further iterations introduce erroneoy&chniques.

information into the reconstructions. The number of  Our evaluation was based on a set of phantom
iterations for the DIRECTT reconstructions underimages consisting of discretized realizations of a
noise evaluated in Fig7 was chosen such that Boolean model, which were independently sampled.
MSD was minimized. Fig7 shows that the error of Therefore, classical two-sample tests could be applied
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Table 1. Bounds for the p-values of the tests conducted for compadktre relative errors of boundary length
produced by the different reconstruction algorithms unuigiseless projections. Small p-values of two-sided WR
and KS tests indicate that error distributions are signifittq different. Large p-values of the one-sided KST and
WRT mean that the first of the algorithms in column 1 producegrafieantly smaller error than the other one.
Large p-values of the two-sided ABT suggest that the variglofithe errors is similar for the two reconstruction
algorithms considered.

p-values KST KST WRT WRT ABT
two-sided one-sided two-sided one-sided two-sided

DIRECTT vs. FBP IMod < 0.0001 > 0.9999 < 0.0001 > 0.9999 > 0.9999
DIRECTT vs. FBP Inspect3D < 0.0001 > 0.9999 < 0.0001 > 0.9999 > 0.9999
DIRECTT vs. fast FBP < 0.0001 > 0.9999 < 0.0001 > 0.9999 > 0.9999
fast FBP vs. IMod < 0.0001 > 0.9999 < 0.0001 > 0.9999 > 0.9999
fast FBP vs. Inspect3D < 0.0001 > 0.9999 < 0.0001 > 0.9999 > 0.9999
FBP IMod vs. Inspect3D < 0.01 > 0.9999 < 0.001 > 0.9999 > 0.5

to compare the errors of different algorithms. Sincemeasurement results naturally occurred. Although
differences between error distributions of boundaryelative errors measured by the Cauchy method were
length measurements for the considered reconstructidaund to be slightly smaller than the errors measured
algorithms were rather pronounced (see the boxplots iby the Steiner method, qualitative as well as statistical
Fig. 5) the unambiguoug-values of the Kolmogorov- findings agreed for all methods applied. Thus, our
Smirnov and the Wilcoxon rank test in Taklewere findings were not tied to a specific measurement
to be expected. The Ansari-Bradley test indicated thaapproach.

dispersion of the error_samples was not significa_ntly In order to relate the errors caused by the
different between algorithms and was probably mainly e hera| technique of FBP to the effect caused by
controlled by the stochastic variability of the phantomg;igarent algorithmic approaches, FBP reconstructions
data. were conducted by the standard real space FBP and
The testing methodology we suggested carihe fast FBP algorithm suggested by Sandbetg
be transferred to any other FOM and set ofdl. 2003. Moreover, for the real space FBP two
randomly Sampled phantom data_ Th|s Way als(S“ﬁ:erent |mp|ementat|0ns from the IMOd SOftware
subtle differences in reconstruction quality can beand the Inspect3D package were compared. The
evaluated with statistical rigor. It should again bereconstruction errors as assessed by the relative
emphasized that a statistical approach to the evaluatidtpundary length were found to be qualitatively
of reconstruction quality essentially relies on randomigimilar for all three FBP implementations, even
sampled phantoms. Reconstruction of deterministiéf the fast FBP yielded significantly better results
phantom data is a valuable tool to investigate thdéhan the two real space algorithms. The statistical
capability of reconstruction algorithms to reproduceslgnlflcance of the differences in FBP reponstructlon
certain predefined image features. An approach bas&frors produced by the real space FBP in IMod and
on randomly sampled phantoms is complementary‘e Inspect3p software suggest thqt 'ghe performa}nce
since it can be used to monitor the statistical’ FBP techniques depends on their implementation.
significance of errors produced by reconstructior1t should however again be pointed out that error

algorithms. This information is especially important '€V€lS a:e very similar and our qualitﬁtiV(Ie finldings
for the quantitative investigation of irregularly &€ implementation-independent. It should also be
structured materials. emphasized that rankings of implementations can only

be given with respect to a specific FOM. This is

Throughout this study the relative error inclearly illustrated by the rankings of the Inspect3D
boundary length was measured by two differenteconstructions which exhibit a higher boundary error
techniques and — for the Steiner method — two choicehan the other FBP reconstructions but performed best
of parameters. This way bias introduced by boundarwithin the FBP group with respect to MSD. This rather
measurement techniques could be excluded. Singpod representation of gray values is possibly the
the methods are based on discrete approximatiortbnsequence of the 16 bit image representation used
of different formulae for the boundary length of in Inspect3D, whereas IMod computes reconstructions
a polyconvex set (see Appendix), deviations inbased on 8 bit images. Principle sources of errors
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in real space FBP algorithms are the interpolatiorthe projections by strip integrals yield an adequate
schemes applied in the backprojection step. Both reapproximation of an experimental setting.
space FBP implementations used a computationally

fast linear interpolation. The slight superiority of the It should be mentioned that it is difficult to

determine the optimal number of iterations for the
n‘?econstruction of noisy experimental input data. It is
9 challenging problem to judge whether a residual
sinogram is dominated by erroneous information from
Cutoff frequencies applied in FBPs can hampeprojection noise and hence, further steps of iteration
correct reconstructions of phase boundaries in will only resultin artifacts. This is an important subject
substantial way (Fig6). This effect is plausible since for further studies.
B e e el The meris o the DIRECTT reconstructions come
o~ : ) . YPE} the cost of increased computation time, which
of window functions which reduce the impact of high

o . X . .2 totaled 22 min on an Intel Xeon 5130 processor
frequencies in comparison to simple radial Welghtmg.(20 GHz, one core) for a single input image

For ideal projection data DIRECTT presentedHowever, standard algebraic reconstruction algorithms
itself as a powerful reconstruction algorithm, whichsuch as SIRT (Gilbert, 1972), which is commonly
reproduced phase boundaries in an almost perfeased in electron tomography (Bads al, 2007), are
way. This has been achieved under the simplalso computationally more demanding than FBP. In
but essential assumptions of homogeneous densigontrast to DIRECTT, in addition to the number
within the pixels, regarded as area elements, andf iterations, they usually require optimization of
identical pixel sizes within the model, the detectorother parameters in order to yield satisfactory results
and the reconstruction. First tests with DIRECTT(Carazoet al, 2005). Since for our phantom data
however indicated that the reconstruction quality isa SIRT reconstruction computed by the Inspect3D
still remarkable when pixels of smaller size thansoftware with 20 iterations exhibited substantially
the detector elements are reconstructed (Lange andcreased blurring at the phase boundaries in
Hentschel, 2007). comparison to the FBP results, we did not include

In order to challenge the results obtained forSIRT in our comparative analysis.

noiseless projections, noise of different level was It is possible that other backprojection techniques
added to the projection data of single randomly chosethan standard FBP are capable of an improved
phantoms and the reconstruction results of DIRECT Tepresentation of phase boundaries. These algorithms
and FBP were compared. The FBP reconstructionsomprise A-tomography, where local inversion
exhibited a high noise tolerance, since the relativéormulae ensure that space-continuously defined
error in boundary length measurement did hardly leav@unctions and their theoretical reconstructions have
an empirical 96% confidence interval that had beeithe same jumps. One should however point out
computed for the ideal projections (Fig. This shows that A-tomography does not reconstruct the density
that under noisy projections the reconstruction error imistribution f itself but the function Af, where
the phase boundaries is not dominated by the noise bt= /—A denotes the Calderon operator which does
by properties of the FBP technique. The DIRECTTnot preserve gray values (for details see Louis and
reconstructions reacted more sensitively to the noisélaass, 1993; Kuchmermt al, 1995; Faridankt al.,
since the errors increased and were outside the 96%997). An innovative and computationally efficient
confidence interval for the DIRECTT reconstructionsreconstruction technique has been proposed by
under ideal projections. Nevertheless, in all cases thieouis (2008). This approach combines reconstruction
DIRECTT reconstructions exhibited a substantiallyand edge detection and could also enable superior
smaller error than the FBP tomograms. Thus, theeconstructions of phase boundaries in comparison to
improvement in reconstruction quality that can bestandard FBP techniques. Furthermore, for samples
achieved by DIRECTT appears to not to be limitedconsisting of few different materials such as our
to ideal sets of input data but can also be expecteghantom data, algorithms from discrete tomography
in experimental settings. The simulated projectionhave been reported to be very promising tools for
of pixel data serving as input for the reconstructiontomographic reconstruction (Batenburg, 2005; Bals
algorithms do not exactly describe a tomographiet al, 2007; Herman and Kuba, 2007). Discrete
experiment with a spatially continuous material.tomography exploita priori information on the object
However, our methods chosen for the transformatiomo be reconstructed, namely the number of materials
of the spatially continuous realizations of the Boolearit is composed of. Therefore, the algorithms can
model into pixel phantoms and the computation ofpartially compensate for missing informatios,g,

approach, which may reduce interpolation errors alo
boundaries.
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caused by limited rotation of the sample (Langepoints,pr(K) is obtained by partitioningk & B(r,0)) \

et al, 2008). Furthermore, they return an imageK in a specific way and counting the volumes of
which does not require segmentation of the differenthe obtained components with certain multiplicities
materials. By construction, DIRECTT also offers the(Klenk et al, 2006). If p;(K) is known for two
option to compute discrete tomograms and therebglifferent dilation radiirg andry, by Eq.7 we obtain
to reconstruct details which cannot be extracted fronthe linear equation system

the projections in the standard setting. Nevertheless,

our results demonstrate that even without @heriori Pro(K) = r3mVo(K) +roVa(K) ,
information needed for discrete tomography mode, (8)
DIRECTT reconstructions exhibit a level of contrast pr, (K) = r2mvy(K) +r1Vi(K) |

and detail preservation which is not achieved by

conventional FBP reconstruction. which can be uniquely solved faf(K) and Vi (K).

We have illustrated that under ideal and noisyThls equation system can also be epr0|ted_ to ot_)taln
n estimator for the boundary length of a discretized

projections reconstruction algorithms can causé

statistically significant changes of image morphology.VerSIon of a seK on a square lattice. For details

For practical applications the error caused by th%n how to compute the left-hand sides in .

reconstruction algorithms needs to be carefully relate r dlscretlzed_sets we refer to Klerét al. (2006).
to the effect of experimental imperfections in the evertheless, it should be pointed out that a central

iecti data. Th - l pspect of the algo_rithm is a polyhedr_al a_pproximation
projection - cata ese may comprise algnmenof the set which is used to determine its boundary.

deviations, the specific noise level or limited rotation. . . K) th ; in8
Expert knowledge about these experimental condition§®" approximating (K) the occurrences of certain 8-

is important to identify appropriate Ireconstrucﬁonnelghborhood configurations around boundary pixels

algorithms and their parameters, that meet the specifff® counted. In simulation studies, estimation results
needs of an application. Nevertheless, wheneveP" the boundary length were shown to significantly

realistic projections can be simulated and a FOMMProve if instead of approximating:(K) for only

capturing the aspects of interest has been defineB’,"O dilation radii a higher number of dil_ation radii
.,fn was used (Klenlet al, 2006). This usually

randomly generated phantom data reflecting thél:-

structural properties of the investigated object and/i€lds an overdetermined system of equations, and
statistical analysis provide a powerful setting tothus, a solution can be obtained by the standard least-

compare different reconstruction techniques. squares method. Estimation results are dependent on
the choice of the radii; ..., rp.

APPENDIX () A

MEASURING BOUNDARY LENGTH BY
THE STEINER METHOD

The algorithm for boundary length measurement
we refer to as the Steiner method exploits the following
Steiner-type formula: LeK c R? be polyconvex set,

i.e, a finite union of convex sets, then for> 0 the \
so-called weighted volumg; (K) of the setk can be
written as

/

Fig. 8. Parallel set (K @ B(r,0)) \ K of a rectangle

_y2 K (gray). The dilation K& B(r,0) of K by the circle
Ar(K) = r"mVo(K) + V1K), % B(r,0) around the origin with radius r consists of all
where %/1(K) is the boundary length(K) of K and  points whose distance to K is at most r.
Vo(K) denotes the Euler-Poin@&ircharacteristics of
K. In the 2D setting the latter counts the number of MEASURING BOUNDARY LENGTH BY
connectivity components in the foreground minus the THE CAUCHY METHOD
number of holes. For a convex skt the weighted
volumep; (K) coincides with the volume of the parallel The algorithm for boundary length measurement
set(K @ B(r,0)) \ K, which consists of all points not we refer to as the Cauchy method relies on Cauchy’s
contained inK but whose distance t& is at most surface area formula, which expresses the boundary
r (Fig. 8). In case the boundary df has concavity length L(K) of the polyconvex seK as an integral
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