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ABSTRACT

Most practical as well as theoretical works in image processing and mathematical imaging consider images
as real-valued functions,u : X → Rg, where X denotes thebase spaceor pixel spaceover which the
images are defined andRg ⊂ R is a suitablegreyscale space. A variety of function spacesF (X) may be
considered depending on the application. Fractal image coding seeks to approximate an image function as
a union of spatially-contracted and greyscale-modified copies of subsets of itself,i.e., u ≈ Tu, whereT is
the so-calledGeneralized Fractal Transform(GFT) operator. The aim of this paper is to show some recent
developments of the theory of generalized fractal transforms and how they can be used for the purpose of
image analysis (compression, denoising). This includes the formulation of fractal transforms over various
spaces of multifunctions,i.e., set-valued and measure-valued functions. The latter may be useful in nonlocal
image processing.

Keywords: fractal transforms, iterated function systems,measure-valued functions, multifunctions, nonlocal
image processing, self-similarity.

INTRODUCTION

In his classic work, The Fractal Geometry
of Nature, Mandelbrot (1977) presented the first
description, along with an extensive catalog, ofself-
similar sets, namely, sets that may be expressed
as unions of contracted copies of themselves. He
called these sets “fractals,” because their (fractional)
Hausdorff-Besicovitch dimensions exceeded their
(integer-valued) topological dimensions. The ternary
Cantor set and the von Koch “snowflake curve” are two
of the most famous examples of such sets.

Hutchinson (1981) and, shortly thereafter,
Barnsley and Demko(1985) showed how systems
of contractive maps with associated probabilities,
referred to as “iterated function systems” (IFS) by the
latter, can be used to construct fractal, self-similar sets
and measures. These sets and measures are attractive
fixed points offractal transformoperators. (We shall
briefly review IFS in the next section.) But Barnsley
and Demko were the first to see the potential of using
IFS for the purpose ofapproximation: Given a “target”
self-similar set (or measure), sayS, find an IFS fractal
transform operatorT with fixed pointS̄ that is as close
as possible toS. More on this below.

The formulation of IFS-type methods over
various complete metric spaces has been an ongoing
research programme. It involves the construction
of appropriate IFS-type operators, orgeneralized

fractal transforms (GFT), over these spaces,
including various function spaces and distributions
(Cabrelliet al., 1992; Forte and Vrscay, 1998a;b),
vector-valued measures (Mendivil and Vrscay,
2002), integral transforms (Forteet al., 1999),
wavelet transforms (Mendivil and Vrscay, 1997;
Vrscay, 1998). More recently, we have formulated
GFTs over set-valued functions and measures,
i.e., multifunctions, e.g., Kunzeet al. (2007;
2008); La Torre and Mendivil(2008); La Torreet al.
(2009a;b); La Torre and Mendivil(2009).

The action of a generalized fractal transformT :
F (X) → F (X) on an elementu of the complete
metric space(F (X),d) can be summarized in the
following steps:

1. It first produces a set ofN spatially-contracted
copies ofu.

2. It then modifies the values of these copies by
means of a suitable range-mapping.

3. Finally, it recombines these altered copies by
means of an operator appropriate to the space
F (X) to produce the elementv∈ F (X), i.e., v =
Tu.

Under conditions appropriate for each space, the
generalized fractal transformT is a contraction
mapping which, by Banach’s fixed point theorem,
guarantees the existence of a unique fixed point ¯u =
Tū.
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Most practical as well as theoretical works in
image processing and mathematical imaging consider
images as real-valued functions. There are, however,
situations in which it is useful to consider the greyscale
value of an imageu at a pointx as a random variable
that can assume a range of valuesRg ⊂ R. This is
an example of amultifunction representation of image
functions. But it is often not enough to simply know
the greyscale values that may be assumed by an image
u at a point x: one must also have an idea of the
probabilities (or frequencies) of these values. As such,
it may be more useful to represent images bymeasure-
valuedfunctions, for example,µ : X →M (Rg), where
M (Rg) is the set of probability measures supported on
Rg (La Torreet al., 2009b). This is another example
of multifunction representation of an image. Later in
this paper, we outline this formulation along with an
appropriate class of fractal transforms acting on this
space.

The IFS-based inverse problem, which has become
important in a number of applications, may then be
phrased as follows:

Given a “target” elementv ∈ F (X), find
a (point-to-point) contraction mappingT :
F (X) → F (X) with fixed point ū such that
d(v, ū) is as small as possible.

From a practical perspective, however, it is difficult to
construct solutions to this problem so one relies on the
following simple consequence of Banach’s fixed point
theorem, known in the fractal coding literature as the
Collage Theorem(Barnsleyet al., 1985):

Theorem 1 For any v∈ F (X),

d(v, ū) ≤ 1
1−c

d(v,Tv) , (1)

where c is the contractivity factor of T .

Instead of trying to minimize the errord(v, ū), one
looks for a contraction mappingT that minimizes the
so-calledcollage error d(v,Tv). As we shall describe
below, this is the essence offractal image coding
(Fisher, 1995; Lu, 2003). However, this method of
collage codingmay be applied in other situations
where contractive mappings are encountered. We have
shown this to be the case for inverse problems
involving differential equations. In the simplest case
of ordinary differential equations, the contractive
mapping is the Picard integral operators associated
with the initial value problem (Kunze and Vrscay,
1999).

At this point, it should be mentioned that in
collage coding, the contractive (fractal) transformT is

generally defined in terms of a finite set of parameters.
In fractal image coding, this set is often referred to
as thefractal codeassociated with the image. Solving
the inverse problem using collage coding is based on
the following continuity property of fixed points of
contractive mappings (Centore and Vrscay, 1994):

Theorem 2 Let (F (X),d) be a complete metric
space and Con(F (X)) a set of contraction mappings
T : F (X) → F (X). Let T1,T2 ∈ Con(F (X)) with
respective fixed points,̄u1 and ū2 and contraction
factors c1 and c2. Define the distance between T1 and
T2 as follows,

dCon(X)(T1,T2) = sup
u∈F (X)

d(T1u,T2u) .

Then

d(ū1, ū2) ≤
1

1−cmin
dCon(F (X))(T1,T2) ,

where cmin = min(c1,c2).

ITERATED FUNCTION SYSTEMS
(IFS)

IFS: Here we briefly review the IFS formalism of
Hutchinson(1981) and Barnsley and Demko(1985).
In what follows,(X,d) denotes a compact metric “base
space” (or “pixel space”), typically[0,1]n. Let w =
{w1, · · · ,wN} be a set of 1-1 contraction mapswi : X →
X, to be referred to as anN-map IFS. Letci ∈ [0,1)
denote the contraction factors of thewi and define
c = max1≤i≤N ci . Note thatc∈ [0,1).

Now let H (X) denote the set of nonempty
compact subsets ofX and dh the Hausdorff metric.
Then(H ,dh) is a complete metric space (Hutchinson,
1981). Associated with the IFS mapswi is a set-valued
mappingŵ : H (X) → H (X) the action of which is
defined to be

ŵ(S) =
N
⋃

i=1

wi(S) , S∈ H (X) , (2)

wherewi(S) := {wi(x),x∈ S} is the image ofSunder
wi , i = 1,2, · · · ,N.

Theorem 3 (Hutchinson, 1981) ŵ is a contraction
mapping on(H (X),dh):

dh(ŵ(A), ŵ(B)) ≤ cdh(A,B), A,B∈ H (X) . (3)
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Corollary 1 There exists a unique set A∈ H (X),
such thatŵ(A) = A, the so-calledattractorof the IFS
w. This implies that

A =
N
⋃

i=1

wi(A) .

In other words, the attractor A is self-similar since it
may be expressed as a union of copies of itself.

Moreover, A isglobally attractive: For any S∈
H (X), dh(ŵ(S),A) → 0 as n→ ∞.

Simple examples:

1. X = [0,1] and N = 2, with w1(x) = 1
2x, w2(x) =

1
2x+ 1

2. Then the attractorA is simply [0,1].

2. X = [0,1] and N = 2, with w1(x) = 1
3x, w2(x) =

1
3x + 2

3. Then the attractorA = C, the classical
ternary Cantor set on[0,1].

3. X = [0,1]2 andN = 3 with IFS maps,

w1(x,y) = (
1
2

x,
1
2

y) ,

w2(x,y) = (
1
2

x+
1
2
,
1
2

y) ,

w3(x,y) = (
1
2

x+
1
4
,
1
2

y+

√
3

4
) .

The attractor is the “Sierpinski gasket” shown in
Fig. 1 below.

Fig. 1.“Sierpinski gasket”

IFSP: Now let M (X) denote the set of Borel
probability measures onX and dH the Monge-
Kantorovich metric on this set (referred to as the
“Hutchinson metric” in the IFS literature):

dH(µ,ν) = sup
f∈Lip1(X,R)

[

∫

X
f (x)dµ −

∫

X
f (x)dν

]

,

where

Lip1(X,R) = { f : X → R :

| f (x1)− f (x2)| ≤ d(x1,x2),∀x1,x2 ∈ X} .

For 1≤ i ≤ N, let 0< pi < 1 be a partition of unity
associated with the IFS mapswi , so that∑N

i=1 pi =
1. Associated with thisN-map IFS with probabilities
(IFSP) (w,p) is the so-calledMarkov operator, M :
M (X) → M (X), the action of which is

ν(S) = (Mµ)(S) =
N

∑
i=1

piµ(w−1
i (S)), ∀S∈ H (X) .

(4)

Theorem 4 (Hutchinson, 1981) M is a contraction
mapping on(M (X),dH):

dH(Mµ,Mν) ≤ cdH(µ,ν), µ,ν ∈ M (X) . (5)

where c= max1≤i≤N ci is the contraction factor.

Corollary 2 There exists a unique measurēµ ∈
M (X), the so-calledinvariant measureof the IFSP
(w,p), such thatµ̄ = Mµ̄ . Moreover, for anyµ ∈
M (X), dH(Mnµ, µ̄) → 0 as n→ ∞.

Simple examples:

1. The 2-map IFS in Example 1 above, with attractor
A = [0,1]. When p1 = p2, the invariant measure
µ̄ is Lebesgue measure on[0,1]. A histogram
approximation of the invariant measure for the case
p1 = 0.4, p2 = 0.6 is presented in Fig.2.

2. The 2-map IFS in Example 2 above, with attractor
A = C, the classical ternary Cantor set on[0,1].
When p1 = p2 = 1

2, µ̄ is the classical Cantor-
Lebesgue (uniform) measure supported onC.

The reader is referred toBarnsley(1989) for more
detailed discussions as well as numerous examples.

In applications, it is most convenient to employ
affine IFS maps. In this case, the moments of the
invariant measurēµ of the Markov operatorM satisfy
a set of relations that allow them to be computed
recursively (Barnsley and Demko, 1985; Barnsley,
1989; Forte and Vrscay, 1995). We illustrate with the
one dimensional case,i.e., X = [0,1]. The extension to
higher dimensions is quite straightforward.
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Fig. 2.Histogram approximation to invariant measure
on [0,1] for Example 1 above.

The affine IFS maps will be denoted as follows,

wi(x) = six+ai , i = 1,2, · · · ,N . (6)

We consider the moments of a probability measure
µ ∈ M (X) defined as follows,

gn =
∫

X
xndµ, n = 0,1,2, · · · . (7)

By definition, g0 = 1. Now let ν = Mµ. Then, from
Eq.4, the moments ofν are given by

hn =
∫

X
xnd(Tµ)(x)

=
∫

X

N

∑
i=1

pi [six+ai ]
ndµ(x) .

Expansion of the binomial followed by an interchange
of summation and integration yields the result

hn =
n

∑
j=0

(

n
j

)

[

N

∑
i=1

pi s
j
i an− j

i

]

g j . (8)

If we let

g = (g0,g1, · · ·)T , h = (h0,h1, · · ·)T , (9)

denote the (infinite) moment vectors ofµ and ν ,
respectively, then the Markov operatorM is seen
to induce a linear mappingh = Ag, where A is
represented by a lower triangular matrix. This was
originally pointed out inForte and Vrscay(1995).

In fact, the linear operatorA is contractive in
the following complete metric space of weightedl2

moment vectors (Forte and Vrscay, 1995),

D = {g = (g0,g1, · · ·) | g0 = 1,
∞

∑
k=1

gk

k2 < ∞}. (10)

The unique fixed point of this operator is the moment
vector belonging to the invariant measureµ̄ = Mµ̄ of
the IFSP. In this special case, the moment vectorsg
andh in Eq. 9 are equal,i.e., hn = gn. Eq.8 can then
be rearranged to yield

(

1−
N

∑
i=1

pi s
n
i

)

gn =
n−1

∑
j=0

(

n
j

)

[

N

∑
i=1

pi s
j
i an− j

i

]

g j .

(11)
This result, originally derived in (Barnsley and Demko,
1985), shows that the momentsgn of the invariant
measurēµ may be computed recursively, starting with
g0 = 1.

The fact thatA is contractive naturally leads to
a collage theorem for moments(Forte and Vrscay,
1995). This leads to a formulation of the inverse
problem of IFSP-based approximation of measures in
terms of moments.

Before concluding this section, we mention that
in the historical development of IFS, measures (hence
the method of IFSP) were viewed as being potentially
more useful for the representation/approximation of
images, because of their ability to accomodate shading.
As a result, a good deal of work was devoted to the
inverse problem of approximation of measures using
IFSP – see, for example, (Vrscay and Roehrig, 1989;
Vrscay, 1990). In fact, the fractal block image coding
method ofJacquin(1992) was originally formulated in
terms of measures (Jacquin, 1989), although it is also
quite naturally expressed in terms of functions, as will
be seen below.

IFSM: In this setting we consider a general
function spaceF (X) supported onX. The essential
components of afractal transform operatorare as
follows.

1. A set ofN one-to-one contraction mapswi : X →X
with the condition that∪N

i=1wi(X) = X.

2. A set of associatedgreyscale mapsφi : R→R that
are assumed to be Lipschitz onR, i.e., for eachφi
there exists aKi ≥ 0 such that

|φi(t1)−φi(t2)| ≤ Ki |t1− t2|, for all t1, t2 ∈ R.

In most application, the greyscale maps are
assumed to be affine,i.e.,

φi(t) = αit +βi , (12)

which automatically satisfies the Lipschitz
condition.
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The above two sets of maps are said to comprise
an “Iterated Function System with greyscale maps”
(IFSM), denoted as (w, Φ) (Forte and Vrscay, 1998a).
For eachx∈X, this IFSM produces one or morefractal
componentsdefined as

gi(x) =

{

φi(u(w−1
i (x))), if x∈ wi(X),

0, otherwise.

If several fractal components exist for anx ∈ X,
then they are combined with an operation that is
suitable for the space in which we are working
(see Forte and Vrscay(1998a) for more details and
examples of the various function spaces that can
be considered). We usually consider the summation
operator forF (X) = Lp(X), i.e., for a u∈ Lp(X), the
action of the fractal transform is given by

v(x) = (Tu)(x) =
N

∑
i=1

gi(x) . (13)

Theorem 5 (Forte and Vrscay, 1998a) Let (w,Φ) be
an IFSM as defined above, with spatial contractions
wi and Lipschitz greyscale mapsφi . Then for p≥ 1
and u,v∈ Lp(X),

‖ Tu−Tv‖≤
[

N

∑
i=1

c1/p
i Ki

]

‖ u−v ‖ . (14)

Corollary 3 If c =
[

∑N
i=1c1/p

i Ki

]

< 1, then T is

contractive in Lp(X) with fixed pointū ∈ Lp(X). The
fixed point equation,

ū(x) = (Tū)(x) =
N

∑
i=1

φi(ū(w−1
i ))(x) ,

indicates thatū is “self-similar,” i.e., that it can be
written as a sum of spatially-contracted and greyscale-
modified copies of itself.

Example: X = [0,1] andN = 3, with IFS maps

w1(x) =
1
3

x, w2(x) =
1
3

x+
1
3
, w3(x) =

1
3

x+
2
3
,

and associatedφk maps,

φ1(t) =
1
2

t, φ2(t) =
1
2
, φ3(t) =

1
2

t +
1
2
.

(Note that in theL2-sense, the subsetswi(X) may
be considered as nonoverlapping.) The fixed-point
function ū(x) of this IFSM is the famous “Devil’s
staircase function,” sketched in Fig.3 below. Clearly,
ū(x) may be viewed as a union of three contracted
copies of itself, with the middle copy being a
“flattened” one.
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Fig. 3.“Devil’s staircase function” on[0,1].

It is also convenient to define IFSM operators with
condensation functions. For example, given a set of
IFS mapswi , associated constantsαi and condensation
functionb(x), x∈X, define the action of the associated
operatorT as follows: Foru∈ L1(X),

v(x) = (Tu)(x) = b(x)+
N

∑
i=1

αiu(w−1
i (x)) . (15)

We now have the apparatus to consider the inverse
problem of IFS-based approximation of functions.
In practice, one normally works with a fixed set of
IFS mapswi , 1 ≤ i ≤ N, and then finds the optimal
associated greyscale mapsφi – optimal in the sense
that the collage distance‖v−Tv‖ is minimized, where
v is the function to be approximated. This is the basis
of fractal image coding, which we outline in the next
section.

LOCAL SELF-SIMILARITY AND
BLOCK FRACTAL IMAGE CODING

In practical applications, it is overly ambitious to
expect that a signal or image will display the self-
similarity property used above,i.e., that it can be well
approximated as a union of spatially-contracted and
range-modified copies of itself. It is more reasonable
to expect that a signal or image belocally self-
similar, i.e., it may be well approximated as a union
of spatially-contracted and range-modified copies of
subsetsof itself. This is the basis of Jacquin’s original
fractal block coding method (Jacquin, 1989; 1992)
which is also known as thelocal or partitioned
IFS method(Barnsley and Hurd, 1993). We forego a
formal mathematical discussion of this method and
simply consider the particular case of fractal block
coding of images. Here, subblocks of an image are

67



LA TORRED ET AL : Generalized fractal transforms and self-similarity

approximated by contracted and greyscale-modified
copies of other subblocks of the image.

A very simple prescription for the fractal coding
of an n × n-pixel image u(x) is as follows. Let
Rk, k = 1,2, · · · ,NR, denote a set ofnR × nR-pixel
nonoverlappingrange blocksthat form a partition
of the image. LetD j , k = 1,2, · · · ,ND be a set of
2nR×2nR-pixel domain blocksthat are selected from
throughout the image. (In order to keep the size of
the domain pool down, but at the expense of some
accuracy, we may consider the set of nonoverlapping
2nR×2nR-pixel blocks that cover the image.)

For each range block,Rk, compute the collage
errors∆k j associated with all domain blocks,D j , i.e.,

∆k j = min
α ,β

‖u(Rk)−αũ(D j)−β‖, j = 1,2, · · · ,ND.

(16)
Here, ũ(D j) denotes thenR× nR-pixel block image
obtained by “decimating” the 2nR×2nR-pixel domain
block imageu(Dk). (For digital images, decimation is
normally accomplished by replacing the image values
over four neighbouring pixels that form a square
in Dk by their average value placed on one pixel.
Following the decimation, we may consider all eight
possible isometries that map one block to another,i.e.,
four rotations and four reflections.) The blockD j(k)
yielding the lowest collage error∆k j is chosen to be
the domain block associated withRj .

The above procedure yields a fractal transform
T which is defined in terms of the range-domain
assignments(k, j(k)) (along with isometriesi(k)
if applicable) andφ -map parametersαk,βk. These
parameters comprise thefractal codeof the imageu.
The action ofT may be expressed as follows: For each
range blockRk, 1≤ k≤ NR,

(Tu)(x) = αku(w−1
k, j(k)(x))+βk, x∈ Rk. (17)

By construction, the fractal transformT minimizes the
total squared collage distance

‖u−Tu‖2 =
NR

∑
k=1

∆2
k, j(k). (18)

over the nonoverlapping range blocksRk. (Because
the range blocksRk are nonoverlapping, each
approximation can be performed independently.)

The fixed point ¯u of T – the desired approximation
to u – is then generated by iteration: Start with any
n× n-pixel “seed” image,u0, for example the blank
imageu0 = 0, and form the iteration sequenceum+1 =
Tum. (Because the image is discrete, convergence is
achieved in a finite number of iterations.) At each step

m ≥ 1 of the iteration procedure, each range block
imageum(Rk) of um supported onRk is replaced by
the affine scaled imageαkũm(Dk)+βk.

The result of this procedure, as applied to the
512× 512-pixel, 8 bit-per-pixel test imageBoat, is
shown in Fig.4. Here, the range blocksRk employed
in the calculation were the 4096 nonoverlapping 8×8-
pixel blocks of the image. The domain blocksDk used
were the 1024 nonoverlapping 16× 16-pixel blocks.
The top left of the figure shows the original test image.
Moving clockwise in the figure, the iteratesu1 andu2
corresponding to the “seed” imageu0 = 0 (black) are
shown. The lower left image is the fixed point ¯u = u10
corresponding to the fractal transformT.

In this example, there was no attempt to perform
any image compression. As such, theα and β
parameters were stored as real numbers to full
machine precision, and not quantized according to
any prescribed bit allocation. The so-called “PSNR
value” of the fixed-point approximation, a measure
of the accuracy of the approximation in terms ofL2

error is roughly 25 dB. (The higher the PSNR, the
lower theL2 error.) A better approximation to the test
image, corresponding to a higher PSNR value, would
be achieved if 4× 4-pixel blocks were used for the
range blocksRk.

For more detailed accounts of fractal coding, the
reader is referred toBarnsley and Hurd(1993); Fisher
(1995); Lu (2003).

GENERALIZED TRANSFORMS

Iterated Function Systems on Multifunctions:
We now outline a simple IFS-type method on
multifunctions, that is, set-valued functions. As a
motivation, we suppose that to each pixel of an image
is associated an interval which measures the “error”
in the greyscale value at that pixel. For simplicity, we
examine only the one-dimensional case where the base
space isX = [0,1]. The extension to higher dimensions
is straightforward.

Consider the space of multifunctionsF = {F :
X → H (Y)} and suppose thatF(x) is a compact
subinterval ofY for all x∈X. It is quite straightforward
to prove (La Torreet al., 2009a) thatF is a complete
metric space with respect to the following metrics:

d∞(F,G) = sup
x∈X

dh(F(x),G(x))

and

dp(F,G) =

(

∫

X
dh(F(x),G(x))pdµ(x)

)1/p

.
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Fig. 4.Starting at upper left and moving clockwise: The original512×512-pixel, 8 bit/pixel “Boat” test image.
The iterates u1 and u2 along with the fixed point̄u = u10 of the fractal transform operator T designed to
approximate the test image. The “seed” image was u0 = 0 (black).

whereµ is the Lebesgue measure. A fractal transform
operator onF may now be defined in terms of the
following ingredients:

1. As before, a set of 1-1 contractive IFS maps,wi :
X → X, 1≤ i ≤ N,

2. A set of associated constantsαi ∈ R, 1≤ i ≤ N,

3. A set of associated place-dependent probability
functionspi : X → (0,∞), 1≤ i ≤ N,

4. A “condensation multifunction”,β (x) ∈ H (Y):
For eachx∈ X, β (x) ∈ H is an interval inY.

These ingredients, which comprise anN-map “Iterated
Function System on Multifunctions” (IFSMF), are

now used to define the following fractal transform
operator,T : F → F ,

(TF)(x) = β (x)+
N

∑
i=1

pi(x)αiF(w−1
i (x)).

The reader will note that this operator is a
multifunction analog of the “normal” IFS with
condensation in Eq.15.

Theorem 6 (La Torre et al., 2009a) The following
inequalities hold:

dp(T(F),T(G)) ≤ N(p−1)/p

(

N

∑
i=1

α p
i sp

i pp
i

)1/p

dp(F,G),
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d∞(T(F),T(G)) ≤
[

sup
x

N

∑
i=1

αi pi(x)

]

d∞(F,G),

where pi = supx pi(wi(x)) and si ≥ 0 are such that
dµ(wi(x)) ≤ sidµ(x).

Example: In Fig. 5, approximations to the attractor
multifunctions onX = [0,1] are plotted for two IFSMF
with two contractive IFS mapswi . The top image
corresponds to the attractor for the following IFSMF:

w1(x) = 0.6x, α1 = 0.7, p1(x) = 0.5,

w2(x) = 0.6x+0.4, α2 = 0.5, p1(x) = 0.5,

β (x) = [0.5,1.0]. (19)

The bottom image corresponds to the attractor of the
IFSMF with the samewi maps andαi andpi constants
as above but with the followingβ -function:

β (x) = [0,1], 0≤ x < 0.5,

β (x) = [0.5,1.5], 0.5≤ x≤ 1. (20)

Note that the setsw1(X) andw2(X) overlap over the
interval[0.4,0.6].

The multifunction attractorF(x) corresponding
to Eq. 19 exhibits tiny jumps atx = 0.4 and x =
0.6, the endpoints of the region of this region
of overlap. Because of the self-similarity of the
IFSMF, these jumps will be propagated throughout
the multifunction. However, the jumps are quite
small because the condensation multifunctionβ (x)
is the same overX = [0,1]. On the other hand,
the condensation multifunctionβ (x) demonstrates a
significant change at pointx = 0.5. This, along with
the jumps associated with the overlappingwi maps,
produces much more irregular upper and lower bounds
of the intervals comprisingF(x).

An inverse problem for multifunction
approximation in the spaceF can be formulated
as follows: Given a multifunctionF ∈ F , find a
contractiveN-map IFSMF operatorT : F → F that
admits a unique fixed point̃F ∈ F such thatd∞(F, F̃)
is sufficiently small. Once again, we consider the
simplification of this problem provided by the Collage
Theorem. The inverse problem then becomes one of
finding a contractive IFSMF operatorT that maps the
“target” multifunctionF as close to itself as possible,
i.e., the collage distanced∞(F,TF) is made as small as
possible. The following inequalities are useful for this
approach.
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Multifunction attractorF(x) of IFSMF in Eq.20.

Fig. 5. Pictorial representation of the multifunction
attractors F(x) for the two IFSMF in the above
Example. In each case, for an x∈ X = [0,1], F(x) is
an interval[a(x),b(x)]. The lower and upper bounds of
these intervals, a(x) and b(x), respectively, are plotted
in the figures.

Theorem 7 (La Torre et al., 2009a) The following
inequalities hold:

dp(F,TF)p ≤ ‖minF −minTF‖p
p

+‖maxF −maxTF‖p
p ,

d∞(F,TF) ≤
N

∑
i=1

pi sup
x∈X

max{Ai(x), Āi(x)} ,

where

Ai(x) = |minF(x)−min(β (x)+αiF(w−1
i )(x))|,

Āi(x) = |maxF(x)−max(β (x)+αiF(w−1
i (x)))|

and
pi = sup

x∈X
pi(wi(x)) .

Iterated Multifunction Systems: In this section,
we describe a multifunction extension of IFS. In
what follows, X will once again denote a base
space, typically[0,1]n. We now consider a set ofn
multifunctions Ti : X → H (X), i ∈ 1. . .n (for each
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i, Tix ∈ H (X) for all x ∈ X). Now construct the
multifunctionT : X ⇉ X, where

Tx=
n

⋃

i=1

Tix, ∀ x∈ X. (21)

Assume that the multifunctionsTi are contractions
with contractivity factorsci ∈ [0,1), that is,

dh(Tix,Tiy) ≤ cid(x,y), ∀ x,y∈ X. (22)

Then there exists an element ¯x ∈ X such that ¯x ∈ Tx̄
(Kunzeet al., 2007). The element ¯x is known as a fixed
point ofT. Note that ¯x is not necessarily unique.

Now given a compact setA∈ H (X) consider the
image

T(A) =
⋃

a∈A

Ta∈ H (X). (23)

Since T : (X,d) → (H (X),dh) is a continuous
function thenT(A) is a compact subset ofH (X).
Therefore, we can construct a multifunctionT∗ :
H (X) ⇉ H (X) as follows:

1. For eachA∈ H (X), defineT∗(A) = T(A).

2. Consider the Hausdorff distance onH (X): Given
two subsetsA,B⊂ H (X), define

dhh(A,B) = max{sup
x∈A

inf
y∈B

dh(x,y),sup
x∈A

inf
y∈B

dh(x,y)}.
(24)

It then follows thatT∗ : H (X) ⇉ H (X) and

dhh(T
∗(A),T∗(B)) ≤ cdh(A,B). (25)

Now given a pointx ∈ X and a compact setA ⊂ X
we know that the functiond(x,a) has at least one
minimum pointā whena∈ A. We callā theprojection
of the point x on the setA and denote it as ¯a =
πxA. Obviouslyā is not unique but we choose one of
the minima. We now define the following projection
functionPassociated with a multifunctionT defined as
P(x) = πx(Tx). We therefore have the following result,
proved inKunzeet al. (2008).

Theorem 8 Let(X,d) be a complete metric space and
Ti : X →H (X) be a finite number of contractions with
contractivity factors ci ∈ [0,1). Let c= maxi ci . Then

1. For all compact A⊂ X there exists a compact
subsetĀ ⊂ X such that An+1 = P(An) → Ā when
n→ +∞.

2. Ā⊂ ⋃

i Ti(Ā).

As in the previous sections, letM (X) be the
set of probability measures onB(X) and consider
the complete metric space(M (X),dM). Given a
set of multifunctionsTi : X → X with associated
probabilities pi , one can now consider generalized
Markov operators onM (X).

Fractal transforms on measure-valued functions:In
what follows,X = [0,1] will denote the “base space,”
i.e., the support of the images.Rg ⊂ R will denote a
compact “greyscale space” of values that our images
can assume at anyx∈ X andB will denote the Borelσ
algebra onRg with µL the Lebesgue measure. LetM

denote the set of all Borel probability measures onRg
anddH the Monge-Kantorovich metric on this set. For
a givenM > 0, let M1 ⊂ M be a complete subspace
of M such thatdH(µ,ν) ≤ M for all µ,ν ∈ M1. We
now define

Y = {µ : X → M1,µ is measurable} (26)

and consider on this space the following metric

dY(µ,ν) =
∫

X
dH(µ(x),ν(x))dµL . (27)

We observe thatdY is well defined, sinceµ and ν
are measurable functions,dH is bounded and so the
functionξ (x) = dH(µ(x),ν(x)) is integrable onX.

Theorem 9 (La Torre et al., 2009b) The space(Y,dY)
is complete.

We now construct and analyze a fractal transform
operatorM on the space(Y,dY) of measure-valued
functions. We list the ingredients for a fractal
transform operator in the spaceY. The reader will
note that they form a kind of blending of IFS-
based methods on measures (IFSP) and functions
(IFSM). For simplicity, we assume thatX = [0,1]. The
extension to[0,1]n is straightforward.

1. A set ofN one-to-one contraction affine mapswi :
X → X, wi(x) = six+ ai , with the condition that
∪N

i=1wi(X) = X,

2. A set ofN greyscale mapsφi : Rg → Rg, assumed
to be Lipschitz,i.e., for eachi, there exists aαi ≥ 0
such that

|φi(t1)−φi(t2)| ≤ αi |t1− t2|, ∀t1, t2 ∈ Rg, (28)

3. For eachx ∈ X, a set of probabilitiespi(x), i =
1, · · · ,N with the following properties:

– pi(x) are measurable as functions ofx

– pi(x) = 0 if x /∈ wi(X) and

– ∑N
i=1 pi(x) = 1 for all x∈ X.
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The action of the fractal transform operatorM :
Y →Y defined by the above is as follows: For aµ ∈Y
and any subsetS⊂ Rg,

ν(x)(S) = (Mµ(x))(S) =
N

∑
i=1

pi(x)µ(w−1
i (x))(φ−1

i (S)).

(29)

Theorem 10 (La Torre et al., 2009b) Let pi =
supx∈X pi(x). Then forµ1,µ2 ∈Y,

dY(Mµ1,Mµ2) ≤
(

n

∑
i=1

|si |αi pi

)

dY(µ1,µ2). (30)

Corollary 4 Let pi = supx∈X pi(x). Then M is a
contraction on(Y,dY) if

n

∑
i=1

|si |αi pi < 1. (31)

Consequently there exists a measure-valued mapping
µ̄ ∈Y, such that̄µ = Mµ̄ .

Examples:

1. The fractal transformM defined by the following
two-IFS-map system onX = [0,1]:

w1(x) =
1
2

x, φ1(t) =
1
2

t,

w2(x) =
1
2

x+
1
2
, φ2(t) =

1
2

t +
1
2
.

The setsw1(X) and w2(X) overlap at the single
pointx = 1

2 so we let

p1(x) = 1, p2(x) = 0 x∈ [0,
1
2
),

p1(x) = 0, p2(x) = 1 x∈ (
1
2
,1],

p1(
1
2
) = p2(

1
2
) =

1
2

.

It is easy to confirm thatM is contractive. Its fixed
point µ̄ is given by

µ̄(x) = δ (t −x), x∈ [0,1], (32)

whereδ denotes the Dirac delta function.

2. A “perturbation” of the above fractal transformM
that is produced by adding the following IFS and
associated greyscale maps:

w3(x) =
1
2

x, φ3(t) =
1
2

t +0.1.

The setsw1(X) andw3(X) overlap over the entire
subinterval[0, 1

2] so we let

p1(x) = p3(x) =
1
2
, p2(x) = 0 x∈ [0,

1
2
),

p1(x) = p3(x) = 0, p2(x) = 1 x∈ (
1
2
,1],

p1(
1
2
) = p2(

1
2
) = p3(

1
2
) =

1
3
.

Once again, it is easy to confirm thatM is
contractive. Its fixed pointµ̄(x) is sketched in
Fig. 6.

At this point, we mention that it is difficult to
produce a sketch of the fixed point̄µ(x) that will
capture all of its detailed structure. First of all, the
plot of µ̄(x) in the figure has the appearance of a
(sheared) Sierpinski gasket with vertices at(0,0),
(0,1/3) and(1,1). The “gaps” in this gasket reflect
regions of low measure. Any attempt to increase
the darkness of these regions would remove any
idea of the self-similar variations in̄µ(x) in thex-
direction.

The important feature to note in this figure is that
the the overlapping of thew1 and w3 maps over
[0, 1

2] is responsible for the self-similar “splitting”
of the measures̄µ(x) (hence lighter shading) over
this interval, sinceφ3 produces an upward shift
in the greyscale direction. Sincew2(x) maps the
support[0,1] of the entire measure-valued function
onto [1

2,1], the self-similarity of the measure over
[0, 1

2] is carried over to[1
2,1].

0 x 1

Fig. 6.A sketch of the invariant measurēµ(x) for the
three-IFS map fractal transform in Example 2, x∈X =
[0,1], y∈ Rg = [0,1].
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We now show that the moments of measures in the
space(Y,dY) also satisfy recursion relations when the
greyscale mapsφi are affine. We now consider the
local orx-dependent moments of a measureµ(x) ∈Y,
defined as follows,

gn(x) =
∫

Rg

sndµx(s) , m= 0,1,2, · · · . (33)

where we use the notationµx = µ(x) in the Lebesgue
integral for simplicity. By definition,g0(x) = 1 for
x ∈ X. Obviously the functionsgm are measurable on
X (since µ(x) are measurable) and bounded so that
gm ∈ L1(X,L ). We now derive the relations between
the moments of a measureµ ∈ Y and the moments
of ν = Mµ whereM is the fractal transform operator
defined in Eq.29.

Let hn denote the moments ofν = Mµ. Then

hn(x) =
∫

Rg

snd(Mµ)x(s)

=
∫

Rg

N

∑
i=1

pi(x)[φi(s)]
nd(µw−1

i (x))(s).

For affine greyscale maps of the formφ(s) = αis+βi ,
we have

hn(x) =
∫

Rg

N

∑
i=1

pi(x)(αi +sβi)
nd(µw−1

i (x))(s)

=
n

∑
j=0

[

N

∑
i=1

pi(x)cn jα j
i β m− j

i

]

g j(w
−1
i (x)),

where

cn j =

(

n
j

)

.

The reader may compare the above result to that of
Eq.8 for the IFSP case. The place-dependent moments
hn(x) are related to the momentsgn evaluated at the
preimagesw−1

i (x). And it is the greyscaleφ(s) maps
that now “mix” the measures, as opposed to the spatial
IFS mapswi(x) in Eq.8.

In the special case thatµ = µ̄ = Mµ̄ , the fixed
point ofM, thenhn(x) = gn(x) and we have

gn(x) =
n

∑
j=0

[

N

∑
i=1

pi(x)cn jα j
i β n− j

i

]

g j
(

w−1
i (x)

)

.

In other words, the momentsgn(x) satisfy recursion
relations that involve moments of all orders up ton
evaluated at preimagesw−1

i (x). Note that this does not
yield a rearrangement, analogous to Eq.11, which will
permit a simple recursive computation of the moments
gn(x). Nevertheless, the momentfunctions can be
computed recursively (see (La Torreet al., 2009b)).

MEASURE-VALUED FUNCTIONS,
NONLOCAL IMAGE PROCESSING
AND FRACTAL CODING

Nonlocal image processing, the manipulation of
the value of an image functionu(x) based upon
values ofu(yk) elsewhere in the image, has recently
received a great deal of attention, due in part to the
success of the nonlocal means image denoising method
(Buadeset al., 2010). (This is in contrast to standard
image processing methods which arelocal in nature,
i.e., the pointsyk lie in a neighbourhood ofx.) Fractal
image coding, outlined earlier in this paper, is another
example of a nonlocal image processing method. In
fact, both of these methods may be viewed under the
umbrella of a more general model of affine image self-
similarity (Alexanderet al., 2008), in which subblocks
of an image are approximated by other sublocks of the
image.

In La Torreet al. (2009b), we showed how
the multifunction/measure-valued representation of
images, outlined in the previous section of this paper,
may be useful in nonlocal image processing methods.
In these methods, the valueu(x) of an image function
at a pointx ∈ X is replaced by a transformed value
Tu(x) which is usually composed by several values
of the image functionu(yk) that lie elsewhere in the
image. It may be useful to store these values in a
measure or distributionµ(x) before performing the
final projection of these values in order to produce the
transformed valueTu(x). For example, the measure
µ(x) could be used to characterize thelocal self-
similarity of an image at a pointx∈ X. The measure-
valued formalism was used to analyze both the
methods of nonlocal means denoising as well as fractal
image coding. We now outline briefly its application to
the latter.

Historically, most fractal image coding research
focussed on its compression capabilities – obtaining
acceptable accuracy with the smallest possible domain
pool in order to minimize (i) search times and (ii)
storage of the fractal code. The fact that range blocks
Ri of an image are, in general, well approximated by
a good number of domain blocksD j does not seem
to have been emphasized or exploited. Consequently,
investigations generally focussed on the results yielded
by optimal domain blocks of the pool and not on the
possible use of suboptimal ones. The reader will recall
that the fractal coding method described earlier in this
paper was based on the selection of thebestdomain
block for each range block.
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More recently, however, the redundancy of good
domain/range pairings has been exploited (Alexander,
2005) in order to perform image denoising. As in
the case of nonlocal means denoising, the use of
several domain blocks corresponds to an averaging
over multiple samples, resulting in a reduction of noise
variance. This may be viewed as amultiparentfractal
block coding method.

At this point, it is important to mention
that the idea of using several domain blocks for
each range block is not new. Some examples of
multiparent fractal coding schemes may be found in
Gharavi-Alkhansari and Huang(1994); Vines (1995),
andFurusawa and Nakagawa(2004).

A simple measure-valued method associated
with fractal coding: Here we outline a simple
multiparent block fractal coding scheme that results
from a modification of the block-based fractal coding
method outlined an earlier section. This multiparent
scheme lends itself nicely to a measure-based
formalism.

For convenience, we consider the same (square)
range and domain block arrangement used in the
fractal image coding scheme outlined earlier. For each
range blockRi , we compute the∆i j approximation
errors associated withall domain blocksD j , cf.Eq.16.
(Recall that for each range/domain pairing(Ri ,D j)
there are eight spatial contraction/decimation maps
wk

i j : D j → Ri , 1 ≤ k ≤ 8. Once again, for simplicity
of notation, we shall omit thek index.) The optimal
greyscale map minimizing the error∆i j will be denoted
as

φi j (t) = αi j t +βi j . (34)

For this pairing we also assign a weightpi j , normalized
so that

ND

∑
j=1

pi j = 1, 1≤ i ≤ NR . (35)

For each range blockRi , it would seem natural to
employ higher weightspi j for those domain blocksD j
that yield lower collage errors∆i j . Here we consider
the following weighting scheme,

pi j =
1
Zi

exp

(

−
∆P

i j

hP

)

, (36)

where P > 0, h > 0 and Zi = ∑ j exp(−∆P
i j /hP) is

the normalization factor guaranteeing that∑ j pi j = 1
for each i. In practice,P is either 1 or 2. Here, we
shall employP = 2, i.e., a Gaussian-type weighting.
Regarding the adjustable parameterh > 0:

1. In the limith→ 0+, thepi j with the smallest error
∆i j will be selected.

2. In the limit h → ∞, all pi j become equal,i.e., all
range/domain pairings are employed equally.

The resulting multiparent block transform operator
T is then defined as

v(x) = (Tu)(x) =
ND

∑
j=1

pi j αi j u(w−1
i j (x))+βi j ,

x∈ Ri , 1≤ i ≤ NR . (37)

This definition represents a generalization of the fractal
transform operator of Eq.17 since not only one
but several, perhaps all, domain blocksD j ∈ D can
contribute to the modification ofu(x) for x ∈ Ri .
Under appropriate restrictions on theα parameters,
this transform is attractive, which implies the existence
of a fixed point function ¯u(x) which will provide
an approximation to the original imageu(x) being
fractally coded.

At this point, we emphasize that the above
multiparent fractal transform operatorT takes all of
the preimagesu(w−1

i j (x)) of an image function value
u(x) and from them produces a single valuev(x). We
now illustrate how the measure-valued image function
can be used to examine therange of valuesassumed
by these preimages.

First, we associate with the image functionu(x) a
corresponding measure-valued image functionµ(x) ∈
(Y,dY) as follows:

µ(x) = δu(x), x∈ X. (38)

Here,δt denotes a unit point-mass measure att ∈ Rg.
With an eye to Eq.29, we now define a measure-
valued image functionν = Mµ ∈ Y as follows: For
any measurable setS⊂ Rg = [0,1] and anyx∈ Ri , we
define

ν(S) = (Mµ)(x)(S)

= ∑
j=1

pi j µ(w−1
i j (x))(φ−1

i j (S)) . (39)

Given a range blockRi , then at each point/pixelx∈ Ri ,
we keep track of all greyscale values of the image
function u that are mapped tox by a domain/range
mapping wi j and modified by the corresponding
greyscale mapφi j . These values are weighted and
combined to define the probability measureν(x).

This idea is illustrated below for theBoat image
shown earlier. First of all, we shall concentrate on the
row of pixels u(256, j), j = 1, · · · ,256 in the image.
These are the pixels that run from the midpoint of
the left edge to the center of theBoat image. These
greyscale values are plotted in Fig.7 below.
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Fig. 7. Greyscale values of the (normalized)Boat
image u(256, j), j = 1,256.

The “dips” in the above plot corresond to the
various masts and the two prominent areas of
increased greyscale value/brightness correspond to the
lighthouse (left) and the boat’s cabin (right). The dark
area at the extreme right represents the shaded part of
the cabin.

In Fig. 8 we show pictorial representations of
the measure-valued functionsν(x) for these pixels
corresponding to three values of the parameterh,
namelyh = 0.01,h = 0.1 andh = 1.0.

In these figures, darker regions have higher
associated measures. In the leftmost figure, the very
small parameter valueh = 0.01 concentrates the
measures close to theBoat image valuesu(256, j)
since only domain blocks with low approximation
errors are used to approximate them. Ash is increased
to 0.1, the measure (middle figure) becomes more
diffuse, as blocks with higher errors are admitted.
The measure associated withh = 1.0 (right figure) is
virtually identical to that ofh = 0.1.

In each of the above three cases, however, the
measureν(x) at a pixelx represents a “preprocessing”
of the fractal coding method, essentially giving a
picture of the preimages of the pixel valueu(x) that
are then used to construct a transformed valuev(x).

Even more interesting is the effect of (additive)
noise on these measures. As expected, the measures
become even more diffuse. This feature, along with a
simple associated denoising method, was analyzed in
La Torreet al. (2009b).

CONCLUSIONS

Starting with the classical definitions of
generalized fractal transforms(GFT), we have
reviewed the results of more recent work on the

formulation of GFTs over spaces of multifunctions,
including the space of measure-valued functions.
These new formalisms may be useful in nonlocal
image processing. We plan to explore the further use of
these methods in characterizing image self-similarity
in future papers.
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