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ABSTRACT

The problem of the evaluation of the so-caligzkcific areaf a random closed set, in connection with its mean
boundary measure, is mentioned in the classical book by éfathon random closed setddtheron 1975
p.50); it is still an open problem, in general. We offer heneozerview of some recent results concerning
the existence of the specific area of inhomogeneous Booledels) unifying results from geometric measure
theory and from stochastic geometry. A discussion of péssipplications to image analysis concerning the
estimation of the mean surface density of random closedaadsin particular, to material science concerning
birth-and-growth processes, is also provided.

Keywords: geometric measure theory, mean surface deosist Minkowski content, specific area, stochastic
geometry.

INTRODUCTION areagg(x) of © at a pointx in RY is defined as the
following limit
In this paper we offer an overview of some
recent results concerning the existence of the specific Oo(X) ;= lim P(x€ Oqr \ ©) : 1)
area of inhomogeneous Boolean models, and its rlo r
relationship with the mean surface density of the o
involved random sets. Applications to birth-and-Whenever it exists @« denotes here the parallel set of

) . . . d . .
growth stochastic processes are also discussed. ~ © atdistance, i.e, Oy i= {x € R" : dist(x,©) <r}.)
It is mentioned inMatheron(1979 that the definition

If a n-dimensional random closed s8tin R% is  of gg(x) is the “translation” into probabilistic terms of
such thatE[jifg] is absolutely continuous with respect the following limit

to 79, where #" is the n-dimensional Hausdorff §
measure, andz () is its restriction to®, then the im 22 (Krear\K) K c R compact  (2)

density (or Radon-Nikodym derivative) dﬂﬂ[(%fg] rio ’

with respect to7? is called mean density o®.  The limit above, whenever it exists finite, is called
Whenever the mean density 6fexists, we denote it area of K in Matheron (1975, or outer Minkowski
by Ae. content of Kin Ambrosioet al. (2008. As right

The problem of the evaluation of the meanderivative atr = 0 of the volume functiorV/(r) :=

d . . . .. .
densities of lower dimensional random closed sets, and ~ (Ker), it is intuitively clear that there exist

d . . .
in particular of the mean surface density, is of interesfoMpPact subsets Gk™ such that the limit in Eq2
in Eeveral real applications. y equals the surface measus€®1(9K) of K (e.g, if

K is convex with nonempty interior), that explains
In Ambrosioet al. (2009 the notion of local the namearea of K actually, examples of subsets
mean n-dimensional Minkowski contesfta random of RY, even closure of their interior, such that the
closed set has been introduced in order to providebove limit differs from the#9-1-measure of their
approximations of the mean density eflimensional boundary can be provided. Notice that a computer
random closed sets irRY. With regard to the graphics representation of lower dimensional sets in
approximation of the mean surface density ola R? is anyway provided in terms of pixels, which
dimensional random closed set, the concepeaftific  can offer only a 2-D box approximation of points in
area introduced inMatheron(1975 p. 50) turns out R? (an interesting discussion on this is contained in
to be closely related to the notion laical mean outer Karkkainenet al., 2002); therefore, the possibility of
Minkowski contenof a random closed set. We remind evaluating and estimating the surface measure of a
that, given a random closed s8tin RY, the specific set (the mean surface density for random sets) by the
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VILLA E: Specific area of inhomogeneous Booelan models

volume measure of the Minkowski enlargement of thgQ, §,P) — (F, or) (F andor denote here the class of
involved set by Eg2 (by Eg.1 in the stochastic case) the closed subsets iR? and theo-algebra generated

might be a solution to problems of this kind.

SPECIFIC AREA AND LOCAL
MEAN OUTER MINKOWSKI
CONTENT

Throughout the paper#™" is the n-dimensional
Hausdorff measure xkstands foc}fd(dx), Pra is the

Borel o-algebra ofRY and%fﬂ denotes the restriction

of /" to a#"-measurable sé&c RY (i.e,, %TR(B) =
J"(ANB) for all B € %a). Br(x) will denote the

closed ball with centr& and radiug, whereas for any
integern we denote byb, the volume of the unit ball

in R".

We recall that, given a subsgbf RY and an integer
nwith 0 < n<d, then-dimensional Minkowski content

of Sis defined by

A (Sur)
n .
M) = Irm by’

whenever the limit exists finite.

Let A € %Bra; the quantity ## (A) defined as
(Ambrosioet al., 2008

S (A) =1im

A (Acr \ A)
r )

provided that the limit exists finite, is calleouter

Minkowski content of ANote that if A is lower

dimensional, then”Z# (A) = 2.9 1(A), whereas iA

is ad-dimensional set, closure of its interior, th&g, \

A coincides with the outer Minkowski enlargement at

distance of dA.

by the so-called hit-or-miss topologyM@theron
1979, respectively). If the limit

rio r

exists finite for anyB € Apq such thatt[ 791 (9ON
0B)] = 0, then we say tha® admits local mean
outer Minkowski contentLet us notice that, by a
straightforward application of Fubini’s theorem, Bj.
can be written equivalently

. ]P)(X € @EBI‘ \@)
|%A—————mm 4)

®)

r

if furthermore® is stationary(and soP(x € Og \ ©)

is constant), then, by choosiy= [0,1]% in Eq.4, we

have that the specific areg, is constant, given by
E[((©xr \©)N[0,2]%)]

Op =Ilim .
© rl0 r

®)

More in general, as we shall see in the next
sections, if the boundam@A of ad-dimensional Borel
setA € RY is “sufficiently regular”, thens (A) =
#971(dA); thus, it is intuitive that for “sufficiently
regular” random closed sets we may have

E[7#((Qer \ ©) NB)]

E[#91(00NB)] = lim :
r|0 r

and
P(x € O, dx
im ( 5r\0)
rl0.JB r

:A%ww,

so thatog(X) turns out to be the mean surface density
of ©. This is true for instance whe® satisfies a
(local) Steiner formula; in this case the limit in E5.
can be studied in terms of the quermass densities (or
Minkowski functionals) associated 1®, and so by

In this section we show why the specific areameans of tools from integral geometry mainkiug,
can be interpreted as the translation into probabilistie00Q Weil, 2001, Huget al, 2006 Baddeleyet al,,
terms of the outer Minkowski content. For basic2007 and references therein). For other related works
definitions and results of stochastic geometry we refegee alsdHug and Last(2000, Huget al. (2004, and

to Stoyanetal. (1995, Baddeleyet al. (2007, and
Schneider and We{R008.

If the limit

lim
r|0

A ((Aer \A)NB)
r

exists finite for anyB € %pq such that#9-1(dAN
0B) = 0, then we say tha# admits local outer

Kiderlen and Rataj20086.

The passage from stationary to nonstationary
random closed sets, and from convex to more general
grains gives rise to nontrivial problems. We will focus
here on the specific area of inhomogeneous Boolean
models; for this kind of random closed sets (widely
used in real applications in Material Science, as we
shall mention in the last section) the relationship
between specific area and outer Minkowski content

Minkowski content. Now, let us consider a random(of the typical grain) is more evident. Let us see why

closed set® in RY, that is a measurable map :

briefly.
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Let = be a Boolean model iR (Stoyanetal, existence ofog(X), existence results for limits of the
1995 Baddeleyetal, 2007 Schneider and Weil type
2008 whose typical graiZy has topological boundary lim 1 £ (x) dx ®)
07 with Hausdorff dimensior — 1 P-a.s. It is well rlor Jag\A
known that_BooIean_modeIs R4 can be_described_ bY have to be studied.
marked Poisson point processesRhwith marks in _ . _ o
the space of centred compact sets. In many examples Note that in the particular case in which is
and applicationsZo is uniquely determined by a constant the limit above exists if and onlyAfadmits
random quantity, sa, in a suitablemark spaceK; outer Minkowski content.

for instance, in the very simple case of random balls, |n the next section we recall some recent results on
K =R, andSis the radius, whereas in appllcatlor;s tothe existence of the outer Minkowski content of Borel
birth-and-growth processes, in some modéls- R  subsets oRY, which will be the starting point to obtain

and S is the spatial location of the nucleus, in otherexistence results for the specific area of random closed
models K = R, and S is the birth time of the sets.

nucleus (see last section). Therefore, we shall consider

(inhomogeneous) Boolean models of the type EXISTENCE RESULTS FOR THE
Zw= | x+2ols). OUTER MINKOWSKI CONTENT
(%,5)e¥(w) We remind that a compact satc RY is calledn-

rectifiable(0 < n < d-— 1 integer) if it is representable
whereZy(s) is a compact subset @Y containing the as the image of a compact subseffby a Lipschitz
origin for anys € K, andW¥ is the marked Poisson point map fromR" to R%; more in general, a closed subset
process inRY with marks inK associated t&, with A of RY is called to becountably.#"-rectifiable if

intensity measure there exist countably many Lipschitz mags R" —
RY such thatA\ U gi(R") is #"-negligible. (For
A(d(x,8)) = f(x)dxQ(ds) . definitions and basic properties of Hausdorff measure

_ B and rectifiable sets see,g, Federer 1969 Falconey
The function f and the probability measur® on 1985 and Ambrosioetal, 2000) We call Radon
K are calledintensity of = and mark distribution  measurein RY any nonnegative andr-additive set

respectively, and they are commonly assumed to bRinction u defined ongq which is finite on bounded
such that the mean number of grains hitting anysets.

d . . . .
compact subset @t is finite: Federer’s theoremHederer 1969 p. 275) on the
existence of then-dimensional Minkowski content
/ / f(x)dxQ(ds) <o VR>0. (6) of n-rectifiable compact sets is well known. We
K J(~Zo(s)er - :
recall a generalization of such theorem, proved in
(For basic definitions and results on the theory ofAmbrosioetal. (2000 p.110), to countably.7"-

point processes, we refer Baddeleyet al.(2007) and  rectifiable compact sets and then we shall see that if
references therein.) the boundary of a Borel subset Bf satisfies similar

conditions, then it admits outer Minkowski content.
We shall denote by diafdy) the (random)

diameter ofZp, and by dis¢ the set of all the points Theorem 1 Let AC RY be a countably#-rectifiable
of discontinuity off. compact set and assume that

From now on letZ* = x—Zp Vx € Rd._ By the nB(x)>y"  vxeA Vvre(0,1) (9)
explicit expression of the capacity functional of a

Boolean modelNlatheron 1975, it is not difficult to  holds for somey > 0 and some Radon measunein
get (Villa, 201Q Eq. 3.1) that RY absolutely continuous with respect #". Then

MN(A) = AN (A).

. P(x€Zgr\Z
Op(X) :=1im P(X€ Zor\2) — e Eallzx ). Condition (Eq.9) is a kind of quantitative non-
0 r degeneracy condition which prevemsfrom being
_ (1—exp{ _EQ[fz;r\zx f(y)dy} }) too sparse; simple exampIeAr(l_br_os_ioet al, 200Q
-lim - , (7) 2008 show that#"(A) can be infinite, and7Z"(A)
rlo r arbitrarily small, when this condition fails.

whereEq denotes the expectation with respeciQp It is reasonable to conjecture that, if the boundary
thus, in order to obtain sufficient conditions for thedA of a subsetA of RY satisfies the assumptions of
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the theorem above, thefh admits outer Minkowski where the density ofA is neither O nor 1 is
content; inVilla (20093 it has been proved that called essential boundaryof A. It is proved ¢€f.
the value of .##(A) depends on the density of Ambrosioetal, 2000 that all the setsA! are Borel
A at its boundary points. We remind that tlte  sets, and that

dimensional densitybriefly, density of A is defined a1 411/

by Ambrosioet al. (2000 A" ANB) = YL (A2 B)

d for all B € Ba .
Ba(A,X) := lim AANB () (?ﬂBr(X)), B
rlo 9B (X))

Remark 5 (The class¢”) In Villa (20093 it is also
provided that the limit exists. It is clear th@§(A,X)  proved that the same conclusions of the above
equals 1 for allx in the interior of A, and O for theorem hold for a class of Borel subsets R®f,
all x into the interior of the complement set & named¢”, defined similarly to& by replacing the
whereas different values can be attained at its boundagondition of absolutely continuity ofp with the
points. It is well known ¢f. Ambrosioetal, 2000 assumption that#9-1(dA) = s#91(9A); then it
Theorem 3.61) that i#9-1(0A) < «, then A has  follows that this class of sets contains all Borel sets
density either 0 or 1 or 1/2 a#*®~*-almost every point  with (d — 1)-rectifiable boundary (and so finite unions

of its boundary. For every c [0,1] and every.#%-  of sets with positive reach or with Lipschitz boundary,
measurable sét c RY let in particular).

A= {xeRY: G4(Ax) =t}. _ _ ,
We conclude this section by the following theorem

Intuitively, a small neighborhood of a pointe AlNdA  proved inVilla (2010, which generalizes Theoref

is “almost all contained” inA, so that it gives no Pproviding sufficient conditions for the existence of the
contribution to the volume oA, \ A; thus, roughly limitin Eq. 8.

speaking, we may say that has negligible weight

in the computing of the outer Minkowski content of Theorem 6 Let u be a positive measure iRY

A. Conversely, ifA has null density ik € dA, then, absolutely continuous with respect.#® with locally

in a small neighborhood of, A;; \ A “almost all bounded density f. Let A belong @ (or ¢&"). If
coincides” with the Minkowski enlargement 88, so .79~ 1(discf) = 0, then

that, roughly speaking, we may say that the weight of

X in the computing of the outer Minkowski content of im U(Agr \ A)

Ais twice the weight of a poing € AY2, rl0 r
In Villa (20093 the following class of sets (whose _ f(x).2291(d 2 f(x).291(d
boundary satisfies the assumptions of Theotgimas a*A ) () + JANAD ) ()

been introduced:

EXISTENCE RESULTS FOR THE
Definition 2 (The class®) Let & be the class of SPECIFIC AREA
Borel sets A ofRY with countably.s#91-rectifiable

this section, and for further remarks and comments, we

nB(x)>ydl  vxedA vre(0,1) (10) refertoVilla (2010.

Let us consider a Boolean modglin RY with
the notation introduced above. In order to provide
sufficient conditions ort such that its specific area
exists finite, it is intuitive by Eq7 and Theorené why

Theorem 3 (Villa, 20099 The class” is stable under  the following Assumptions implies E42for o=(x) in
finite unions and any & ¢ admits outer Minkowski  proposition?.

content, given by

holds for somey > 0 and some probability measurg
in RY absolutely continuous with respect.#¢9—1.

In the assumption (Al) below the notatié O
S (A = 2 AY?) 4+ 2791 (0ANAD) . 0Zy with EQ_[,%”"*l(G))] < o means that for ang €
K there exists a closed s@(s) O Zp(s) such that
Jx #90(s)Q(ds) < .

Assumptions: (A1) dZp is countably 7791
d*A:=RY\ (ACUAL) rectifiable and compact, and such that there exist

Remark 4 The set of points
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y > 0 and a random closed s& O 0Zp with Remark 10 By the proof of Theoren® it follows in
Eq[##971(0)] < » such that, foQ-a.e.s€ K, particular that= admitslocal mean outer Minkowski

content i.e, for any Borel setB ¢ RY such that
A HO()NBr () = yr¥t ¥x€e dZo(s), Vr € (0,1).  E[#91(9©NaB)] = 0it holds

(A2) s#9-1(discf) = 0 andf is locally bounded such

that for any compact sé c R¢ im E[A°((Zer \Z)NB)]
rl0 r
su fy) <&k, 11 _ _
R T 4 D — LG AB) 4 2B (). (9)

for some random variabl with Eq[s#9~1(©)é] <  We point out that the Assumptions, which guarantee
0o, the equation above, are quite general (see also
Remark8); the random sets which don’t admit local

Proposition 7 Let = be a Boolean model as in the Mean outer Minkowski content could be considered as

Assumptions. Then “pathological” sets.

a;(x):exp{—EQ[/zxf(y)dy]} Theorem 9 tells us that, in general, it may

a1 well happen that the specific area does not coincide

'EQ[/a*ZXf(Y)% (dy) with the mean surface density. We mentioned in

i1 the Introduction that a problem of interest in image

+2 210 f(y) 2 (dY)} » (12)  analysis is the estimation of the mean surface density

@) of random sets, and that the 2-D box approximations
for all x € RY. of points in R? by pixels in computer graphics

suggests the use ok for the estimation of the mean

. : , ... surface density. Therefore we provide now sufficient
Remark 8 The assumption (A1) is often fulfilled with conditions on= such thato=(x) — A= for #9-

© = 0Zo or © = 9Zg UA for some sufficiently regular o o y c pd The Assumptions above animply that
random closed sét. As a matter of fact,_ itcan be seen E[#91(9=)] < @ P-a.s., SO that its mean surface
as the stochastic version of E40, which, in many density can be decomposed as follows:

applications, is satisfied withy(-) = 7#"(An-) for
some closed sé& D A, as proved inAmbrosioet al, Aoz = Agzrzo 4+ Agez 4+ Ag=r=t -
200Q p. 111) (see alsAmbrosioet al., 2008. - -

The other integrability assumptions in (A1) and Then, it follows thato=(x) = Ay=(X) = Ag-=(x) for

(A2) are just technical assumptions in order tos#%-a.exc RY if E[jifg;é(zouﬂ)]zo.

exchange limit and integral in EF. We may notice o

that if f is bounded, thedk is constant for an, and The following proposition provides a sufficient

SOEq[#971(0)&k] is finite by (Al). regularity condition on the typical grain in order to
haveo= = Ay=.

Having now an explicit formula for the specific
area of inhomogeneous Boolean models as in th
Assumptions, we may ask whese coincides with
As=, themean surface density & The next theorem
shows that, without any further regularity assumption 4ot/ an 41
on Zo, o= may differ form the mean surface density ~ Eo[#" ~(0°Z0)] =Eq[#" ~(dZ)].  (14)
Ay= of =, in general.

5roposition 11 Let = be a Boolean model as in the
Assumptions satisfyirigqg. 6, such that

Then
Theorem9 If = is a Boolean model as in the .
Assumptions satisfyirigg. 6, then 0=(x) = exp{ —Eqg [/zx f(y)dy} }
0=(X) = Ag+=(X) + 24 y==0(X) Eq[/ f(y)jfd—l(dy)} =As=(x) (15)
92*

for #9-a.e. xc RY, whereAy-= and A,=-o are the

densities oiE[jng;El] and E[jsfgz‘mlzo], respectively.  for .#%-a.e. xe RY.
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We point out that there exist (although a bit SOME APPLICATIONS

“pathological”) subsets oRY such that thes#9-1-

measure of their boundary differs from that one of their  In this section we shall discuss a couple of
essential boundarg{. Ambrosioet al,, 2008 Sect. 5); applications of the results above; in particular,
so, by choosing a set of this kind as deterministi@applications to birth-and-growth processes which are
typical grain, the condition Eql4 is not satisfied, of interest in several application areas as Material
and A,z # o= for the corresponding Boolean model Science, Biology, etc.

=. Furthermore, it can be showrArmhbrosioet al.,,

2008 that the class of subse#s of R? such that An estimator of the mean surface density
AHYHA) = 9 H(d*A) is not stable under finite |t could be of interest in Image Analysis to
unions, that is, eve(rj'liif two subsedlﬁ afd Az of  estimate the mean surface density of random closed
R are such that#” *(0A)) = #°("A), I = sets by means of their Minkowski enlargements,

1, 2d,7if may well happen that?’® 1(d(ALUA2)) #  pecause of the computer graphics representation of
A7 (0"(ALUA2)). Noticing that, by condition EcS,  |ower dimensional sets in terms of pixels. By repeating
= is almost surely a locally finite union of grains, {he same argument Milla (201Q Prop. 6.1), where

Proposition11 tells us that a sort of stability under ggtimators for the mean density of lower dimensional
finite unions for the expected value holds for Boolean;nqom closed sets are provided, Vfilla (20098

mOd‘fE’l be;c_ause Eg4implies thatB[#*(0=)] = 3 natural estimator for\y= has been introduced,

B[ (0"Z)]. being = a Boolean model as in the assumptions of
Since d*Zy C dZp, condition Eq.14 is satisfied Propositionll, and so

it #91(0"Zp) = #91(9Zp) P-a.s.; we remind that o

any compact subsét of RY with Lipschitz boundary A o=(X) = lim P(xeZer\2)

satisfies#79-1(9*A) = #9~1(9dA), and that the same - rl0 r

holds also for a certain class of compact sets with

positive reach, containing, in particular, all thk for /#%-a.ex € RY.

dimensional convex bodiesf( Ambrosioet al, 2008 Given an i.i.d. random samplg&;,...,=y of =,

Villa, 2010. Therefore we may claim thalz = As= the equation above suggests the following estimator of

Y%-a.e. for all Boolean models with typical grafi Ag=(X):

satisfying regularity conditions of this kind, and so, "~

)

starting by the definition of=, estimators for the mean N 1 ~ (%)
surface density\y,= of = can be provided (see section AN (y) 2i-1 ZigRy \
below). We also mention that examples of applications ="/ " NRy

of the above results to Boolean models of balls and
segments are provided Villa (201Q Sect. 5.3).

_ ZiNzl(lEiﬁBRN 00 — 1=in{x1+0)

NRy ’
Remark 12 It is clear that Proposition7 and uiip Ry such that
Propositionl1 can be easily specified for the particular
cases in which= is stationary (in such casé is limRy=0 and IimNRy=w.
N—oo

constant, say, and soo= is constant as well, equal N—eo

—CEQ[#%(Zo)] = . R
toe " @ CEql.72# (Zo)]), or = has deterministic It is not difficult to check that}\(’;‘:(x) is an

typical grain (in such case itis sufficientto assume thal, - yiotically unbiased and consistent estimator of
Zp is a compact set i@, or ¢’, and that the intensity Ap=(x) for #-aexcRI.

f is locally bounded such tha#’9-1(discf) = 0).

o e st Remarc 13 We also menton that_ the  outr
can be shown that under similar assump;tions to &Al inkowski_ content concept as measure of the
and (A2) oundary of _determllnlstlc sets, has been recently
' used to provide estimators for th%dfl—mmeﬁsure
) _ d—1 of the boundary of compact subsets in
0=(x) = 249=(x) _EQ{/ZX fy)# (dy)} ' Armenchriz et al. (2009. Therefore, open problems
#Y-aexc R related to the estimation of the mean boundary
- : measure of random closed sets might be the following:
We refer to Villa (201Q Sect. 5) (see also the study of the statistical properties of the estimator
Villa, 20091 for a more detailed discussion of theseabove, and the generalization to random closed sets of
particular cases. the results inArmendariz et al. (2009.
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Applications to birth-and-growth processes whereasS, (t,x) = Ayet(X), according to our previous

Many real phenomena as crystallization processe%Otat'on'
(Vandermeeetal, 1991 Capassp 2003 and We assume here that the nucleation prot¢ssa
references therein), tumor growtAr{derson 2003,  Poisson marked point process (equivalently, a Poisson

etc, may be modelled as evolving random closed setgoint process iR, x RY), with intensity measura of
that is as full dimensional time dependent randomhe type

closed sets. In particular, any real situation in which A(d(t, X)) = a(t,x)dtdx
nuclei are born in time and are located in space o N
randomly, and each nucleus generatgsan evolving ~ and satisfying the usual condition (E&).

in time according to a given growth law, may be  pogdels of volume growth have been studied
modelled as space-time structured stochabtith- extensively, since the pioneering work Kglmogorov

and-growth processesSuch a process is described (1939 clearly, different kinds of growth model give
by a marked point process, s&:= {(T},Xj)}jen,  rise to different kinds of process¢®'};.
modelling births at random timéf € R, and related

random Spatia| |Ocation$|(lc|eb X] c Rd (d > 2)’ and Let us first .ConSider thenormal grOWth model
by a growth model. (Capasso and Villa 2007, and references therein),

according to which, at#9-1-almost every point of
the actual grain surface at time(i.e., at 79 1-a.e.
X € c?G)tTj (Xj)), growth occurs with a given strictly

positive normal velocity

Denoting by@%o(xo) the grain born at some time
to and locationxy, and grown up to time, under
regularity assumptions on the birth and growth model
the union set

o= |J o (%), v(t,x) = G(t,x)n(t,x), (16)
nTh<t
whereG(t, X) is a given deterministic growth field, and

of such grains at timeis then a locally finite union of n(t,x) is the unit outer normal at pointe d0% (Xo).
random closed sets. The famif9'} is calledbirth-  \yje assume that 0

and-growth processand a problem of interest in many
applications is to find evolution equations for the mean g« gy < G(t,x) <Gy <  V(t,x) € Ry x RY,
volume density, in terms of the mean surface density N N

of ', for somegp, Go € R, and thatG(t,x) is sufficiently

A lot of papers on this subject can be foundregular such that the etvolut'ion problem given Big)(
in literature; in particular, the case in whidk is for the growth frontd© (x) is well posed. It follows
given by a marked Poisson process has been studiéipt for any fixed € R, the topological boundary of

extensively Kolmogoroy 1937 Burgeret al, 2006 €ach grain is a random closed set with locally finite
and references therein). 29~ 1-measureP-almost surely Burger, 2002. This

and the assumption th@' is a locally finite union

In t_his section we want to point out the_ role of_of grains imply thatP-almost surely.#9-1(9@") <
the existence of the (local) mean outer Minkowski_, and so that®' has density 1 or 1/2 ag#d-1-

content and the specific area®f in the study of the a.e. point of its boundarf-almost surely. We can

mean volume and surface .dens:tleseoif We recall claim the assumptions on the growth model imply that
that themean volume density @', usually denoted %d—l((@t)O) — OP-as

by W (t,-), is the Radon-Nikodym derivative of the

measuré*][%ﬁgt], i.e. For the normal growth model above with
Poissonian nucleation process, recent results
E[%ﬂd(@t nB)] = /\/V(t,x)dx, VB € By (Capasso and Vill2008 Prop. 25Capasso and Villa
B 2007, Prop. 19Villa, 2008 Prop. 2.3) show that, ®'

P ; dmits local mean outer Minkowski content for all
similarly, the mean surface density @', usually a ) . .
denoted by (t,-), is the Radon-Nikodym derivative t> 0 andif the random variabfg(x) defined by

d-17 :
of the measur@i[%’pet ],i.e, T(x):=min{t >0 : x e @t}

E[%d‘l(det NB)| = / Sy (t,x)dx, VB € HBpd. is continuous with density, then the following
B evolution equation holds in weak form:
Let us notice that

V\/(t,X) = P(XG Ot), ;\/\/(t>x) = G(t,X)S/(t,X) : (17)
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The random variabld (x) is calledtime of capture assuming now that for a.ec R, E[%fg&%w@t)ﬁ =0

of point x and its probability density function, ,thenfor a.et € R, Ay-t = Ayer and Eq18coincides
say pr(x), is just the partial derivative of with  \ith £q.17,

respect tot (Capasso and Villa2008 Eq. 14). By
repeating the same arguments of Proposition 25 in
Capasso and Vill&2009 and assuming th&®"' admits Let us now consider a different growth model.
local mean outer Minkowski content, we can staté/Ve assume now that each grain grows with the same
the following slightly more general result. Note thatgrowth law of a “typical grain” with its nucleus at
the assumption that the boundary@fis sufficiently ~ the origin; in other words, the grai®j(x) born at
regular so tha®' admits local mean outer Minkowski point x at time s and grown up to time can be
content, is not so restrictive for applications (seeseen as the translation i of a grain born in 0 at
Remark10). the same birth-time. By using the notation introduced
for Boolean models, given the nucleation process
Proposition 14 Let {©'}; be a birth-and-growth {(Tn,Xn)}n, Where now the marks are the birth times
process with normal growth model as above, andl, associated to the spatial locatiods of the nuclei,
sufficiently regular such tha®' admits local mean we can model the crystallized regi@ at timet as the
outer Minkowski contenEg. 13. Then the following Boolean model
equation holds in weak form

5 = |J X+Zo(Th)=X+65 (0. (19
E\/\/ (t,X) = G(t,X))\a*@t (X) (18) (men)eN:TnSt
Proof. (Sketch) Notice that such a model may be used to describe

The assumptions on the nucleation process and df@l situations in which the growth model is assumed
the growth model imply \illa, 2008 Theorem 3.3) 0 be such that the shape of the grains is preserved
that T(x) admits probability density functiopy . during the processe(g, prolates and spheroids in

By Egs. 17 and 24 irCapasso and Villg2008, the Vandermeeetal, 1991). Clearly, the particular case
following chain of equalities hold of spherical growth (which corresponds to the previous

growth model withG = G(t)), can be described also by
means of the present model wily(T,) = Brt, 1)(0),

whereR(Ty,t) = 1. G(s)ds.

= G(t,x)iIP’(xe Ok, \ 00 = G(t,x)0et (X), Thus, if the Boolean model! satisfies the

or Assumptions, then by Propositiahit follows that the

where h(t,x) is the so-called hazard function specific areae: exists given by Eql; if furthermore
associated to the pointat timet (Capasso and Villa condition Eq.14is satisfied (usually true in many real
2008 Def. 21). Eg.13 can be written equivalently (in applications), then an explicit formula for the mean

I W(t.X) = prig = hit XB(x ©)

weak form) as surface density (equivalentlg,) can be obtained by
Eqg. 15. In order to apply such formula to the birth-

ZP(Xeet \ e and-growth process in EdL9, note that the mark
or or Ir=0 distribution Q represents now the probability law of
= A+t (X) + 2 setn(0t)0(X) = Aget (X), the birth time of the typical grain; for instance, if the

) ) nucleation rate is constant in time, then, for any fiked
where the last equation follows by having observed is the uniform distribution if0,t]. More in general,

that#"4~1((©")°) = 0P-a.s., and so we obtain E¥8. o any fixedt, since the nucleation takes place during
O the time interval0,t], Eq. 15 will be of the type

. . t
Remark 15 Let us notice that the following 5 (y)—S,(t x) —ex _/ / f(V)dvOds -
decomposition of the mean surface density holds o) =S(tx) p{ 0 Jx—04(0) v)dyQd }

.t n
Aset = Apret + Asatr(eto + Agetn(en- / / f(y) 2% 1 (y)Q(ds) .
0 Jox—et(0)

As a consequence, sindgeetyo = 0, EQ.18 can be
equivalently written

0 Remark 16 Whenever the nucleation is homogeneous
2t W (LX) =Gt X) (Aser (X) — Agetren); in space, thenf is constant and the above formula

118



Image Anal Stereol 2010;29:1 119

simplify as follows Falconer KJ (1985). The geometry of fractal sets.
Cambridge: Cambridge University Press.

t
S/(t,x):exp{—/ C,%”d(OtS(O))st}- Federer H (1969). Geometric measure theory. Berlin:
0 . Spriger.
/ 971(0(04(0))Q(ds), Hug D (2000). Contact distributions of Boolean models.
0 Rend Circ Mat Palermo 2 Suppl 65:137-81.
in accordance wittVandermeeet al. (1991 Egs. 9-  pyg D, Last G (2000). On support measures in Minkowski
12) spaces and contact distributions in stochastic geometry.
Ann Prob28:796-850
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