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ABSTRACT

Most practical as well as theoretical works in image proogsand mathematical imaging consider images
as real-valued functionsy : X — Ry, where X denotes thebase spaceor pixel spaceover which the
images are defined arltly C R is a suitablegreyscale spaceA variety of function spaces?(X) may be
considered depending on the application. Fractal imagengaskeks to approximate an image function as
a union of spatially-contracted and greyscale-modifiedeopf subsets of itself,e., u~ Tu, whereT is

the so-calledseneralized Fractal TransforrfGFT) operator. The aim of this paper is to show some recent
developments of the theory of generalized fractal tramséoand how they can be used for the purpose of
image analysis (compression, denoising). This includesfahmulation of fractal transforms over various
spaces of multifunctions,e., set-valued and measure-valued functions. The latter raaysbful in nonlocal
image processing.

Keywords: fractal transforms, iterated function systemsasure-valued functions, multifunctions, nonlocal
image processing, self-similarity.

INTRODUCTION fractal transforms (GFT), over these spaces,
including various function spaces and distributions
In his classic work, The Fractal Geometry (Cabrellietal, 1992 Forte and Vrscay 1998ab),
of Nature Mandelbrot (1977 presented the first vector-valued — measures Mendivil and Vrscay
description, along with an extensive catalog,seff- 2002, integral transforms HForteetal, 1999,
similar sets namely, sets that may be expressedvavelet transforms Mendivil and Vrscay 1997
as unions of contracted copies of themselves. H¥rscay, 1998. More recently, we have formulated
called these sets “fractals,” because their (fractionalpFTs over set-valued functions and measures,
Hausdorff-Besicovitch dimensions exceeded their-€, multifunctions, e.g, Kunzeetal. (2007,
(integer-valued) topological dimensions. The ternar2008; La Torre and Mendivil(2008; La Torreet al.
Cantor set and the von Koch “snowflake curve” are twd2009ab); La Torre and Mendivi{2009.

of the most famous examples of such sets. The action of a generalized fractal transfofim

Hutchinson (1981 and, shortly thereafter, 7 (X) — #(X) on an elemenu of the complete
Barnsley and Demko(1989 showed how systems Metric space(.#(X),d) can be summarized in the
of contractive maps with associated probabilities/ollowing steps:
referred to as “iterated function systems” (IFS) by they 1t first produces a set ofl spatially-contracted
latter, can be used to construct fractal, self-similar sets  ¢opjes ofu.
and measures. These sets and measures are attractive
fixed points offractal transformoperators. (We shall
briefly review IFS in the next section.) But Barnsley
and Demko were the first to see the potential of usin@. Finally, it recombines these altered copies by

It then modifies the values of these copies by
means of a suitable range-mapping.

IFS for the purpose adpproximation Given a “target” means of an operator appropriate to the space
self-similar set (or measure), s&yfind an IFS fractal Z (X) to produce the elemente .7 (X), i.e, v=
transform operatof with fixed pointSthat is as close Tu

as possible t&. More on this below. . .
possl ! W Under conditions appropriate for each space, the

The formulation of IFS-type methods over generalized fractal transfornT is a contraction
various complete metric spaces has been an ongoimgapping which, by Banach’s fixed point theorem,
research programme. It involves the constructiomguarantees the existence of a unique fixed poiat
of appropriate IFS-type operators, @eneralized Tu.
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Most practical as well as theoretical works ingenerally defined in terms of a finite set of parameters.
image processing and mathematical imaging considen fractal image coding, this set is often referred to
images as real-valued functions. There are, howevess thefractal codeassociated with the image. Solving
situations in which it is useful to consider the greyscalehe inverse problem using collage coding is based on
value of an images at a pointx as a random variable the following continuity property of fixed points of
that can assume a range of valugg C R. This is  contractive mappingQentore and Vrscay 994:
an example of anultifunction representation of image
functions But it is often not enough to simply know
the greyscale values that may be assumed by an imagéeorem 2 Let (.%#(X),d) be a complete metric
u at a pointx: one must also have an idea of thespace and Cof¥ (X)) a set of contraction mappings
probabilities (or frequencies) of these values. As suchl : .% (X) — #(X). Let T, T, € Con(.# (X)) with
it may be more useful to represent imagesisasure- respective fixed pointsj; and up; and contraction
valuedfunctions, for examplegy : X — .# (Rg), where  factors @ and ¢. Define the distance betweepand
A (Rg) is the set of probability measures supported o, as follows,

Ry (La Torreet al, 20090. This is another example

of multifunction representation of an image. Later in
this paper, we outline this formulation along with an
appropriate class of fractal transforms acting on this
space. Then L
d(ug, up) <

deonx) (T, T2) = sup d(Tyu, Tou) .

ue.Z (X)

The IFS-based inverse problem, which has become deon7(x)) (Te, T2)

important in a number of applications, may then be
phrased as follows: where in = min(cy, cy).

1— Cmin

Given a “target” elementv € .%#(X), find
a (point-to-point) contraction mapping :
F(X) — Z(X) with fixed pointu such that
d(v,u) is as small as possible.

ITERATED FUNCTION SYSTEMS
(IFS)

From a practical perspective, however, it is difficult to

construct solutions to this problem so one relies on thé=S: Here we briefly review the IFS formalism of
following simple consequence of Banach’s fixed pointHutchinson(1981) and Barnsley and Demk@1985.
theorem, known in the fractal coding literature as thgn what fO||OWS,(X,d) denotes a compact metric “base
Collage Theoren{Barnsleyet al., 1989: space” (or “pixel space”), typically0,1]". Let w =
{wi,---,wn} be asetof 1-1 contraction maps: X —

X, to be referred to as aN-map IFS. Letc € [0,1)
denote the contraction factors of the and define
C=max<i<nCi. Note thatc € [0, 1).

Theorem 1 For any ve % (X),

d(v,0) < 1)

1
——d(v, T
ATy

Now let JZ(X) denote the set of nonempty
compact subsets of and d, the Hausdorff metric.

Then(.27,dy) is a complete metric spacEgtchinson

where c is the contractivity factor of T.

Instead of trying to minimize the errat(v,u), one

looks for a contraction mapping that minimizes the
so-calledcollage error dv, Tv). As we shall describe
below, this is the essence dfactal image coding
(Fisher 1995 Lu, 2003. However, this method of

1981). Associated with the IFS map$ is a set-valued
mappingw : 7 (X) — s (X) the action of which is
defined to be

)

collage codingmay be applied in other situations
where contractive mappings are encountered. We have
shown this to be the case for inverse problemsyperey(s) = {wi(x),x € S} is the image oS under
involving differential equations. In the simplest case,,, i _ 1 5".. N

of ordinary differential equations, the contractive o

mapping is the Picard integral operators associated

with the initial value problem Kunze and Vrscay Theorem 3 (Hutchinson 1981) W is a contraction
1999. mapping on(.7Z(X), dy):

At this point, it should be mentioned that in
collage coding, the contractive (fractal) transfofnis

N
WS =Jw(S). Serx),
i=1

Oh(W(A), W(B)) < cch(AB), ABe#(X). (3)
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Corollary 1 There exists a unique set & (X)), where
such thatw(A) = A, the so-calledattractorof the IFS

w. This implies that Lipy(X,R) = {f: X = R:
N |f(x1) — F(x2)| < d(x1,X%2),VX1,X%2 € X} .
A= Jw(A).
i=1 For 1<i <N, let0< pj < 1 be a partition of unity
) o i _associated with the IFS mapg, so thatz!\‘:1 p =
In other words, the attractor A is self-similar since it 1 Associated with thisN-map IFS with probabilities
may be expressed as a union of copies of itself. (IFSP) (w,p) is the so-calledMarkov operator M :
Moreover, A isglobally attractive For any Se % (X) — . (X), the action of which is
(X)), dh(W(S),A) — 0as n— co.

N
V() = (Mu)(S) = ; pu(w X(S), VSe#(X).
B (4)

Simple examples:

1. X =[0,1] andN = 2, with wy (X) = 3%, wa(x) =
X+ 3. Then the attractoh is simply [0, 1.
Theorem 4 (Hutchinson 1981 M is a contraction

2. X =1[0,1 andN = 2, with wy(X) = X, Wa(X) = mapping on.7Z (X), dy ):

ix+ £. Then the attractoA = C, the classical

ternary Cantor set oj0, 1]. dn (M, MV) < ety (1, v), pve#(X). (5)
3. X =10,1]2 andN = 3 with IFS maps,
where c= max<j<n G is the contraction factor.

1 1
Wl(X, y) = (éxv éy) )

11 Corollary 2 There exists a unique measupe €
W2(x,y) = (5X+5,5Y) # (X), the so-calledinvariant measuref the IFSP
1 11 3 (w,p), such thaty = Mu. Moreover, for anyu €

W(X,y) = (5X+ 2.5y + ) - A (X), dy (MM, 1) — 0 as n— oo,

The attractor is the “Sierpinski gasket” shown in
Fig. 1 helow Simple examples:

1. The 2-map IFS in Example 1 above, with attractor
A = [0,1]. When p; = pp, the invariant measure
U is Lebesgue measure d0,1]. A histogram
approximation of the invariant measure for the case
p1 = 0.4, po = 0.6 is presented in Fig.

2. The 2-map IFS in Example 2 above, with attractor
A = C, the classical ternary Cantor set @1].
When p; = p; = 3, [ is the classical Cantor-
Lebesgue (uniform) measure supportedion

The reader is referred ®arnsley(1989 for more

Fig. 1."Sierpinski gasket” detailed discussions as well as numerous examples.

In applications, it is most convenient to employ
IFSP: Now let .#(X) denote the set of Borel affine IFS maps. In this case, the moments of the

probability measures orX and dy the Monge- invariant measurg of the Markov operatoM satisfy
Kantorovich metric on this set (referred to as thea set of relations that allow them to be computed

“Hutchinson metric” in the IFS literature): recursively Barnsley and Demko 1985 Barnsley
1989 Forte and Vrscayl995. We illustrate with the
du(u,v)= su /f x)d _/ f(x)dv|, one dlmgnsmn_al cqsee.,_X:[O_,l].The extension to
H(K,V) feupl&R)[ X (x)du JX () } higher dimensions is quite straightforward.
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The unique fixed point of this operator is the moment
vector belonging to the invariant measuyre= Mu of

the IFSP. In this special case, the moment vectprs
andh in Eq.9 are equalj.e., h, = gn. EQ. 8 can then
be rearranged to yield

N n-1
1 . — j o]
( i;p.%”)gn Z)( ) [le.ﬁa ]g,
(11)
This result, originally derived irBarnsley and Demko
1989, shows that the momenty, of the invariant

measureu may be computed recursively, starting with

Fig. 2. Histogram approximation to invariant measure 90 = 1

on [0,1] for Example 1 above.

The affine IFS maps will be denoted as follows,

i=12--- N. (6)

Wi (X) = sX+ &,

The fact thatA is contractive naturally leads to
a collage theorem for moment@-orte and Vrscay
1999. This leads to a formulation of the inverse
problem of IFSP-based approximation of measures in
terms of moments.

We consider the moments of a probability measure

u € # (X) defined as follows,
gn:/xndU7 n:O71527”' (7)
X

By definition,gp = 1. Now letv = Mu. Then, from
Eq. 4, the moments ob are given by

hn = /X Xd(T 1) (%)

= /X i pi[sx+a]"dp () .

Before concluding this section, we mention that
in the historical development of IFS, measures (hence
the method of IFSP) were viewed as being potentially
more useful for the representation/approximation of
images, because of their ability to accomodate shading.
As a result, a good deal of work was devoted to the
inverse problem of approximation of measures using
IFSP — see, for exampleY(scay and Roehrigl 989
Vrscay 1990. In fact, the fractal block image coding
method ofJacquin(1992 was originally formulated in
terms of measuresl@dcquin 1989, although it is also
quite naturally expressed in terms of functions, as will
be seen below.

Expansion of the binomial followed by an interchange

of summation and integration yields the result

3O e o

If we let
(ho,hy,--)T, 9

denote the (infinite) moment vectors ¢f and v,
respectively, then the Markov operattd is seen
to induce a linear mappindy = Ag, where A is

g:(g()?gla'”)-r? h:

IFSM: In this setting we consider a general
function space% (X) supported onX. The essential
components of dractal transform operatorare as
follows.

1. AsetofN one-to-one contraction mapg: X — X
with the condition that/N ,w; (X) = X.

2. Asetof associategreyscale mapg : R — R that
are assumed to be Lipschitz & i.e., for eachq
there exists &; > 0 such that

forallty,to € R.

[@(t) — @at2)| < Kifts —taf,

represented by a lower triangular matrix. This was

originally pointed out inForte and Vrscay1995.

In fact, the linear operatoA is contractive in
the following complete metric space of weight&d
moment vectorsKorte and Vrscayl995,

7 ={9=(90,91,---) [ Qo =1, Z <o} (10)
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The above two sets of maps are said to comprise
an “lterated Function System with greyscale maps”
(IFSM), denoted asi, @) (Forte and Vrscayl9983.

For eachx € X, this IFSM produces one or maimactal
componentslefined as

o auw (), if xewi(X), .
Gi(X) = {O, otherwise L |

If several fractal components exist for ane X,
then they are combined with an operation that is
suitable for the space in which we are workingFig. 3.“Devil’s staircase function” on[0, 1].

(see Forte and Vrscay(19983 for more details and

examples of the various function spaces that can

be considered). We usually consider the summation |t is also convenient to define IFSM operators with
operator for7 (X) = LP(X), i.e, for au € LP(X), the  condensation functiond=or example, given a set of

action of the fractal transform is given by IFS mapsw;, associated constantsand condensation
N functionb(x), x € X, define the action of the associated
V(x) = (Tu)(x) = zlgi (X) . (13)  operatofT as follows: Foru € L(X),
Theorem 5 (Forte and Vrscay19989 Let (w,®) be V(X) = (Tu)(x X) + Zla. lx). (15)
an IFSM as defined above, with spatial contractions

w; and Lipschitz greyscale magg. Then for p> 1

p
and uv & LP(X), We now have the apparatus to consider the inverse

N Up problem of IFS-based approximation of functions.
'Z\Ci Ki| [u—v] . (14) In practice, one normally works with a fixed set of
1= IFS mapsw;, 1 <i < N, and then finds the optimal

associated greyscale maps— optimal in the sense
Corollary 3 If ¢ = [ZiN:lCil/pKi} < 1, then T is thatthe collage distandl— TV|| is minimized, where
contractive in P(X) with fixed pointd e LP(X). The vis the fu_nction to b_e apprc_)ximated. This _is the basis
fixed point equation, of frtgctal image coding, which we outline in the next
section.

| Tu—Tv|<

u(x) = (Tu)(x) ZCA

indicates thatu is “self-similar” i.e., that it can be LOCAL SELF-SIMILARITY AND
written as a sum of spatially-contracted and greyscale- BLOCK FRACTAL IMAGE CODING

modified copies of itself.

In practical applications, it is overly ambitious to

Example: X = [0,1] andN = 3, with IFS maps expect that a signal or image will display the self-

Wi(X) = 1w (x) = }XJF} Wa(X) = }x+g similarity property used abovéeg, that it can be well
! 37 373 8 33 approximated as a union of spatially-contracted and
and associateg, maps, range-modified copies of itself. It is more reasonable
to expect that a signal or image Hecally self-
o) = }t, (t) = }7 @a(t) = }»[Jr } similar, i.e,, it may be well approximated as a union
2 2 2 2 of spatially-contracted and range-modified copies of

(Note that in theL2-sense, the subsets (X) may subsetf itself. This is the basis of Jacquin’s original

be considered as nonoverlapping.) The fixed-pointractal block coding methodJacquin 1989 1992
function u(x) of this IFSM is the famous “Devil's Which is also known as thdocal or partitioned
staircase function,” sketched in Fig.below. Clearly, IFS method(Barnsley and Hurd1993. We forego a
u(x) may be viewed as a union of three contractedormal mathematical discussion of this method and
copies of itself, with the middle copy being a simply consider the particular case of fractal block
“flattened” one. coding of images. Here, subblocks of an image are
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approximated by contracted and greyscale-modifiech > 1 of the iteration procedure, each range block
copies of other subblocks of the image. image um(Ry) of un supported orR is replaced by

A very simple prescription for the fractal coding the affine scaled imagm(Di) + [

of an n x n-pixel image u(x) is as follows. Let The result of this procedure, as applied to the
R, k= 1,2,---,NRr, denote a set ofr x nr-pixel 512 x 512-pixel, 8 bit-per-pixel test imagBoat is
nonoverlappingrange blocksthat form a partition shown in Fig.4. Here, the range block’, employed
of the image. LetDj, k =1,2,---,Np be a set of inthe calculation were the 4096 nonoverlapping &
2ng x 2nr-pixel domain blockghat are selected from pixel blocks of the image. The domain blodRg used
throughout the image. (In order to keep the size ofvere the 1024 nonoverlapping ¥616-pixel blocks.
the domain pool down, but at the expense of somdhe top left of the figure shows the original test image.
accuracy, we may consider the set of nonoverlappiniyloving clockwise in the figure, the iterates andu,
2ng x 2nr-pixel blocks that cover the image.) corresponding to the “seed” imagg = 0 (black) are
shown. The lower left image is the fixed point ug

For each range blockR,, compute the collage corresponding to the fractal transforfim

errorsAj associated with all domain blockd;;, i.e.,
In this example, there was no attempt to perform

Ayj =min||u(R¢) —al(Dj)-B|, j=1,2,---,Np. any image compression. As such, tle and (3
a.p 16 parameters were stored as real numbers to full
(16) machine precision, and not quantized according to

Hstref' u(th,-)) Sldenc_)test_theiw?hxr;?—p;xel b_Ioclkdlmage any prescribed bit allocation. The so-called “PSNR
ovtained by “decimating ek x sNr-pIXEL domain 41,67 of the fixed-point approximation, a measure

block imageu(Dy). (For digital images, decimation is ¢, accuracy of the approximation in termsLof
normally accomplished by replacing the image value7'a£rror is roughly 25 dB. (The higher the PSNR, the

over four neighbouring pixels that form a Squareq ver thel 2 error.) A better approximation to the test

in Dy _by their average value placed on one pi.xel'image, corresponding to a higher PSNR value, would
FOIIOng the de_(:|mat|on, we may consider a_II e'ghtbe achieved if 4x 4-pixel blocks were used for the
possible isometries that map one block to another,

. ) range block<R.
four rotations and four reflections.) The blo€k, 9 R _ _
yielding the lowest collage errak; is chosen to be For more detailed accounts of fractal coding, the
the domain block associated wi;. reader is referred tBarnsley and Hurd1993; Fisher

. 1995; Lu (2003.
The above procedure yields a fractal transform( 9; Lu (2003

T which is defined in terms of the range-domain

assignments(k, j(k)) (along with isometriesi(k) GENERALIZED TRANSEORMS

if applicable) andg-map parametersy, Bk. These

parameters comprise tiiectal codeof the imageu. Iterated Function Systems on Multifunctions:

The action ofT may be expressed as follows: For eac . i )
range blockRy, 1< k < N, WVe now outline a simple IFS-type method on

multifunctions, that is, set-valued functions. As a

1 motivation, we suppose that to each pixel of an image
i(k) (09)+Be xe€Re (A7) is associated an I?r?terval which meagures the “errgr”
in the greyscale value at that pixel. For simplicity, we
examine only the one-dimensional case where the base
space iX = [0, 1]. The extension to higher dimensions

is straightforward.

(Tu)(x) = orku(wg

By construction, the fractal transforimminimizes the
total squared collage distance

Nr
2 __ 2
Ju=Tul"= 3 Bjoor (18)  Consider the space of multifunctiong = {F :

X — #(Y)} and suppose thafE(x) is a compact

over the nonoverlapping range blockg. (Because subinterval ofY for all x € X. Itis quite straightforward
the range blocksR; are nonoverlapping, each to prove (a Torreet al, 20093 that.7 is a complete
approximation can be performed independently.) metric space with respect to the following metrics:

The fixed poinu of T — the desired approximation dw (F, G) = supdh(F (x),G(X))
to u — is then generated by iteration: Start with any xeX

n x n-pixel “seed” imageuo, for example the blank 5,49

imageup = 0, and form the iteration sequenag; 1 =

Tun. (Because the image is discrete, convergence is D 1/p
achieved in a finite number of iterations.) At each step ~ dp(F:G) = /th(F(X)’G(X)) duix |
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Fig. 4. Starting at upper left and moving clockwise: The origiBaR x 512-pixel, 8 bit/pixel “Boat” test image.
The iterates yw and w along with the fixed pointi = u;g of the fractal transform operator T designed to
approximate the test image. The “seed” image was=0 (black).

wherep is the Lebesgue measure. A fractal transforrmow used to define the following fractal transform
operator onZ may now be defined in terms of the operatorT : % — .7,
following ingredients:

1.

2. A setof associated constamisc R, 1 <i <N,

N
As before, a set of 1-1 contractive IFS mays; (TF)(¥) =B(X) +'Zl pi()aiF (W 1(x)).

X —X,1<i<N, =

The reader will note that this operator is a
multifunction analog of the “normal” IFS with

3. A set of associated place-dependent probabilitgondensation in EdL5.

These ingredients, which comprisefdfmap “Iterated 4 (T(F),T(G)) < N(P-1)/p
Function System on Multifunctions” (IFSMF), are ’ -

functionsp; : X — (0,00), 1 <i <N,

A “condensation multifunction”8(x) € S (Y):
For eachx € X, B(x) €  is an interval inY.

Theorem 6 (La Torre etal, 20099 The following
inequalities hold:

N 1/p
Ziaipﬁp p|p> dp(F7 G)v
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do(T(F), T(G)) <

sugiai P (X)] d (F,G),

where p = suppi(wi(x)) and $ > 0 are such that
du(wi(x)) < sdp(x).

Ffy)

Example: In Fig. 5, approximations to the attractor \

multifunctions onX = [0, 1] are plotted for two IFSMF
with two contractive IFS mapsvi. The top image
corresponds to the attractor for the following IFSMF: foTTeRTeE oS oA o ee ov w08

wi(X) = 0.6X, a; =07, pi(x)=0.5, )
Wa(X) = 0.6x+0.4, a,=0.5 pi(x)=0.5,

B(x) =1[0.5,1.0]. (19) AL ]
The bottom image corresponds to the attractor of the .|~ _
IFSMF with the same&v; maps andy; and p; constants =
as above but with the followin§-function: =L i

B(x) =1[0,1], 0<x<05, N O e e
B(x) =[0.5,1.5], 05<x<1 (20)
Note that the setw; (X) andw,(X) overlap over the _ _ ) _
interval[0.4,0.6]. Multifunction attractorF (x) of IFSMF in Eq.20.

Fig. 5. Pictorial representation of the multifunction
attractors Hx) for the two IFSMF in the above
Example. In each case, for anexX = [0,1], F(X) is
an interval[a(x), b(x)]. The lower and upper bounds of
{hese intervals, &) and (x), respectively, are plotted
In the figures.

The multifunction attractorf(x) corresponding
to Eqg. 19 exhibits tiny jumps atx = 0.4 andx =
0.6, the endpoints of the region of this region
of overlap. Because of the self-similarity of the
IFSMF, these jumps will be propagated throughou
the multifunction. However, the jumps are quite
small because the condensation multifuncti@fx)
is the same oveiX = [0,1]. On the other hand,
the condensation multifunctiof(x) demonstrates a
significant change at point= 0.5. This, along with  dp(F, TF)P < ||minF —minTF||§
the jumps associated with the overlappiwg maps, + || maxF — maxT F||P
produces much more irregular upper and lower bounds ’
of the intervals comprising (X).

Theorem 7 (La Torre etal, 20099 The following
inequalities hold:

P

S(F.TF) < 3 psupmax(A (). A(X)}
An inverse problem for  multifunction Xex

approximation in the space? can be formulated Where

as follows: Given a multifunctionF € %, find a A(X) = |minF (x) —min(B(x) + aiF (W —1)(x))
contractiveN-map IFSMF operatol : .% — % that

|
admits a unique fixed poirit € .# such thath.(F,F) Ai(x) = |maxF (x) — max(B(x) + aiF (W *(x)))|

?

is sufficiently small. Once again, we consider theand
simplification of this problem provided by the Collage pi = Suxppi (Wi(X)) -
Xe

Theorem. The inverse problem then becomes one of
finding a contractive IFSMF operatdrthat maps the |terated Multifunction Systems: In this section,
“target” multifunctionF as close to itself as possible, we describe a multifunction extension of IFS. In
i.e., the collage distanag, (F, TF) is made as small as what follows, X will once again denote a base
possible. The following inequalities are useful for thisspace, typically[0,1]". We now consider a set af
approach. multifunctions T : X — J#(X), i € 1...n (for each
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i, Tix e (X) for all x € X). Now construct the
multifunctionT : X = X, where

n
Tx=[JTix, VxeX. (21)

i=1

Assume that the multifunction3; are contractions
with contractivity factors; € [0,1), that is,

dh(Tix, Tiy) <cd(x,y), VxyeX. (22)
Then there exists an element X such thatx € Tx
(Kunzeet al., 2007). The elemenxis known as a fixed
point of T. Note thatx is not necessarily unique.

Now given a compact sét € 77 (X) consider the

image
T(A) =] Tae #(X).
acA

Since T : (X,d) — (#(X),dn) is a continuous
function thenT(A) is a compact subset ofZ(X).
Therefore, we can construct a multifunction® :
H(X) = A (X) as follows:

1. ForeactAe 7 (X), defineT*(A) =T(A).

2. Consider the Hausdorff distance 4#1(X): Given
two subset#\, B C .#(X), define

(23)

dnn(A, B) = max{supinf dn(x,y), supinf dn(X,y) }.
B xcAYEB

xcAYE
(24)
It then follows thafl* : .77°(X) = #(X) and
dn(T*(A), T*(B)) <Ch(AB).  (25)

Now given a pointx € X and a compact seék C X
we know that the functiord(x,a) has at least one
minimum pointawhena € A. We calla theprojection

of the pointx on the setA and denote it aa =

i A. Obviouslyais not unigue but we choose one of
the minima. We now define the following projection
functionP associated with a multifunction defined as
P(x) = (T x). We therefore have the following result,
proved inKunzeet al. (2008.

Theorem 8 Let(X,d) be a complete metric space and
Ti : X — 22 (X) be a finite number of contractions with
contractivity factors ce [0,1). Let c= maxc;. Then

1. For all compact AC X there exists a compact

subsetA C X such that A1 = P(An) — A when
n— oo,

ACUiTi(A).
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As in the previous sections, le#/(X) be the
set of probability measures o (X) and consider
the complete metric spacé# (X),dv). Given a
set of multifunctionsT; : X — X with associated
probabilities p;, one can now consider generalized
Markov operators onZ (X).

Fractal transforms on measure-valued functionsin
what follows, X = [0, 1] will denote the “base space,”
i.e., the support of the image®y C R will denote a
compact “greyscale space” of values that our images
can assume at anye X andB will denote the Boreb
algebra oriRg with L& the Lebesgue measure. Let
denote the set of all Borel probability measuresign
anddy the Monge-Kantorovich metric on this set. For
a givenM > 0, let.#1 C .# be a complete subspace
of .# such thatdy (u,v) <M for all u,v € .#;. We

now define
Y ={u:X — #1,is measurable  (26)

and consider on this space the following metric
o (1,v) = | cha (), () dhz
We observe thatly is well defined, sinceu and v

are measurable functiondy is bounded and so the
function & (x) = dn (U(X), V(X)) is integrable orX.

(27)

Theorem 9 (La Torre et al, 20090 The spaceY, dy)
is complete.

We now construct and analyze a fractal transform
operatorM on the spacqY,dy) of measure-valued
functions. We list the ingredients for a fractal
transform operator in the spade The reader will
note that they form a kind of blending of IFS-
based methods on measures (IFSP) and functions
(IFSM). For simplicity, we assume th&t= [0, 1]. The
extension td0, 1]" is straightforward.

1. A set ofN one-to-one contraction affine maps:
X — X, wi(X) = sx+ &, with the condition that
UL Wi (X) =X,

A set ofN greyscale mapg : Rg — Rg, assumed
to be Lipschitzj.e., for eachi, there exists a&; > 0
such that

[@(t) — @a(t2)] < aifts —tof,

2.

Vit € Ry, (28)

3. For eachx € X, a set of probabilitieg;(x), i =

1,---,N with the following properties:
— pi(x) are measurable as functions)of

_ pi<x):0ifX¢Wi(X) and
- SN, pi(x)=1forallxe X,
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The action of the fractal transform operatdr :
Y — Y defined by the above is as follows: Fopae Y
and any subsed C Ry,

N
v@M$=Wuwx$=;gwumﬁwmw%S»
) (29)

Theorem 10 (La Torreetal, 2009y Let p =
Supcx Pi(X). Then forug, e €Y,

dy(Mp, Mpp) < (_Zlﬁmi pi) dy (M1, 42).  (30)

Corollary 4 Let p = supgex pi(X). Then M is a
contraction on(Y, dy) if

_immm<1. (31)

Consequently there exists a measure-valued mapping

€Y, suchthap = My.

Examples:

1. The fractal transfornM defined by the following
two-IFS-map system oX = [0, 1]:

1 1
W]_(X) = Exa ([)_]_(t) = §t7
1 1 1 1

The setsw;(X) andwy(X) overlap at the single
pointx = 3 so we let

=1 PY=0 xc[0.3)
=0, p)=1 xe (51

pi(5)=m2l3) = 5

Itis easy to confirm tha¥ is contractive. Its fixed
point i is given by

H(x) = d(t—X),

whered denotes the Dirac delta function.

x€[0,1], (32)

2. A ‘“perturbation” of the above fractal transforh

The setsvy (X) andws(X) overlap over the entire
subinterval0, 3] so we let

P =Ps) =5 P)=0 xc[0.3)
PO =P =0, o) =1  xe(3.1)

pi(3) = Pal) = Ps(3) = 5.

Once again, it is easy to confirm thad is
contractive. Its fixed pointu(x) is sketched in
Fig. 6.

At this point, we mention that it is difficult to
produce a sketch of the fixed poiptx) that will
capture all of its detailed structure. First of all, the
plot of u(x) in the figure has the appearance of a
(sheared) Sierpinski gasket with verticeg@t0),
(0,1/3)and(1,1). The “gaps” in this gasket reflect
regions of low measure. Any attempt to increase
the darkness of these regions would remove any
idea of the self-similar variations ia(x) in the x-
direction.

The important feature to note in this figure is that
the the overlapping of thes; andws maps over
[0, 3] is responsible for the self-similar “splitting”
of the measureg(x) (hence lighter shading) over
this interval, sincegs produces an upward shift
in the greyscale direction. Sinag(x) maps the
support0, 1] of the entire measure-valued function
onto [1,1], the self-similarity of the measure over

[0, 3] is carried over td3, 1].

2

AN

SN CCUNEN

0

x
=

that is produced by adding the following IFS and

associated greyscale maps: Fig. 6. A sketch of the invariant measugx) for the

1 three-IFS map fractal transform in Example 25X =

}x, @(t) = -t+0.1.

ws(x) = 5 > 0,1], ye Rg = [0,1].
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MEASURE-VALUED FUNCTIONS,
We now show that the moments of measures in the NONLOCAL IMAGE PROCESSING

space(Y,dy) also satisfy recursion relations when the
greyscale mapg are affine. We now consider the AND FRACTAL CODING

local orx-dependent moments of a measpe) € Y,

defined as follows, Nonlocal image processinghe manipulation of
the value of an image functiom(x) based upon
9n(X) = R S'dik(s), m=0,1,2.---. (33)  values ofu(yk) elsewhere in the image, has recently

_ _ received a great deal of attention, due in part to the
where we use the notatign = u(x) in the Lebesgue gyccess of the nonlocal means image denoising method

integral for simplicity. By definition,go(x) = 1 for  (gyadeset al, 2010. (This is in contrast to standard
x € X. Obviously the functiong, are measurable on image processing methods which doeal in nature,

X (since u(x) are measurable) and bounded so tha1te the Doi = -
1 ) . e, pointsyi lie in a neighbourhood aft.) Fractal
O € L*(X, ). We now derive the relations betweenimage coding, outlined earlier in this paper, is another

the moments of a measufe € Y and the moments example of a nonlocal image processing method. In
of v = Mu whereM is the fractal transform operator P g€ p 9 :

defined in Eq29, fact, both of these methods may be vi(_awe_d under the
umbrella of a more general model of affine image self-
Let h, denote the moments of= Mu. Then similarity (Alexanderet al, 2008, in which subblocks
of an image are approximated by other sublocks of the

hn(X) = A s'd(Mp)x(s) image.
*]
N
In La Torreetal. (2009, we showed how
. " n
—/Rg i; PiO)[A(S)] A Ky 1) (S): the multifunction/measure-valued representation of
_ a images, outlined in the previous section of this paper,
For affine greyscale maps of the fois) = ais+ B, may be useful in nonlocal image processing methods.

we have In these methods, the valugx) of an image function
N . at a pointx € X is replaced by a transformed value
hin(X) :/R lei(x)(ai +506)"d(Hy-19)(9) Tu(x) which is usually composed by several values
9is

y of the image functioru(yk) that lie elsewhere in the
n i Cmei _ image. It may be useful to store these values in a
- ; [21 pi(X)cnjat B J] gj (W (x), mee?sure or distributionu(x) before performing the
== final projection of these values in order to produce the
where transformed valuel' u(x). For example, the measure
Cnj = <n> , u(x) could be used to characterize thecal self-
J similarity of an image at a point € X. The measure-
The reader may compare the above result to that ofalued formalism was used to analyze both the
Eq.8for the IFSP case. The place-dependent momentaethods of nonlocal means denoising as well as fractal
hn(X) are related to the momentp evaluated at the image coding. We now outline briefly its application to
preimagesv; (). And it is the greyscalegs) maps  the latter.
that now “mix” the measures, as opposed to the spatial _ _
IFS mapsw;(x) in Eq. 8. Historically, most fractal image coding research

focussed on its compression capabilities — obtaining
acceptable accuracy with the smallest possible domain
pool in order to minimize (i) search times and (ii)
n [N _ _ storage of the fractal code. The fact that range blocks
On(X) = Z) [Zipi (X)anaiJBin_J] gj (W, 1(x)) . R of an image are, in general, well approximated by
=0 1= a good number of domain block3; does not seem
In other words, the momentg,(x) satisfy recursion (0 have been emphasized or exploited. Consequently,
relations that involve moments of all orders uprto investigations generally focussed on the results yielded
evaluated at preimages 1(x). Note that this does not by optimal domain blocks of the pool and not on the
yield arearrangement, analogous to E’q_which will possible use of suboptimal ones. The reader will recall
permit a simple recursive computation of the momentghat the fractal coding method described earlier in this
gn(X). Nevertheless, the momeritinctions can be paper was based on the selection of bestdomain
computed recursively (sekd Torreet al,, 20091). block for each range block.

In the special case that = u = My, the fixed
point of M, thenh,(x) = gn(x) and we have
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More recently, however, the redundancy of good2. In the limith — oo, all pj; become equali,e. all

domain/range pairings has been exploitatexander

2005 in order to perform image denoising. As in
the case of nonlocal means denoising, the use
several domain blocks corresponds to an averagi

variance. This may be viewed asraultiparentfractal
block coding method.

At this point, it is important to mention

i

over multiple samples, resulting in a reduction of noise

range/domain pairings are employed equally.

The resulting multiparent block transform operator
is then defined as

Np
V) = (TWX) =3 my aij u(Wjj (%)) + B
J:

XeR, 1<i<Ng. (37)

that the idea of using several domain blocks for o o
each range block is not new. Some examples ofhis definition represents a generalization of the fractal
multiparent fractal coding schemes may be found irffansform operator of Eql7 since not only one

Gharavi-Alkhansari and Huan@.994); Vines (1995,
andFurusawa and Nakagaw2004).

A simple measure-valued method associated
with fractal coding: Here we outline a simple
multiparent block fractal coding scheme that result

from a modification of the block-based fractal codingy,
method outlined an earlier section. This multiparent

but several, perhaps all, domain blodRs € & can
contribute to the modification ofi(x) for x € R.
Under appropriate restrictions on tlee parameters,
this transform is attractive, which implies the existence
of a fixed point functionu(x) which will provide

n approximation to the original imag&Xx) being
actally coded.

scheme lends itself nicely to a measure-based At this point, we emphasize that the above

formalism.
For convenience, we consider the same (squar

range blockR;, we compute the); approximation
errors associated witill domain block®Dj, cf. Eq.16.
(Recall that for each range/domain pairifB;,Dj)

e
range and domain block arrangement used in th
fractal image coding scheme outlined earlier. For eac

multiparent fractal transform operatdr takes all of
the preimagesm(wal(x)) of an image function value
é&x) and from them produces a single vak(&). We
Row illustrate how the measure-valued image function
can be used to examine th@nge of valuesassumed
by these preimages.

First, we associate with the image functiofx) a

there are eight spatial contraction/decimation mapsorresponding measure-valued image functigr) €

wé :Dj — R, 1< k < 8. Once again, for simplicity
of notation, we shall omit th& index.) The optimal
greyscale map minimizing the errdy; will be denoted
as

@;(t) = aijt+ B . (34)
For this pairing we also assign a weight, normalized
so that

Np
> pj=1 1<i<Ng. (35)
=1

For each range blocR;, it would seem natural to
employ higher weightgjj for those domain blockB
that yield lower collage errorajj. Here we consider
the following weighting scheme,

(

where P > 0, h > 0 andZ = yjexp(—Af /hP) is
the normalization factor guaranteeing thgtp;; = 1
for eachi. In practice,P is either 1 or 2. Here, we
shall employP = 2, i.e, a Gaussian-type weighting.
Regarding the adjustable paramdier 0O:

1.

Y

hP

1
= _exp

> (36)

Pij

In the limith — 0T, the pij with the smallest error
Ajj will be selected.
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(Y,dy) as follows:
(38)

Here, & denotes a unit point-mass measur¢ atRy.
With an eye to EQq.29, we now define a measure-
valued image functiorv = Mu €Y as follows: For
any measurable s&C Rq = [0,1] and anyx € R;, we
define

V(S = (Mp)(x)(S)

= J; P W 0) (@ (S) - (39)

Given a range block;, then at each point/pixele R;,

we keep track of all greyscale values of the image
function u that are mapped ta by a domain/range
mapping wij and modified by the corresponding
greyscale mapp;j. These values are weighted and
combined to define the probability measuwr).

This idea is illustrated below for thBoat image
shown earlier. First of all, we shall concentrate on the
row of pixelsu(256,j),j = 1,---,256 in the image.
These are the pixels that run from the midpoint of
the left edge to the center of th&oat image These
greyscale values are plotted in Figbelow.



Image Anal Stereol 2011;30:63

formulation of GFTs over spaces of multifunctions,
including the space of measure-valued functions.
These new formalisms may be useful in nonlocal
image processing. We plan to explore the further use of
these methods in characterizing image self-similarity
in future papers.
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