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ABSTRACT 

The evaluation of malignancy-related features often helps to determine the prognoses for patients with 
carcinomas. One technique, which is becoming increasingly important for assessing such prognostic features 
is that of Fluorescence in situ Hybridization (FISH). By counting the number of FISH signals in a stack of 2-
D images of a tumor (which together constitute the 3-D image volume), it is possible to determine whether 
there has been any loss or gain of the target DNA sequences and thereby evaluate the stage of the disease. 
However, visual counting of the FISH signals in this way is a tedious, fatiguing and time-consuming task. 
Therefore, we have developed an automated system for the quantitative evaluation of FISH signals. We 
present and discuss the implementation of an image processing module that segments, characterizes and 
counts the FISH signals in 3-D images of thick prostate tumor tissue specimens. Possible errors in the 
automatic counting of signals are listed and ways to circumvent these errors are described. We define a 
feature vector for a FISH signal and describe how we have used the weighted feature vector to segment 
specific signals from noise artifacts. In addition, we present a method, which allows overlapping FISH 
signals to be distinguished by fitting a local Gaussian model around the intensity profile and studying the 
feature vector of each model. Our complete image processing module overcomes the problems of manual 
counting of FISH signals in 3-D images of tumor specimens, thereby providing improved diagnostic and 
prognostic capability in qualitative diagnostic pathology. 
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INTRODUCTION 

The evaluation of malignancy-related features 
often helps to determine the prognoses for patients 
with carcinomas. One technique, which is becoming 
increasingly important for assessing prognostic 
features is that of Fluorescence in situ Hybridization 
(FISH). FISH involves the fluorescent tagging of 
selected DNA sequences so that they may be 
visualized under the microscope. The DNA sequences 
may be chosen either to detect specific abnormalities 
or to facilitate the process of identification and 
quantification of numerical and structural chromosomal 
abnormalities. Several researchers have shown the 
reliability of the technique for the evaluation of 
numerical chromosome aberrations (Aubele et al., 
1996). By counting the number of FISH signals it is 
possible to determine whether there has been any loss 
or gain of the target DNA sequence. Large variations 
in the FISH count have been shown to be associated 
with a high histological grading (Baretton et al., 1994) 
and an advanced stage of disease (Henke et al., 1994). 
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Indeed, several studies (Babu et al., 1990; Johnson and 
Nogueira, 1981), have shown that trisomy of 
chromosome #7 is found in malignant and non
malignant tumors of lung, kidney, brain, as well as in 
prostate gland. Thus, the quantitative evaluation of the 
loss or gain in DNA is useful in qualitative diagnostic 
pathology. 

However, one of the disadvantages in quantitative 
evaluation of the FISH signals based on the 
conventional microscopy images is the considerable 
number of nuclei sliced during the sectioning and/or 
thin specimen preparation. Such truncated nuclei do 
not represent the complete chromatin of the cell 
nuclei and lead to the incorrect evaluation of the 
FISH signal count. To guarantee a reproducible, 
unbiased signal count per nucleus and realistic feature 
values, a complete cell nucleus has to be inspected 
and analyzed in three dimensions (Aubele et al., 
1996). In addition, to estimate the distribution of 
FISH signals per cell, a large number of cells have to 
be analyzed, especially when the frequency of aberrant 
cells is low. 



Visual counting of the FISH signal in a 3-D stack 
of images is a tedious, fatiguing and time-consuming 
task. To facilitate the counting, one has to display a 
gallery of all the 2-D images, which together constitutes 
the image volume. If the tissue architecture shows large 
density of cells, then, the amount of work increases 
proportionally. This is because, a gallery of images of 
a box around each cell of interest has to be displayed 
for clear presentation. Fig. 1, shows a gallery of a part 
of the image depicting a particular cell, which can be 
used for visual counting of the FISH signals. Even 
using this approach, erroneous counting is likely since 
the visual correlation of the same signal in different 
slices is difficult. Therefore, for improved diagnostic 
and prognostic ability, it would be extremely valuable 
to have an automated system for the quantitative 
evaluation of FISH signals. Despite this, little work 
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has been done to date on automating such processes. 
This is mainly due to the involvement of difficult tasks 
such as 3-D segmentation of the tissue to mark the 
region of interest in the FISH signal channel, assigning 
the FISH signal membership, distinguishing noisy 
clusters from the genuine FISH signals and the 
automated counting. The algorithms for automated 
FISH signal counting must be accurate and the number 
of false negatives must be as low as possible. 
Conversely, the algorithm must be fast and efficient. In 
the image volume, FISH signals appear like a tiny 
objects consisting of high intensity voxels extending to 
several image slices and they are located entirely within 
the cell nucleus. Fig. 2a, shows the smface rendered 
display of the FISH signals while Fig. 2b, shows one 
of the image slices of the FISH signal channel. 

Fig. 1. Image display for visual (manual) counting of FISH signals in a cell (256><256 pixel image). (a) 
Selection of a cell of interest by drawing a box around it. (b) A cell of interest is displayed as a gallery of 
images for visual FISH signal counting. (the box image is magnified by factor 2 and displayed). 

Fig. 2. FISH Signal Channel. (a) Surface rendered display of the FISH signal channel, (b) Middle optical 
section (256><256 pixel image) of the FISH signal channel of the volumetric image. 
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We have implemented and/or developed several 
3-D tissue segmentation methods to separate the cells 
in a cluster and label them. One or more of these 
methods can be used sequentially depending on the 
complexity of tissue architecture as shown in image. 
The 3-D tissue segmentation techniques we have 
developed and/or implemented include 1) the layered 
segmentation method (Adiga and Chaudhuri, 1998a) 
2) active surfaces (Adiga and Chaudhuri, 2000a) and 
3) region-based segmentation techniques such as 
seeded volume growing, successive pealing and 
thickening, 3-D watershed with rule based merging 
(Adiga and Chaudhuri, 2000b, 2000c) and other 
integrated techniques (Adiga, 2000). 

MATERIAL 

The tumor specimens were prepared by pathologists 
at the GSF, Munich. These routinely processed 
formalin-fixed and paraffin embedded tissue specimens 
from radical-prostatectomies of several patients with 
prostatic adenocarcinoma were used to assess whether 
3-D evaluation would be desirable to facilitate the 
counting of FISH signals present in each cell (Aubele 
et al., 1996). Details of specimen preparation and the 
protocols used have been described previously 
(Rodenacker et al., 1997; Aubele et al., 1996). 

The software we describe was implemented on an 
SGI-IRIX5.2 machine using Interactive Data 
Language (IDL) and C. Evaluations were done on 
about 150 data sets. The number of cells per data set 
and number of FISH signals per data set varied from 
one volumetric image to another. The acquisition of 
the images is described below. 

Set-up Features for Image Acquisition: 
Fluorescence images were scanned using a Confocal 
Laser Scanning Microscope (CLSM) Zeiss LSM 410. 
Essential set-up features for the acquisition of FISH 
signals in tissue sections were as follows : Lens Zeiss 
PNF lOOx, numerical aperture 1.3, zoom= 2, realized 
by the scanning unit. The scanned field of 
62.5 11m x 62.5 11m was sampled to 256x256 pixels 
giving a pixel size of 0.25 11m2 in x and y directions. 
Excitation laser lines were selected according to the 
fluorochromes used. Both propidium iodide (PI), 
used as a DNA counter-stain, and Fluorescein 
isothiocyanate (FITC) used to tag the specific DNA 
target sequences, were excited by the Argon line 488 
nm. The emissions of both PI and FITC were 
measured simultaneously in two separate channels 
using a band-pass 515 - 565 nm for FITC and a low
pass LP 590 for the PI channel. The axial distance 
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selected between two subsequent confocal images 
depends on a further evaluation strategy. If a spatial 
isotropic representation of the 3-D data is intended, 
the axial distance is identical to the lateral distance of 
the pixels, i.e. 0.25 !liD. For a 16 11m thick section this 
results in a sequence of 64 scanned images. However, 
if the sampling theorem only needs to be an 
approximation, then approximately 0.5 11m axial size 
can be obtained. The fluorescence emission of FITC 
is associated with the green channel whereas the PI 
signals (depicting the tissue architecture) are associated 
with the red channel of a RGB color image. The 
image data are stored on disk in TIFF format. 

EVALUATION OF FISH SIGNALS 

Visual counting of FISH signals is a difficult, 
time consuming and cumbersome process. Before 
attempting any automated method based on heuristics 
or otherwise, it is important to defme the morphological 
properties and parameters of a FISH signal. We 
define a fluorescence signal as a spatial spot with 
parameters like size, shape, intensity, etc., within a 
specified range. The parameters of each signal can be 
obtained in two steps namely (i) detection and (ii) 
estimation. In case of overlapping signals, it is quite 
difficult to distinguish the signals if the intensity 
peaks of the two overlapped signals are very close to 
each other. To address this, we have incorporated a 
technique to characterize the overlapped signals by 
fitting a Gaussian model to the intensity profile of the 
overlapped signal. The features signal under each 
Gaussian profile is separately estimated to decide the 
validity of the signal. 

The simplest algorithm for detecting a FISH 
signal is to dissect its distinguishing property from 
the background. The usual approach is to suppress 
noise by filtering the image and to enhance the signal 
by a suitable method. Then the features of the signals 
are estimated to distinguish the actual FISH signal 
from the artifact. The region of interest for counting 
the FISH signals is only within the cell nuclei. Hence 
all the voxels that fall outside the cell are discarded. 
For this purpose the segmented and labeled tissue 
image is superposed virtually on the signal channel 
by one to one mapping. Thus the non-cellular 
regions, regions belonging to truncated cells, and 
highly deformed cells, etc., are screened out. 

POSSIBLE ERRORS IN SIGNAL 
IDENTIFICATION 

The FISH signal channel is usually corrupted by 
hardware noise or error due to the specimen fixation 



process. Some of the errors caused due to noise or 
other means in the FISH signal channel are, 1. split 
FISH signals, 2. overlapping FISH signals, 3. missed 
FISH signals, 4. false FISH signals, 5. out of focus 
FISH signals, 6. debris, 7. loss of FISH signal due to 
over segmentation, 8. increased FISH signal count 
due to improper segmentation, 9. error in defining the 
FISH signal, 10. error due to ambiguity about FISH 
signal located near the boundary, 11. error due to 
FISH signal located on the overlapped or touching 
portion of the cell nuclei. 

1. Split FISH signal error occurs when there is only 
one signal but two are counted. This error occurs 
when the signal lies on the common boundary of 
the touching cells and so is counted as a FISH 
signal in both the cells. This error can be avoided 
as follows. If the signal intensity peak and at least 
40% of the FISH signature is in one cell then the 
signal is counted as belonging to that particular 
cell. 

2. Overlapping FISH signals error occurs when 
there are two or more FISH signals, but only one 
is counted. This results in under-estimation of the 
signal density. This error may occur due to 
overlapping signals in the specimen itself or 
when the signal channel is smoothed and 
thresholded during detection phase. If the FISH 
signals are located close to one another they may 
join together during smoothing. If the resolution 
of the image stack is poor it may also cause two 
closely located FISH signals one below the other 
to be counted as only one. Characterization of the 
overlapping signals is a difficult problem. If the 
overlapping signals show two distinct intensity 
peaks in the intensity profile, then it is possible to 
match the signal model to each intensity peak and 
decide whether two signals are really overlapping. 
In section 4, 'Detection and Counting of Fish 
Signals', we have explained the method to detect 
and count overlapping FISH signals. 

3. Missed FISH signal occurs when FISH signals 
that are present are not counted. This error is due 
to poor segmentation of the cells in the tissue, 
causing only partial cell chromatin to be 
identified as the cell, while the rest is considered 
as background. Due to uneven illumination of the 
specimen and attenuation of light intensity along 
the depth, some portion of the cell may not be 
recognized during thresholding. Any signal 
present in those parts is deleted in the signal 
channel too, as we are not considering the voxels 
outside the cell region. Also, the attenuation of 
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the light intensity and the photobleaching of the 
fluorescent labeled specimen may cause the 
deletion of some signals in the specimen. Wrong 
feature calculation of the signals during 
segmentation and identification process may also 
cause the missed FISH signal error. 

4. False FISH signal error occurs when signals that 
are not true FISH signals are counted. This is one 
of the main causes for erroneous signal count. 
Noise, artifacts due to improper dye application, 
specimen damage, etc., get prominently reflected 
in the FISH signal channel. Sometimes, it is not 
even possible to distinguish them visually from 
the real FISH signal. Proper specimen preparation, 
noise reduction, selection of the right features, etc., 
can reduce the error caused by a false FISH signal. 

5. Out-of-focus FISH signal error is caused by the 
presence of out of focus information in the FISH 
signal channel or out of focus cells in which 
FISH signals can hardly be seen. Since the 
confocal imaging reduces the out-of-focus 
information considerably, this error is less 
predominant. In the case of wide-field 
microscopy and other imaging techniques, the 
blurred FISH signal may not satisfy the criteria 
set for identifying the FISH signal causing errors. 
This error can be reduced by deblurring the 
image using the Wiener filter or other methods 
(Roysam et al, 1995). 

6. Debris error occurs when the hybridization 
procedure has been sub optimal. Examples of this 
would be extraneous, fluorescing materials in the 
specimen and the presence of air bubbles, both of 
which would be reflected in the image and lead to 
errors in FISH signal counting. Fortunately, most 
of the debris can be removed by simple size 
filtering and proper featuring of the signals. 

7. Over-segmentation of the tissue causes a major 
error in the evaluation of FISH signals. If the 
same object is divided into several objects with 
different labels, it causes underestimation of the 
FISH signal count per cell nucleus. Similarly, 
undersegmentation (where more than one cell is 
given the same label) causes overevaluation of 
FISH signal count. Any error in marking the cell 
boundary causes an error in the FISH count when 
the signal lies very close to the boundary. If the 
signal lies on the touching or overlapped cell 
boundary, an ambiguity arises about the 
membership of the FISH signal. As mentioned 
earlier, the signals lying on the common 
boundary of the cells can be assigned to a 
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particular cell by checking the location intensity 
peak in the signal profile and the size of the 
signal signature in each of the cells. 

8. Wrong selection of FISH signal features causes 
major errors. In this case, the FISH signal 
channel is contaminated by various types of 
noise. No noise reduction technique completely 
removes the artifacts without affecting the signal 
considerably. Hence it is very important to 
distinguish the FISH signals from the noise 
artifacts, based on proper features. Wrong 
selection of features results in either counting the 
group of noisy voxels as FISH signals, or 
rejecting a weak FISH signal as a noise artifact. 

FEATURE SELECTION FOR F.I.S.H. 
SIGNALS 

It is possible to choose various image features of 
the FISH signals to identify them and segment them 
from the noise artifact. As there is neither definite 
shape, size, orientation nor location of the signal 
within the cell nuclei, one first has to undertake a 
supervised feature selection on a large number of data 
sets before finalizing the list of FISH signal features 
and the range of values one should most probably 
take. We have undertaken the visual identification 
and interactive segmentation of the FISH signals of 
over fifty image data sets of thick prostate tissue 
specimens. This manual analysis has allowed us to 
select some main features and value ranges, which 
can be used to identify signals in testing data sets. 
Some of the FISH signal features, which have been 
identified in this way are 1. volume of the FISH 
Signal V., 2. relative volume defined as the ratio of 
the size of the FISH signal to the average, size of all 
the FISH signals identified within the corresponding 
cell nucleus R., 3. average intensity of the FISH 
signal lavg·• 4. relative intensity defined as the ratio of 
the average intensity of the FISH signal and the 
average intensity of all the FISH signals within the 
corresponding cell nucleus lr., 5. total fluorescent 
intensity /101., 6. location of the FISH signal s., 7. 
shape (three-dimensional) of the FISH signal y, 8. 
local background gray level B. 

Thus, the parameter vector can be written as 

p = [v R I I I s y BJT. For the data used as 
' ' avg ' r ' tot' ' ' 

test sets, the FISH signals have first been visually 
identified with the help of a pathologist. The 
parameters defining these FISH signals are then 
calculated to find lower and upper limits for these 
features. Thresholds for the features such as relative 
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size and relative intensity are also set experimentally. 
Based on the experimental results on the test data sets 
we have defined the range and the average value for 
each of the parameters in vector P. Before measuring 
the features of the signals, the noise associated with 
the channel should be reduced and the signals have to 
be enhanced to distinguish them from the 
background. We have used a hybrid median filter, 
Gaussian smoothing and point finders such as top-hat 
filters to reduce the noise and enhance the FISH 
signals. Size and shape heuristics along with the other 
features mentioned above are then used to identify 
and segment the FISH signals. 

NOISE REDUCTION AND SIGNAL 
ENHANCEMENT 

Median Filtering: In the first step, we have used a 
two-dimensional median filter on each image slice. A 
simple median filter replaces the input pixel by the 
median of the pixels contained in a small window 
around the pixel. We have used a 3x3 window W for 
this purpose. If v(x, y) is the filtered pixel value then, 

v(x,y) = median{u(x - m,y - n)}, where (m,n)EW. 

This filter removes isolated pixels and the binary 
noise in the signal channel. We have not used three
dimensional median filtering since the larger window 
would increase the computation load. 

Gaussian Smoothing: The next step is smoothing. 
FISH signals are localized features. Simple spatial 
averaging would not only blur the signal but would 
also increase the chances of connecting two closely 
located signals. Therefore we used Gaussian 
smoothing. This gives less importance to far away 
voxels and so the distortion of FISH signals will be 
minimized by Gaussian filtering. The 3-D Gaussian 

{- (i2 + j2 +k 2 )!( 2 <J2 )} 
function is given as G[i, j, k] = e . 
The degree of smoothing is characterized by cr. We 
have used a symmetrical Gaussian filter with cr2 = 2. 
Because of Gaussian smoothing, weak noisy signals 
and isolated voxels are smoothed out. Fig. 5b shows a 
representative image slice of the FISH signal channel 
after Gaussian smoothing. As can be seen, there is 
some degree of blurring of the FISH signal after 
smoothing. Top-hat filtering is used to enhance a 
smooth FISH signal by comparing it with a local 
background gray value. In our image processing 
module, we have extended the two-dimensional top
hat filter to a three-dimensional filter. This is done 
because the FISH signals are essentially three
dimensional in nature. The three-dimensional top-hat 
filtering technique is explained below. 



Top-hat Filtering: The ideal top-hat filter is a 
point finder. It consists of a flat disc that rests on a 
surface and a central crown of smaller diameter. This 
filter is centered on each pixel in the image, with the 
brim resting on the surface as shown in Fig. 3. Any 
signal that 'sticks up' through the crown of the hat is 
considered to be a probable FISH signal and is 
brightened up to a higher level. The size of the central 
crown is defined by the smaller of the two 
neighborhood regions as shown in the Fig. 4. The 
larger region represents the local background, which 
the point of interest must exceed in brightness. The 
top-hat method finds the maximum brightness in the 
larger surrounding region and subtracts it from the 
brightest point in the interior region. If the difference 
exceeds the previously defined threshold, which is 
located at the height of the crown of the top-hat filter, 
then that point in central crown is considered as a 
signal. 

lntensi y 
llrnptd. 

Top- hat filter 

~~ 
s (spatial location) 

Fig. 3. Simple example of top-hat operation on one
dimensional sequence of signals. 
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Fig. 4. Three-dimensional top-hat filter. 
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The 3D top-hat filter consists of C1xC2xC3 core 
voxels in a cube of the size W1xW2XW3 window, 
where W; > C; for all i = 1,2,3. Fig. 4 shows 
diagrammatically the 3D top-hat filter we have used 
with WI = w2 = w3 = 5 and c, = c2 = c3 = 3 This 
filter is centered on each voxel in the image. The top
hat method finds the maximum brightness in the 
larger surrounding region and subtracts that from the 
brightest point in the interior core region. If the 
difference exceeds some pre-defined threshold, then 
that point in central crown is considered as FISH 
signal and is enhanced. The threshold is chosen as 
11 + k where 11 is the average gray value of the 
window W1xW2xW3 and k is an experimentally 
determined constant. Fig. 5c, shows a single 
representative image slice of the FISH signal channel 
after top-hat filtering. 

"' . ' 

(a) 

- t -... ..... .. 

.. 

t l .. . . - ~ 
(c) 

.. 

. . 
" 

(b) 

(d) 

' . 
' 

Fig. 5. Result of different steps of noise reduction 
shown over a single representative image of size. 
256x256. (a) Original image slice (b) After Gaussian 
smoothing (c) After top-hat filtering (d) After Size 
and Shape filtering. 

Size and Shape Filtering: When there is a cluster 
of noisy voxels with relatively high intensity, 
smoothing and thresholding may result in making the 
noisy cluster into a connected component. This can 
cause error in the automatic counting of FISH signals. 
Also, the air bubbles and improper use of fluorescent 
materials are reflected as relatively large objects in 
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FISH signal channel. Such noises and artifacts are 
removed by size and shape heuristics. The maximum 
and minimum size of the FISH signal is defined. The 
objects, which do not fall within the size criteria are 
considered as noise artifacts and removed. The 
maximum size range is kept as three times the 
average size of the signal, so that overlapped signals 
are not rejected before being analyzed. Though FISH 
signals do not have any definite shape, it is observed 
that these signals are also three dimensional in nature. 
Hence, only those signals which are within the pre
defined size range and occupy at least two 
consecutive slices in the image stack is considered as 
valid signal. Fig. 5d shows the effect of noise filtering 
using size and shape filtering. 

DETECTION AND COUNTING OF 
F.I.S.H. SIGNALS 

A reasonable method to detect FISH signals and 
to determine their parameters should have the 
following properties. 

• The method should be translation, scaling and 
rotation invariant. 

• The method should be able to detect the range of 
parameters of the signal. 

• The accuracy by which the parameters are 
determined must be as accurate as the level of noise 
permits. Thus, the method should degrade smoothly 
as the level of noise monotonically increases. 

• For further analysis, the method should yield a 
measure of certainty for each signal by describing 
how well it resembles an ideal FISH signal. 

• The method should require a minimal number of 
user-defined parameters. Also, it should be as 
generally applicable as possible and be efficient 
in computer time and memory. 

A simple algorithm for detecting the signals, 
which satisfies the above mentioned conditions, is to 
threshold the image at an appropriate level and 
characterize the signal by using its property to 
distinguish it from background. All the voxels, which 
exceeds a particular threshold are examined for 
whether they satisfy the range of feature values 
present in the feature vector P. Before calculating the 
feature vector the objects are labeled using 3-D 
component labeling algorithm. Each labeled object is 
considered as a possible FISH signal. 

The 3-D component labeling based on simple 
region growing is used to label the possible FISH 
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signals within a specified region. The signal channel 
of the multi-spectral, volumetric image is scanned 
from top left in a raster pattern. Whenever a voxel of 
an object (possible FISH signal) is found, all the 
voxels connected to it are given a unique label. The 
scanning is continued from the point where it was left 
till another voxel, which is not already labeled but 
belongs to a signal is found. In this way a complete 
image is scanned and all the voxels belonging to an 
object are given a unique label. The result of labeling 
also gives the number of objects that may constitute a 
FISH signal in the cell nucleus. The process is 
repeated for all the cells and the possible FISH 
signals per cell nucleus are documented for further 
analysis. 

Let W=[wv,WR,w1 ,w1 ,w1 ,ws,wr ,w8 J be 
avx r tot 

the weights assigned to different features of the FISH 
signals described in the feature vector respectively. If 

P=[v,R,I ,I ,I ,s,y,BJT 
avg r tot 

is the feature vector defining the FISH signal, and the 
vector function defining the decision based on each 
feature is 

d(l3)= [d(s), d(ji), --;----(1 ) if) dt,:-) dTs), dfy), d(B) f then, an 
avg a I! r · tot j 

object in the image space is considered as FISH 
signal if the weighted combination of the decisions 
taken over individual features, is above a pre-defined 
threshold. The elements in the decision vector take 
the value 0 or 1. If the value of the feature is within a 

predefined range, the dD elements take a value of 1, 

otherwise the dD are 0. All the thresholds are chosen 
experimentally using test sets. Features of each FISH 
signal are estimated and the range of the feature value 
from the minimum-to-maximum value found in the 
design set is considered as the threshold range. 

Let us represent the decision as a linear 
combination of corresponding weight and decision 

vector elements, F. = ~ W . · d . (P ) , to be the 
l L; J J J 

J 

weighted decision vector of the possible FISH signal 

under inspection. If F is weighted feature vector of 
an ideal FISH signal, then the match error between 
the ideal FISH signal and the signal i under 
inspection can be defined as 



If this error is below an experimentally defined 
threshold range, then the signal is considered as 
authentic and counted. If the error is above the 
threshold, then the image element (connected 
component which constitutes a spot or FISH signal) 
may be an overlapped FISH signal or is a noise 
artifact due to debris, etc .. 

Automatic detection of the overlapped signals is 
done by inspecting and characterizing the intensity 
profiles and the feature vector of separated signals. 
The signals, which do not conform to the matching 
error are subject to a second stage of analysis. Here, 
the signals are tested for overlapping error. If the size 
of the signals are below the lower threshold of the 
size feature range, such signals are discarded as 
artifacts. If they are above the maximum size of the 
size feature range and intensity features such as 
I , I , I are also above the average feature 
avg tot r 

range, then overlapping of two or more FISH signals 
is suspected. We have used a Gaussian model fitting 
technique to resolve the overlapped signals and to 
find the parameters of the feature vector of such 
signals (Noordmans and Smeulders, 1998). 

First, the connected (labeled) region constituting 
a spot is searched for multiple intensity peaks. If 
multiple intensity peaks of approximately identical 
magnitude are present, then a local Gaussian model 
of the signal is extracted for each intensity peak. Fig. 
7 shows a schematic diagram in 1-D depicting the 
process of fitting the Gaussian model to each 
intensity peak present in the intensity profile of the 
overlapped signal. The amplitude of the Gaussian 
model is equivalent to the intensity peak in the 
profile. The spread of the local Gaussian model for 

(J. h 
the nth intensity profile is defined by __ n_ where 

N 
a is the standard deviation of the intensity of voxels 

of the whole overlapped signal, h" is the normalized 

height of the corresponding intensity peak and N is 
the number of intensity peaks present in the spot 
which has one or more signals in it (Noordmans and 
Smeulders., 1998). 

Fig. 6, is a diagrammatic representation of the 
intensity profile of a two overlapping signals (shown 
in 1-D) and a noise artifact. The magnitude of the 
intensity peak I" of the n th peak is calculated from 

the profile plot. The local Gaussian spread CJ of the 
n 

n th intensity peak is calculated as explained earlier. 
Then the Gaussian model of n1

h peak can be given as, 
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The feature vector of each local Gaussian fitted 
profile is checked for the validity of the model to be a 
FISH signal. The weighted decision vector of each 
locally fitted Gaussian model is compared with the 

ideal decision vector F . The object with multiple 
intensity peaks is considered as constituting as many 
FISH signals as there are peaks whose Guassian fit 
model decision vectors are comparable to the ideal 

decision vector F i.e. the error e; is within 

threshold. After separating all the overlapped signals, 
the FISH signal channel is again subject to 3-D 
component labeling as explained earlier. In the 
second component labeling, the labels given to FISH 
signals are also made to containing the label of the 
cell nucleus in which it is located. Signals are labeled 
separately for each cell nucleus and the maximum 
number of labels used also gives the number of FISH 
signals in the cell. 

(a) 
p 

---------------------------- - - - --- ------ ---"\-~--~ 

(b) 

X 

------------ - --- -~-~~~~_,_-_-_·_·:~---"~--(c37~ 
Fig. 6. Schematic diagram in 1-D of characterizing 
procedure for overlapping signals. (a) Original 
intensity profile of the spot having one or more signal 
peak( s) in it, (b) Approximate fit of a local Gaussian 
model, (cl, c2, c3) Separated profile of the 
overlapped signals. After matching the macro
feature, the third profile is rejected as noise and the 
first two profiles are considered as two signals. 
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RESULTS AND DISCUSSION 

In any field of study, reliable results are only 
achieved by undertaking experiments on a large 
number of data sets. In the case of FISH analyses 
using confocal microscopy, the visual counting of 
signals through successive cell slices is time
consuming and fatiguing. Moreover visual counting 
is not always reproducible. Fig. 7 shows a sequence 
of image slices of the FISH signal channel after noise 
reduction and overlaying the border of the segmented 
cell nuclei. To confirm the usefulness of the 
automated counting of FISH signals, we have 
compared the visual counting results with those of 
automated counting on over 100 data-sets. Cells that 
were out of focus and not of interest to pathologist 
were rejected. Also the cells, which were at the 
border of the image were rejected since the 
completeness of such a cell nuclei can not be 
ascertained. The visual counting was done by an 
experienced pathologist and we consider this to be 
the optimal standard for all comparative study 
purposes. The visual counting took more than a week 
(including rest hours) while the automatic counting of 
the FISH signals in all the selected cells was 
completed within a period of less than an hour. Table 
1 shows the result of visual counting and automatic 
counting. In most of the cases, we have used an 
integrated approach of segmentation (Adiga, 2000) of 
the cells for automatically marking the region of 
interest in the signal channel. More than 94% of the 
accurate comparison is obtained. From this we can 
conclude that the automatic counting is on par with 
the visual counting and the percentage of error is well 
within the acceptable level. 

In table 2, we have compared the results obtained 
by using different segmentation methods and 
automated counting with those obtained by visual 
counting. Errors were sometimes observed when the 
FISH signal was too weak and rejected as noise 
and/or when a strong noise cluster was counted as a 
signal. The main reason for error lies in the absence 
of well-defined features for a FISH signal and in the 
fact that it is not always possible to prepare and 
analyze ideal specimens. Nevertheless, the percentage 
of error we observed lies well within the acceptable 
level. Although we have achieved near complete 
automation of FISH signal counting, our method 
cannot be used routinely for this purpose yet because 
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it has only been tested on very few and similar data 
sets. Analytically, the methods developed are correct, 
but scope for improvement is ever present in the field 
of distinguishing noise from the signal, defining the 
FISH signal features, developing noise reduction 
methods, improving methods to identify and segment 
touching or overlapping signals, etc.. Furthermore, 
the methodology remains to be evaluated on several 
data sets of different types and needs to meet the 
approval of the large community of pathologists 
before it finds routine use in the future. 

Table 1. Comparison of Manual signal count and 
automatic signal count. 

S~.No. Visual Count Automatic Count 
1 13 (5 cells) 13 
2 10 (4 cells) 9 
3 23 (9 cells) 21 
4 31 (13 cells) 31 
5 17 (6 cells) 17 
6 8 (3 cells) 8 
7 28 (11 cells) 25 
8 23 (9 cells) 25 
9 17 (8 cells) 19 
10 33 (14 cells) 33 
11 15 (6 cells) 15 
12 21 (10 cells) 20 
13 13 (4 cells) 13 
14 18 (7 cells) 15 
15 26 (11 cells) 25 
16 9 (4 cells) 9 

error= 5% 

Table 2. Comparison based on the percentage of 
error in FISH signal count based on different tissue 
segmentation techniques. 

sl.nu. Segmentation techniques Percentage 
error 

1 Sobel edge detector 38 % 
2 LoG edge operator 36 % 
3 Canny edge operator 28 % 
4 Layered Segmentation . 13 % 
5 Active contour models 6 % 
6 Active surface models 9 % 
7 Seeded Volume Growing 16 % 
8 Successive pealing-thickening 8 % 
9 3-D watershed 23 % 
10 3-D watershed with merging 11 % 
11 Integrated approach 6 % 
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Fig. 7. Sequence of image slices of the FISH signal channel after noise reduction and over laying the border of 
the segmented cell nuclei. Image slices 3 to 13 are shown. Pictures are scaled to 50% of the original size 
(256><256). 
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