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ABSTRACT

For STIT tessellations – stationary tessellations that are stable under the operation iteration of tessellations –
the second-order measure of the edge system is studied. A result is that this measure coincides with that one of
a Boolean segment process. In the isotropic case an explicit formula for the pair-correlation function is given.
An estimator for the covariance function of the edge length measure is derived and adapted to digitized images
of tessellations. For m pixels of an image the algorithm is of complexity O(m logm).

Keywords: covariance function, estimation, K-function, pair-correlation function, random tessellations, second
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INTRODUCTION

The model of STIT tessellations – stationary

tessellations that are stable under the operation

iteration of tessellations – was introduced in

Nagel and Weiß (2005). This stochastic stability is

an essential property which also allows to derive

many theoretical results. In particular, formulae were

published for mean values (first-order moments) and

also for certain distributions which concern nodes,

edges, and cells. A next step is to find quantitative

expressions which describe the mutual arrangement

of cells. This points to the study of second-order

entities. In the present paper we study the second

moment measure for the edge system of planar random

STIT tessellations. This can also be expressed by

the K-function, the pair-correlation function or the

covariance function, respectively. An explicit formula

for the pair-correlation function in the isotropic case is

derived. Finally, an asymptotically unbiased estimator

for the covariance function is given.

The initial problem was whether this K-function

reflects the structure of the tessellation, in particular

the mutual arrangement of the cells. The result of

the present paper shows that the K-function of a

STIT tessellation coincides with the K-function of a

Boolean model of segments with appropriately chosen

parameters. This means that in this case the K-function

even does not express whether the random segments

form a tessellation or not.

In stochastic geometry second-order quantities,

i.e., the second moment measure, the K-function

or the pair-correlation function respectively, were

considered to represent essential information about

a random geometric structure, in particular the

arrangement of geometric objects. But already

Baddeley and Silverman (1984) provided examples of

point processes with the same K-function but with

evidently different point patterns – thus showing that

the K-function does not necessarily comprise sufficient

information. Our result contributes an example from

the class of segment processes and tessellations.

Firstly we recall the definitions of the second

moment measure, the K-function and the pair-

correlation function for random segment processes

in the plane, and a theorem is cited which relates

the second moment measure to marked section point

processes when the random segment process is

intersected with a line. The marks of the section points

are the section angles. Then the STIT tessellations are

explained and their basic properties are summarized.

This is followed by a proof of the theorem, that the

second moment measures of STIT tessellations and

of Boolean segment processes coincide. This yields

the K-function and the pair-correlation function for

the segment system of STIT tessellations. In the last

section, an asymptotically unbiased estimator for the

covariance function of the edge system is derived. It

is based on a convolution with a kernel function (i.e.,

a “smoothing”) of the edge system. This approach is

not specific to STIT tessellations and can be applied to

arbitrary fibre processes with existing pair-correlation

function. Finally, it is adapted to digitized images of

tessellations.
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SECOND MOMENT MEASURE

AND K-FUNCTION FOR PLANAR

FIBRE PROCESSES

Let R denote the set of real numbers, R
2 the

Euclidean plane and R2 the σ -algebra of Borel sets

in R
2. By ℓ2, ℓ1, ℓ+ we denote the Lebesgue measures

on R
2, R and [0,∞), respectively.

Further, we use the notations ψ for a planar fibre

system and Ψ for a random fibre process in the sense

of Stoyan et al. (1995), PΨ denotes the distribution of
Ψ. A fibre process Ψ is said to be macroscopically

homogeneous – i.e., spatially stationary – if PΨ is

invariant under all translations of R
2. It is isotropic if

its distribution is invariant under rotations. The total

fibre length of the fibre system ψ in B ∈ R2 is written

as ψ(B). For a stationary fibre process the mean total

fibre length per unit area (length intensity) is LA.

The second moment measure µ
(2)
Ψ of a fibre process

Ψ is described by

µ
(2)
Ψ (B1×B2) = EΨ(B1)Ψ(B2)

=
∫

ψ(B1) ·ψ(B2) PΨ(dψ),

for B1,B2 ∈ R2.

If Ψ is stationary, the reduced second moment

measure KΨ can be defined by

µ
(2)
Ψ (B1×B2) = L2A

∫ ∫

1B1(x)1B2(x+h) KΨ(dh)dx ,

where 1B denotes the indicator function of B.

In the case of a stationary and isotropic fibre

process it is sufficient to consider the reduced second

moment function KΨ (called K-function) given by

KΨ(r) = KΨ(B(o,r)), for r ≥ 0,

where B(o,r) is the circle with radius r centered in o.

The product LAKΨ(r) can be interpreted as the

mean total length of fibres of Ψ in a circle with radius

r, when the center of the circle is located in the typical
fibre point. Such a typical point can be understood as a

randomly chosen point inside a bounded window, and

its distribution is the uniform distribution concentrated
on the fibre system.

The stationary fibre process Ψ is called a second-

order process if LAKΨ(B) < ∞ for all bounded B ∈
R2. In the following we only consider second-order
processes. And furthermore, we assume that also the

intersection point processes Ψ∩g on all lines g are of

second order.

If the K-function is differentiable, the pair-

correlation function g exists with

g(r) =
1

2πr

dKΨ(r)

dr
for r > 0 .

We consider two particular cases of fibre systems.

a) Let Ψ be a stationary and isotropic Poisson line

process with length intensity LA. Then the K-

function is given by (cf. (Stoyan et al., 1995))

LAKΨ(r) = 2r+LAπr2 for r ≥ 0

and the pair-correlation function is

g(r) = 1+
1

LAπr
for r > 0.

b) For line segments we choose the parametrization

(x,α,s) where x ∈ R
2 is the centre, α ∈ [0,π)

the normal direction (i.e., the angle between the

normal of the segment and the positive x-axis)

and s ∈ (0,∞) the length. Thus a segment process

Ψ can be considered as a point process on the

space R
2× [0,π)× (0,∞). Notice that the normal

direction will be used in the parametrization of

both the segments and the lines.

Now let Ψ be a stationary and isotropic Boolean

segment process with intensity N1 of the centre

point (germ) process and with length distribution

L of the typical segment. Then the length intensity

is LA =N1s̄ where s̄ denotes the mean length of the

typical segment. For the K-function we obtain (cf.

Stoyan et al., 1995)

LAKΨ(r) = s̄ −1





r
∫

0

s2 L (ds)

+

∞
∫

r

(2rs− r2) L (ds)



+LAπr2. (1)

The formulae for LAKΨ(r) for both particular cases
can be interpreted as follows. The first summand arises

from the segment on which the typical point (the

center of the circle) lies. The second one is formed

from the remainder of the process which has again the

distribution PΨ, due to the independence properties of

the models.
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A STEREOLOGICAL FORMULA

FOR THE SECOND MOMENT

MEASURE OF PLANAR FIBRE

PROCESSES

There are at least three stereological methods for

determination of second-order quantities of planar

fibre processes, see Weiß and Nagel (1994). In the

present paper we make use of one of these methods

which was originally presented by Schwandtke (1988),

where the fibre process is intersected by a line

and the intersection process with the corresponding

intersection angles is observed.

Denote by G the set of all lines inR
2 and by ‖y−z‖

the distance between two points y and z in R
2. Further,

let dg be the element of the motion invariant measure

on the set of all lines with
∫

1{g∩B(o,1) 6= /0}dg= 2π .

For a fibre system ψ (here considered as a subset

of R
2) and g ∈ G we consider ψ ∩g which consists of

isolated intersection points and of linear segments of

positive length of ψ on g:

ψ ∩g = S(ψ ∩g)∪L(ψ ∩g) ,

where S(ψ∩g) denotes the set of all intersection points
and L(ψ ∩g) the union of all straight line segments on

g. It is clear, that only for countably many g we have

L(ψ ∩g) 6= /0.

An intersection point y∈ S(ψ∩g) is marked by the

fibre tangent angle w(y,g). This is the angle between

the tangent of ψ in y and g. If the tangent is not

uniquely defined, then put w(y,g) = 0. Notice that

the intersection angle between the tangent and g is

the same as the angle between the respective normal

directions of the fibre and of the line.

Assume that any line g ∈ G is parametrized as g =
{y(t) : t ∈R} such that ‖y(t1)−y(t2)‖= |t1−t2| for all
t1, t2 ∈R. This yields a parametrization of the union of

segments L(ψ ∩g) as Lg = {t ∈ R : y(t) ∈ L(ψ ∩g)}.

Then the following stereological formula for the

second moment measure holds. Let Ψ be a stationary

planar fibre process. Then for all measurable non-

negative functions f on R
2×R

2 we have

∫

f (y,z) µ
(2)
Ψ (d(y,z))

= L2A

∫ ∫

f (y,y+ z) KΨ(dz) dy

=
∫ ∫

∑
y,z∈S(ψ∩g)

y6=z

‖y− z‖

sinusinv
f (y,z) dg PΨ(dψ)

+
∫

∑
g:L(ψ∩g)6= /0

∫

Lg

∫

Lg

f (y(t1),y(t2))dt1 dt2PΨ(dψ), (2)

where u = w(y,g), v = w(z,g).

SECOND MOMENT MEASURE

AND K-FUNCTION FOR PLANAR

STIT TESSELLATIONS

A new model for random tessellations, the

so-called STIT tessellations, was introduced in

Nagel and Weiß (2005). The simulation of a planar

STIT tessellation in Fig. 1 suggests that STIT

tessellations are potential models for crack or fissure

structures.

Fig. 1. Simulation of an isotropic STIT tessellation.

The characteristic and eponymous property is

the stability of their distribution under the operation

iteration.

We will give here only a short overview, for more

details see the cited papers.
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Construction: A construction of STIT tessellations
in bounded windows was described in all details in

Nagel and Weiß (2005) and a global – i.e., in the whole

plane R
2 – construction was given in Mecke et al.

(2008a). This construction can be understood as a
process of sequential cell division at random times.

Let Λ = LAℓ1×R be a measure on R× [0,π) and
R is a probability measure on [0,π), the directional
distribution. In order to generate a tessellation it
is assumed that R is not concentrated on a single

direction. A point (p,α) ∈ R× [0,π) represents a line
g(p,α) ∈ G , where p is its signed distance from the

origin (positive iff the intersection of the line with its
perpendicular through the origin lies in the upper half-
plane) and α is the angle between its normal and the
positive x-axis. For a set A⊂R

2 denote [A] = {(p,α)∈
R× [0,π) : g(p,α)∩A 6= /0}.

At time t = 0 the construction starts with a compact

convex polygonal windowW ⊂ R
2 (e.g., a rectangle).

After a random life-time t1 that is exponentially
distributed with parameter Λ([W ]) a random line γ1
is thrown ontoW with the distribution Λ([W ])−1Λ(· ∩
[W ]). Thus two new polygons are born, and the birth
time t1 is attributed to them. Then, sequentially, all

the extant polygonsW ′
1, . . . ,W

′
k , say, with the respective

birth times t ′1, . . . , t
′
k are divided in the following way.

The life-time of W ′
i is a random variable that is

exponentially distributed with parameter Λ([W ′
i ]), i.e.,

the parameter depends on the size of W ′
i . In the

particular case that R is the uniform distribution on

[0,π) it is proportional to the perimeter of W ′
i . At

the end of its life-time the polygon is divided by a
chord that comes from a random line that has the

distribution Λ([W ′
i ])

−1Λ(· ∩ [W ′
i ]). Thus W

′
i dies and

two new polygons are born. The state at a fixed time
a > 0 is a tessellation in W and it is denoted by
Φ(a,W ).

A crucial feature of the construction is that the
parameters of the exponentially distributed life-time
depend on the (random) size of the relevant cells,
such that smaller cells have a longer expected life
than larger ones. This implies a certain dependence

between the random lifetimes of different cells.
Therefore we used the following rejection method
for a formal description of the construction: Let
(τ j,γ j), j = 1,2, . . ., be a sequence of independent
and identically distributed (i.i.d.) random variables,
where also τ j and γ j are independent. The τ j

are exponentially distributed positive numbers with
parameter Λ([W ]). The γ j are random lines with

the distribution Λ([W ])−1Λ(· ∩ [W ]). Any of these
random variables can be used at most once during
the construction. The division of an extant polygon
W ′

i ⊂W is performed according to the rejection rule:

For a pair (τ j,γ j) throw – after the time τ j elapsed –
the line γ j onto the windowW . If it hitsW ′

i then use the
generated chord to divide this polygon. If γ j ∩W ′

i = /0
then reject γ j and make a new trial with another pair
(τ j′ ,γ j′). Also in the case of rejection τ j has to be
added to the lifetime of W ′

i . This yields the lifetime
distribution of the cells described above.

The chords – if they do not end on the boundary
of W – that appear during the construction are called
I-segments. Later occurring I-segments have their
endpoints in the relative interior of two already extant
I-segments or chords, respectively.

Even if this construction is related to a fixed and
bounded window W it yields a distribution that is
consistent in the following sense.

Existence: There exists a stationary tessellation Φ
of the whole R

2 such that

Φ(1,W )
D
= Φ∩W, (3)

the symbol
D
= stands for the identity of distributions of

random variables.

The distribution of the tessellation Φ does not
depend onW , and one can show that this formula holds
for all compact and convex 2-dimensional sets W ⊂
R
2. Moreover, the existence of a stationary tessellation

is sufficient that the intensities and the K-function are
well defined.

Generalizations to higher dimensions are given in
Nagel and Weiß (2005); Mecke et al. (2008b).

Now we recall some important properties of STIT
tessellations, the proofs were given in earlier papers
(Nagel and Weiß, 2003; 2005; 2006; Mecke et al.,
2007; Nagel and Weiß, 2008; Mecke et al., 2010). A
random tessellation Y is understood as the set of all its
edge points, i.e., as a random subset of R

2.

The operation of iteration (also referred to as
nesting) for tessellations is defined as follows. Denote
by Y = {Y1,Y2, . . .} a sequence of independent
and identically distributed (i.i.d.) stationary random
tessellations. Further assume that Y0 is a stationary
random tessellation which is independent of Y . It is
useful to consider the set C(Y0) = {p1, p2, . . .} of the
cells (which are convex polytopes) of Y0. The iteration
of the tessellation Y0 and the sequence Y is defined as

I(Y0,Y ) = Y0∪
⋃

k≥1

(pk∩Yk) . (4)

This definition means that a cell pk of the so called
’frame’ tessellation Y0 is – independently of all other
cells – subdivided by the cells pki, i = 1,2, . . . of
the tessellation Yk which intersect the interior of pk.
The result of an iteration of stationary tessellations
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is a stationary tessellation. A strict formalization and

a proof of homogeneity are given in Mecke et al.

(2008b).

According to the general concept of stochastic

stability w.r.t. an operation, a random tessellation Y0
is called stable w.r.t. iteration (STIT) if the distribution

of the iterated tessellation, multiplied by a rescaling

factor, is the same as that one of Y0. This is now

defined more precisely. For a real number r > 0 the

tessellation rY is generated by transforming all points

(x,y) ∈ Y into (rx,ry). Accordingly, rY means that

this transformation is applied to all tessellations of the

sequence Y . LetY0 be a stationary random tessellation

and Y1,Y2, . . . a sequence of sequences of tessellations
such that all the occurring tessellations (including

Y0) are i.i.d. Then the sequence I2(Y0), I3(Y0), . . . of

rescaled iterations is defined in Nagel and Weiß (2003;

2005) as

I2(Y0) = I(2Y0, 2Y1) ,

I3(Y0) = I(I(3Y0, 3Y1), 3Y2) = I

(

3

2
I2(Y0), 3Y2

)

,

Im(Y0) = I

(

m

m−1
Im−1(Y0), mYm−1

)

, m = 3,4, . . .

Herem is the rescaling factor which is chosen such that

the results of iteration do not degenerate for m→ ∞.

Definition: A stationary random tessellation Y is

said to be stable with respect to iteration (STIT) if

Y
D
= Im(Y ) for all m = 2,3, . . . ,

i.e., if its distribution is not changed by repeated

rescaled iteration with sequences of tessellations with

the same distribution.

It can be shown (see Mecke et al. (2010)) that,

equivalently, Y is STIT if Y
D
= I2(Y ).

Stability with respect to iteration: The stationary

tessellation Φ given in (3) is stable with respect to

iteration.

Characteristic entities: The segments (edges of

cells) in the tessellation Φ form a stationary segment

process with LA (which appeared in the definition of

Λ) as the mean total edge length per unit area and the

directional distribution R, i.e., the distribution of the

normal direction in a randomly chosen point on the

segments. By LA and R the distribution of stationary

STIT tessellations is already uniquely determined.

Poisson typical cell: Now we consider the interior

of the typical cell of Φ. That means more intuitively

the single isolated cell neglecting additional nodes or

edges emanating outside on their boundary. One can

show, that the interior of the typical cell of Φ with

directional distribution R and intensity LA has the

same distribution as the interior of the typical cell of

a stationary Poisson line tessellation with the same R

and LA, see Nagel and Weiß (2003).

Length distribution of the typical I-segment: For

a stationary and isotropic STIT tessellation Φ with

intensity LA the density of the length of the typical I-

segment is for x > 0

p(x) =
π2

L2Ax
3
− e−

2
π LAx

(

2

x
+

2π

LAx2
+

π2

L2Ax
3

)

, (5)

see Mecke et al. (2007).

This length distribution is a mixture of exponential

distributions

p(x) =

LA
∫

0

2

π
se−

2
π sx

(

2s

L2A

)

ds .

Results for the non-isotropic case are derived

in Mecke (2009). Further distributions are given in

Mecke et al. (2007; 2010).

Mean values of STIT tessellation are calculated in

Nagel and Weiß (2006; 2008). It can be shown, that a

section of STIT tessellation with a lower-dimensional

plane is again a STIT tessellation, stereological

formulae are given in Mecke et al. (2009).

Now we will consider the second moment

measure, the K-function and the pair-correlation

function of a STIT tessellation.

If Ψ is any stationary segment process (as a point

process on the parameter space introduced above) its

intensity measure ΛΨ can be factorized

ΛΨ = N1ℓ2×ρ , (6)

where N1 is the mean number of segment centers per

unit area and ρ is the joint distribution of direction

and length of the typical segment. Notice that L , the

length distribution of the typical segment, is a marginal

distribution of ρ . The directional distribution R is

the length weighted directional distribution derived

from ρ .

If Ψ is additionally isotropic, then ρ(d(α,s)) =
1
π dαL (ds).

Theorem 1 Let Φ be a stationary STIT tessellation

with intensity LA,Φ and joint distribution ρΦ of length

and direction of the typical I-segment. Further, let Ψ
be a stationary Boolean segment process with intensity

LA,Ψ and joint distribution ρΨ of length and direction
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of the typical segment. For the respective second order

measures µ
(2)
Φ and µ

(2)
Ψ we obtain

LA,Φ = LA,Ψ and ρΦ = ρΨ =⇒ µ
(2)
Φ = µ

(2)
Ψ .

Corollary: With Eq. 1 and Eq. 5 the K-function
of a stationary and isotropic planar STIT tessellation
Φ with s̄ = π/LA as the mean length of the typical I-
segment, see Nagel and Weiß (2006), is

LAKΦ(r) = −
π

LA

∞

∑
k=1

(− 2
π LAr)

k

k · k!
+LAπr2 .

Using an exponential integral Ei(x) and the Euler-
Mascheroni constant γ we obtain

LAKΦ(r) =
π

LA
(γ + ln( 2π LAr)−Ei(− 2

π LAr))+LAπr2.

Then the pair-correlation function is

g(r) =
1

2πr

dKΦ(r)

dr
= 1+

1

2L2Ar
2

(

1− e−
2
π LAr

)

. (7)

Proof of the Theorem: The proof will be based on
Eq. 2 and we will show that the respective addends for
Φ und Ψ are identical.

1st addend: For any g ∈ G with normal direction
γg (i.e., the angle between the normal and the positive
x-axis) we consider the following four marked section
point processes on g and show that they are identically
distributed. The marks will always be the section
angles in [0,π) between g and the intersecting lines
or segments respectively. Notice that the segment and
the line processes have the same intensity LA and
directional distribution R.

i) The Boolean model Ψ with LA and intensity
measure ΛΨ as given in Eq. 6 generates
on g a stationary Poisson point process with
intensity PL = LA

∫

|sin(α − γg)|R(dα) and with
independent marks. The mark distribution H is
given by

PLH((0,β ]) = LA

∫

(0,β ]
|sin(α − γg)|R(dα) , (8)

for β ∈ (0,π], see Stoyan et al. (1995), p. 289.

ii) Let Γ be a Poisson line process (as a point process
on the parameter space introduced above) with the
intensity measure Λ = LAℓ1 ×R. It can also be
considered as a planar fibre process (according
to Stoyan et al., 1995, p. 280), and thus its
intersection with g generates a stationary Poisson
point process with intensity PL = LA

∫

|sin(α −
γg)|R(dα) and with independent marks. The mark
distribution H coincides with that one in (i).

iii) Let Π be a Poisson point process on G × (0,∞)
(i.e., lines with birth times) with the intensity

measure Λ× ℓ+ where Λ is the same as in (ii). For

all a > 0 the line process Πa = {h ∈ G : (h, t) ∈
Π, t < a} has the length intensity aLA. Hence the

intersection with g generates a stationary Poisson

point process with intensity aPL = aLA
∫

|sin(α −
γg)|R(dα) and with independent marks, and the

mark distribution is the same as in (i) and (ii).

iv) Choose a compact convex polygonal window W

with W ∩ g 6= /0. Then for a STIT tessellation

Φ the marked intersection point process within

W , i.e., W ∩ g ∩ Φ, can be generated by the

algorithm that is described above, and using the

measure Λ = LAℓ1 ×R. Its distribution on W ∩
g coincides for a = 1 with that one from (iii)

(for a proof see below). Since the construction of

STIT tessellations fulfills a consistency property

(see Theorem 1 in Nagel and Weiß, 2005) we can

conclude that the marked section point process on

g generated by the STIT Φ is identically distributed

as that one from (iii).

For a stationary STIT tessellation Φ it is known

from Nagel and Weiß (2003), Lemma 5, that for all

g ∈ G the intersection process Φ ∩ g is a stationary

Poisson point process on g. Thus it is easy to see that

all the (unmarked) intersection point processes on g are

stationary Poisson point processes. Therefore the focus

of the proof is to show that the intersection angles are

independent and identically distributed.

The identity of distributions of the marked section

point processes in (i) and (ii) is obvious. The

equivalence for (ii) and (iii) for a= 1 is straightforward

since the distributions of the line processes Γ and Π1

are identical. The identity of the distributions for (iii)

with a= 1 and (iv) within any compact convex window

W can be shown as follows. Let g ∈ G be a line with

W ∩g 6= /0.

We consider (iv). First note, that if the fixed

line g intersects an extant polygon W ′
i then the time

until the chord W ′
i ∩ g is intersected by a random

line γ j is exponentially distributed with the parameter

Λ([W ′
i ∩ g]). This follows from the calculation of the

capacity functional for the constructed tessellation in

Nagel and Weiß (2005).

Now, for a fixed time t > 0 let W ′
1, . . . ,W

′
m be all

those cells of Φ(t,W ) with J′t,1 =W ′
1∩g 6= /0, . . . ,J′t,m =

W ′
m∩g 6= /0. Assume that the intervals J′t,i, i = 1, . . . ,m,

are ordered from left to right (if g is vertical then

bottom-up). Let α ′
i be the section angle (with g) in the

point that separates J′t,i and J
′
t,i+1, i= 1, . . . ,m−1. (We
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can neglect the case that g goes through a vertex of a

polygon.) Denote by (Xt)t≥0 the random process which

at time t is in the state (J′t,1,α
′
1,J

′
t,2, . . . ,α

′
m−1,J

′
t,m).

The state X0 at time t = 0 is (W ∩ g) a.s. Further,

(Xt)t≥0 is a Markov process due to the independence

and the exponentially distributed lifetimes of the cells

used in the algorithm. For a fixed bounded segment

W ∩ g the process (Xt)t≥0 is piecewise constant and

it jumps into a new state when a new intersection

point appears. For any fixed t > 0 the distribution of

the time until the next appearance of a section point

is exponentially distributed with parameter Λ([W ∩
g]) = ∑m

i=1 Λ([J′t,i]) which is the distribution of the

minimum of m independent exponentially distributed

random variables with the respective parameters

Λ([J′t,i]), i = 1, . . . ,m. The increment or jump when

the process changes its state is determined by a

marked intersection point (x,α). The probability that x
appears in J′t,i is Λ([J′t,i])/(∑m

i=1 Λ([J′t,i])) = |J′t,i|/|W ∩

g|, where | · | denotes the length of a segment.

(We emphasize that this formula holds for arbitrary

directional distributions.) Hence the distribution of x

is a mixture of m uniform distributions on the intervals

J′t,i with the respective weights. Thus x is uniformly

distributed onW ∩g. The product form of the measure

Λ = LAℓ1×R implies that the intersection angle α is

independent of x, and the distribution of α is given by

its distribution function given in Eq. 8.

Now we study (iii) and observe that the

process Π induces a process (Zt)t≥0 with states

(Jt,1,α1,Jt,2, . . . ,αn−1,Jt,n) where n− 1 = #{h ∈ G :

(h,s) ∈ Π,s < t,g ∩ h ∩W 6= /0} and α1, . . .αn are

the section angles (again left to right or bottom-up,

respectively) and Jt,1, . . . ,Jt,n are the ordered intervals

in W ∩ g generated by the n− 1 sections with lines

of Π. The state Z0 at time t = 0 is (W ∩ g) a.s.

Since Π is a Poisson point process the process (Zt)t≥0

has the Markov property. For the bounded segment

W ∩ g the process (Zt)t≥0 is piecewise constant and it

jumps into a new state when a new intersection point

appears. For any fixed t > 0 the distribution of the

time until the next appearance of a section point is

exponentially distributed with parameter Λ([W ∩ g]).
Due to the product form of the intensity measure Λ,
the distribution of the appearing marked intersection

point (x,α) given by the independence of x and α ,

is the uniform distribution of x on W ∩ g and angle

distribution as in Eq. 8.

Thus it is shown that for all g ∈ G , all t > 0

and all bounded intervalsW ∩ g on g the distributions

of Xt and Zt and hence of the corresponding marked

section point processes are identical. Together with the

consistency result (Eq. 3) for the construction of STIT

tessellations in bounded windows the identity of the

distributions in (iii) and (iv) is shown.

Summarizing, we can conclude that for all g ∈ G

the marked section point processes on g either induced

by Φ or by Ψ respectively, are identically distributed.

2nd addend: The second summand of Eq. 2 is

formed of L(ϕ ∩g) or L(ψ ∩g), respectively. For Φ as

well as for Ψ and for g∈ G we have either L((·)∩g) =
/0 or L((·)∩g) consists of a.s. exactly one I-segment of

ϕ or of one segment of ψ , respectively. Hence we can

rewrite the sum ∑
g : L(ψ∩g)6= /0

in Eq. 2 as the sum over

all I-segments s of ψ and analogously for ϕ and its

I-segments. With the intensity measure ΛΨ of Ψ, the

stationarity of Ψ and the notation Ls = {t ∈ R : y(t) ∈
s} we obtain

∫

∑
g : L(ψ∩g)6= /0

∫

Lg

∫

Lg

f (y(t1),y(t2)) dt1 dt2 PΨ(dψ)

=
∫

∑
s∈ψ

∫

Ls

∫

Ls

f (y(t1),y(t2)) dt1 dt2 PΨ(dψ)

=
∫ ∫

Ls

∫

Ls

f (y(t1),y(t2)) dt1 dt2 ΛΨ(ds).

Since LA,Φ = LA,Ψ and ρΦ = ρΨ we have N1,Φ = N1,Ψ

and hence ΛΦ = ΛΨ and thus the equality of the second

summand in Eq. 2 for a STIT tessellation Φ and a

Boolean segment process Ψ respectively.

Interpretation of the result: Theorem 1 shows,

that the second moment measure of the considered

segment processes does not indicate whether the

segments are arranged “completely randomly”, i.e.,

independently, or in a “highly dependent” way such

that they yield a tessellation. In particular, the second

moment measure does not depend on the type of

crossings or nodes that are generated by the segments.

Nevertheless, it is an open problem whether the

second moment measure is applicable to discriminate

between different tessellations (e.g., STIT, Voronoi,

Poisson line tessellations).

ESTIMATION OF THE

COVARIANCE FUNCTION

In the previous sections we studied the second

(reduced) moment measure of STIT tessellations with

the help of section points and angles on fixed lines.

While this was a useful tool for a proof of our result

it is not the method of choice in image analysis.

In particular, the measurement of section angles in
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digitized images is vague and problematic. The aim of
estimation the covariance by image analysis methods
is to compare the theoretical covariance function of a
STIT tessellation with estimates from images of a fibre
system in order to get a (necessary) criterion for the
hypothesis that the observed fibre system forms a STIT
tessellation.

In the present section we describe a feasible
estimator for the covariance function of the edge
system of tessellations. This estimator will be based
on the Fourier transform of the smoothed edge system
inside an observation window W . Here, a smoothed
edge means a function after a convolution of the edge
with a kernel function κ , i.e., a smoothing of the
contrast in an image. In the following an estimator for
digitized images is suggested. This approach holds for
a general fibre process and it is not specific for STIT
tessellations.

We commence with some notation and a review of
some facts for general stationary fibre processes (the
edge system of a tessellation can be considered as a
particular fibre process). A more detailed presentation
is given in Ohser and Schladitz (2009), Section 6.4.

For a stationary and isotropic planar fibre process
Ψ with pair-correlation function g and length intensity
LA the covariance function covΨ is given by

covΨ(x) = L2A
(

g(‖x‖)−1), x ∈ R
2.

This covariance is the density of the covariance
measure of the length measure that is induced by Ψ.
We remark that for a stationary and isotropic planar
STIT with g in Eq. 7, the covariance function covΨ is
not integrable,

∫

B(o,r) covΨ(x)dx→ ∞ as r→ ∞.

The convolution f1 ∗ f2 of two integrable functions
f1, f2 : R

2 7→ R is defined by [ f1 ∗ f2](x) =
∫

R2 f1(y) f2(x−y)dy, x∈R
2. Similar to the convolution

of functions we define the convolution µ ∗ f : R
2 →

R∪{−∞,∞} of a measure µ on R
2 with a function f

that is nonnegative and measurable w. r. t. µ ,

[µ ∗ f ](x) =
∫

R2
f (x− y)µ(dy), x ∈ R

2.

As above, we identify the edge system of a
tessellation with a random (length) measure Ψ. Let
κ : R

2 7→ R be a nonnegative function with compact
support and satisfying

∫

R2 κ(x)dx = 1. We define the
random function fΨ = Ψ ∗ κ − LA, associated with a
random fibre system Ψ. As mentioned above, Ψ ∗ κ
can be interpreted as a smoothing (of the contrasts in
an image) of the edge system.

The function Ψ∗κ is not necessarily integrable but
almost surely integrable on every compact subset of

R
2. Finally, from E[Ψ ∗ κ](x) < ∞ for all x ∈ R

2, it
follows that the random function fΨ is almost surely
locally integrable and the reduced covariance measure
of fΨ has a density cov f , the covariance function of
fΨ. It follows that

cov f = (κ ∗κ∗)∗ covΨ

with κ∗ = −κ.

Now let W be a compact window with nonempty
interior. We are smoothing the fibre process Ψ and
observe it inW . This yields the random function

fΨ,W (x) = fΨ(x)1W (x)

=
(

[Ψ∗κ](x)−LA
)

1W (x), x ∈ R
2,

which is almost surely integrable and thus its Fourier
transform exists.

By f̂ = F f we denote the 2-dimensional Fourier
transform of an integrable function f : R

2 7→ C,

[F f ](ξ ) =
1

2π

∫

R2
f (x)e−ixξ dx, ξ ∈ R

2.

The corresponding cotransform may be denoted by F̄ ,

[F̄ f̂ ](x) =
1

2π

∫

R2
f̂ (ξ )eixξ dξ , x ∈ R

2.

Now we can formulate a Wiener-Khintchine type
theorem.

Theorem 2 Let Ψ be a stationary random fibre

process with a locally finite first moment measure and

an existing covariance function covΨ. Let κ : R
2 7→ R

be a bounded nonnegative function of compact support

and satisfying
∫

R2 κ(x)dx = 1. Furthermore, let W

be a compact window of nonempty interior. For the

windowed random function fΨ,W it follows that for

ξ ∈ R
2

2πE| f̂Ψ,W (ξ )|2 = F
(

cW ·
(

(κ ∗κ∗)∗covΨ

))

(ξ ) , (9)

where cW is the window function cW = 1W ∗1∗W .

A proof is given in Unverzagt (2005), Section 2.2.

From Eq. 9 it immediately follows that a smoothed
version (κ ∗ κ∗) ∗ covΨ of the density covΨ can be
estimated via frequency space. Assume that W is
compact and the origin belongs to its interior, then

[

(κ ∗κ∗)∗ covΨ

]

(x) = 2π E
F̄

(

| f̂Ψ,W |2
)

(x)

cW (x)
, (10)

for all x in the interior of W . This means,
2πF̄

(

| f̂Ψ,W |2
)

(x)/cW (x) is an unbiased estimator for
the expression on the left-hand side.
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Let (κε)ε>0 be a family of bounded nonnegative

kernel functions κε :R
2 7→R with

∫

R2 κε(x)dx= 1 and

κε(x) = 0 for ‖x‖ ≥ ε . Then, if the density covΨ is

continuous in x, it follows that

lim
ε↓0

(

(κε ∗κ∗
ε )∗ covΨ

)

= covΨ ,

pointwise.

Lemma: For a stationary planar fibre process Ψ,

a compact window W with nonempty interior and a

family of bounded nonnegative kernel functions κε :

R
2 7→ R with

∫

R2 κε(x)dx = 1 and κε(x) = 0 for ‖x‖ ≥
ε

2πF̄
(

| f̂Ψ,W,ε |
2
)

(x)

cW (x)
,

with fΨ,W,ε(x) =
(

[Ψ∗κε ](x)−LA
)

1W (x), x∈R
2, is an

asymptotically unbiased estimator for the covariance

function covΨ of Ψ as ε → 0.

AN ESTIMATOR FOR DIGITIZED

IMAGES

In practical applications, realizations of fibre

processes Ψ are usually observed on lattices and

we apply methods of image analysis in order

to estimate the pair-correlation function (or the

covariance function covΨ, respectively) of Ψ. Let L2 =
aZ

2 be a square lattice with lattice spacing a > 0 and

the unit cell C = [0,a]2, where [0,a] is the closed

segment between 0 and a. A digitization (or sample

in the statistical sense) Ψ
L2 of Ψ on the lattice L

2

may be defined as the set of the lattice points x with

(C+ x)∩Ψ 6= /0,

Ψ
L2 = {x ∈ L

2 : (C+ x)∩Ψ 6= /0}.

This Ψ
L2 is only a simplified model for the much

more complicated sampling of real fibre processes on

a lattice. Furthermore we remark that, in general, the

process Ψ can not be reconstructed from Ψ
L2 . In the

following we assume that only the sampling Ψ
L2 is

known but not Ψ itself. Our aim is now to estimate

the pair-correlation function of the unknown process

Ψ from the data Ψ
L2 observed in a windowW .

We refer to Ψ
L2 as the set of the foreground

pixels and the complementary set Ψc
L2 = L

2 \ Ψ
L2

is called the background. Following the approach

in Ohser et al. (2009) we consider local pixel

configurations ξ0, . . . ,ξ15 defined as subsets of the set

of the vertices of the unit cell, ξℓ ⊆C∩L
2. Pictograms

of these pixel configurations ξℓ are shown in Table 1,

where the full discs mark the foreground pixels and

the circles mark the background. In our setting, the

indexing of the pixel configurations is chosen such that

the complementary pixel configurations are ξ15−ℓ =
(C∩L

2)\ξℓ, ℓ = 0, . . . ,15.

The total length will be estimated by summing up

the contributions from the local pixel configurations

in the digitized image. The local contribution to

the estimation of the length of Ψ of such pixel

configurations ξℓ is given by weights wℓ. An

appropriate choice of these weights is a non-trivial

problem. Here, pragmatically, we use the weights

which we calculated in Ohser et al. (2009) for another

mode of digitization of sets. (In this article the

boundary length estimation for a random set on R
2

with positive area fraction is considered, where the

intersection of the random set with L
2 is suggested as

an appropriate digitization mode and a corresponding

discretization of a Crofton integral formula is applied.)

Table 1. The local pixel configurations of L
2, the

corresponding pictograms and the length weights wℓ.

ℓ ξℓ wℓ

0 0

1 0.335 190

2 0.335 190

3 0.474030

4 0.335 190

5 0.474 030

6 0.392 699

7 0.335 190

ℓ ξℓ wℓ

8 0.335 190

9 0.392 699

10 0.474030

11 0.335 190

12 0.474 030

13 0.335 190

14 0.335 190

15 0

Let now W be a rectangular window with edges

parallel to the co-ordinate axes. By W ′ = W ⊖ Č we

denote the reduced window, where⊖ is the Minkowski

subtraction and Č is the unit cell reflected at the origin,

Č = −C. We assume that the window is much larger

than the unit cell such that #(L2 ∩W ′) ≫ 0. Then the

length density LA of Ψ can be estimated using the

length weights wℓ given in Table 1. Let h = (hℓ) be

the vector of the number of pixel configurations in

Ψ
L2 ∩W ′,

hℓ = ∑
x∈L2∩W ′

1(ξℓ + x⊂ Ψ
L2)1(ξ15−ℓ + x⊂ Ψc

L2) ,

ℓ = 0, . . . ,15. Then LA can be estimated using

L̂A =
hw

a#(L2∩W ′)
,

with the vector w = (wℓ) and hw is the scalar

product of the vectors h and w. If Ψ is stationary

and isotropic, then the estimator L̂A is asymptotically

unbiased for LA as a ↓ 0 (multigrid convergent, see

(Ohser and Schladitz, 2009, Section 5.2)).
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Fig. 2. The pair-correlation function g(r) of the

isotropic STIT (thick line) compared with the pair-

correlation function of the stationary ILPL.

-
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Fig. 3. Differences ∆g = g̃− g of estimates g̃ of pair-

correlation functions and the true pair-correlation

function g of the isotropic STIT; full discs: g̃ from

realizations of a STIT; circles: g̃ from realizations of an

IPLP. The solid curve shows the difference of the true

pair-correlation functions for the ILPL and the STIT,

respectively.

In order to estimate the covariance function
covΨ by applying a discrete Fourier transform, a
discretization of the estimator on the right-hand side
of Eq. 10 is needed. The length weights wℓ given in
Table 1 are used in order to obtain an appropriate
representation of the function fΨ,W . Consider the

function f
L2 :L2 7→R mapping each lattice point to the

local contribution awℓ for the (random) length measure
of Ψ. We determine the index ℓ of the local pixel
configuration (Ψ

L2 −x)∩(C∩L
2) of Ψ

L2 at the lattice
point x and assign an appropriate length weight awℓ to
fLn(x),

f
L2(x) =

a
15

∑
ℓ=0

wℓ 1(ξℓ ⊂ Ψ
L2 − x)1(ξ15−ℓ ⊂ Ψc

L2 − x)− L̂A ,

for x ∈ L
2 ∩W ′. The set {(x, f

L2(x)) : x ∈ L
2 ∩W ′}

forms a (random) grey-value image with real-valued

pixels. This can be understood as the result of a non-

linear filtering (in contrast to the linear filter in the

continuous model), applied to Ψ. Finally, the function

covΨ can be estimated from this image via the inverse

space (i.e., the space of the Fourier transform) using

formula (10) where the continuous Fourier transform is

replaced with a discrete Fourier transform. The choice

of the lattice spacing a depends on the length density

LA (small a for large LA).

The use of the method described above is

demonstrated in the following example. First, we

observe in Fig. 2 that the difference between the pair-

correlation functions of isotropic STITs and stationary

and isotropic Poisson line processes (IPLP) is very

small. Thus, due to estimation errors, it seems to

be difficult to see these differences also in estimates

of the pair-correlation functions. However, for large

samples (i.e., large windows or averaging over many

realizations) and small lattice spacings, it is possible

to discriminate between both processes. Estimates g̃

of pair-correlation functions and the pair-correlation

functions g of the isotropic STIT (full discs) and an

ILPL (circles), respectively, are compared in Fig. 3.

The data for g̃ were computed for realizations with

LA = 32, observed in a square window of edge length

1 and on a square lattice of spacing a = 1/256. The
estimates were averaged over 16 realizations. In order

to display the very small estimation errors, Fig. 3

shows the differences ∆g = g̃− g of estimates g̃ of

pair-correlation functions and the true pair-correlation

function g of the isotropic STIT. We remark that the

length density LA (used for the scaling of the x-axis

in the diagram) was estimated from the same data.

Fig. 3 shows that estimates of the pair-correlation

function can be used in order to discriminate between

different kinds of tessellations even if the differences

between the pair-correlation functions are small (as for

STIT and ILPL). Clearly, an ILPL does not have T-

nodes which is a more significant criterion in order to

discriminate from STITs. However, ILPLs often serve

as a benchmark for comparison studies, and their pair-

correlation functions are known explicitly.

Remarks: For m pixels of an image of Ψ the

covariance covΨ can be computed by the use of the

Fast Fourier Transform (FFT) with a complexity in

O(m logm), because the FFT has a complexity of

O(m logm) and the window function can be computed

via cW = F̄ |F1W |2.

The function f
L2 differs from fΨ ∗ κ , i. e. we can

not find a kernel function κ such that f
L2(x) = [ fΨ ∗

κ](x), x ∈ L
2. As a consequence we can not show
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multigrid convergence for the estimator of the pair-
correlation function based on the procedure peresented
in the previous section. Nevertheless, the examples in
Fig. 3 show that the pair-correlation functions for a
STIT tessellation and a Poisson line process can be
estimated with high accuracy.

Unfortunately, the assumption of periodicity in
the discrete Fourier transform causes an overlapping
effect (edge effect), see Koch et al. (2003). This effect
can be eliminated by expanding the function fΨ,W to
the window 2W : fΨ,2W (x) = fΨ,W (x) if x ∈ W and
fΨ,2W (x) = 0 if x ∈ 2W \W , i.e., the original image is
padded with zeros. This increases the number of pixels
to 4m. Still the complexity belongs to O(m logm)
which is a considerable gain compared to the usual
estimation of the covariance function by a convolution
which is of complexity O(m2).

Furthermore, notice that the Bartlett spectrum
of Ψ does not exist. The Bartlett spectrum of Ψ
is the quantity in the inverse space (i.e., the space
of the Fourier transforms) associated with covΨ,
also known as the scattering intensity of Ψ, see
Ohser and Schladitz (2009, Section 6.3).
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