
Image Anal Stereol 2011;30:77-88                                                                                                   doi:10.5566/ias.v30.p77-88 
Original Research Paper 

77 

SEGMENTATION OF ANATOMICAL STRUCTURES BY CONNECTED 
STATISTICAL MODELS 

MARKO BUKOVEC, BOŠTJAN LIKAR AND FRANJO PERNUŠ 
Laboratory of Imaging Technologies, University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 
SI-1000 Ljubljana, Slovenia 
e-mail: marko.bukovec@fe.uni-lj.si, bostjan.likar@fe.uni-lj.si, franjo.pernus@fe.uni-lj.si 
(Accepted June 6, 2011) 

ABSTRACT 

This paper presents a framework for the segmentation of anatomical structures in medical imagery by 
connected statistical models. The framework is based on three types of models: first, generic models which 
operate directly on image intensities, second, connecting models that impose restrictions on the spatial 
relationship of generic models, and third, a supervising model that represents an arbitrary number of generic 
and connecting models. In this paper, the statistical model of appearance is used as the generic model, whiles 
the statistical model of topology, obtained by applying principal component analysis (PCA) on aligned pose 
and shape parameters of the generic model, is used as the connecting model. The performance of such 
connected statistical model is demonstrated on anterior-posterior (AP) X-ray images of the hips and pelvis 
and compared to the modelling by one and six unconnected generic models. The most accurate and robust 
results were obtained by two-level hierarchical modelling, wherein connected statistical models were used 
first, followed by unconnected statistical models. 

Keywords: connecting anatomical structures, image segmentation, statistical appearance model, statistical shape 
model; statistical topology model. 

INTRODUCTION 

In the past two decades the role of medical imaging 
has expanded beyond simple visualization and ins-
pection of anatomical structures for diagnostic purposes. 
Nowadays, medical imaging has become a fundamental 
tool for monitoring the progress of disease and effects 
of treatment, surgery planning and simulation, intra-
operative navigation, radiotherapy planning and quan-
titative analysis. In many medical imaging applications 
image segmentation plays a crucial role, by automating 
or facilitating the delineation of anatomical structures 
and other regions of interest (ROI) (Bankman, 2000; 
Pham et al., 2000; Sonka and Fitzpatrick, 2000). For 
example, ascertaining the detailed shape and organi-
zation of anatomical structures enables a surgeon to 
preoperatively plan an optimal approach to operate on 
the target structure while avoiding vital healthy struc-
tures. In radiotherapy, segmentation allows planning 
the delivery of necrotic dose of radiation to tumors 
with minimal collateral damage to healthy tissue.  

Automated segmentation of anatomical structures, 
by which accurate, repeatable and quantitative data 
are efficiently extracted, remains a difficult task due  
 

to the complexity and tremendous natural variability 
of shapes of anatomical structures. Moreover, the 
position of the patient during image acquisition, the 
imaging device itself, and the imaging protocol 
induce additional variations in shape and appearance. 
To address these difficulties, deformable models of 
anatomical structures have been extensively studied 
and widely used in medical image segmentation with 
promising results (McInerney and Terzopoulos, 2000; 
Xu et al., 2000). Deformable models maintain the 
essential characteristics of a class of structures they 
represent but can also deform to fit a range of 
examples. Particular representatives of deformable 
models which incorporate a priori knowledge on 
pose, shape and appearance are the statistical models 
of shape (Cootes et al., 1994) and appearance (Cootes 
et al., 2001). A statistical model is a deformable model 
which in a compact way describes the information 
contained in a training dataset. These models were 
successfully applied to the segmentation of bony 
structures, e.g., vertebrae (Hill et al., 1996), spine 
(Smyth et al., 1997), knee joint (Cootes et al., 1998), 
hand (Mahmoodi et al., 2000), rib cage (van 
Ginneken and Haar Romeny, 2000) and hip/pelvis 
(Bernard and Pernuš, 2001).  
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Organizations of anatomical structures exhibit two 
kinds of shape variations, i.e., variations in shapes of 
individual structures and variations in spatial relation-
ships of the structures. Such combined variations 
cannot be optimally described by a single statistical 
model unless variations of spatial relationships are 
sufficiently small and a sufficiently large training 
dataset is used (Smyth et al., 1997). Therefore, alter-
native approaches are required to describe the non-
linear shape variations of structures organizations. 
One approach is to apply piecewise linear models 
(Heap and Hogg, 1997) and the other is to separately 
model variations of shapes of individual parts and the 
variations of their spatial relationships (Mahmoodi et 
al., 2000). The problem with piecewise linearization 
as described by Heap et al. (1997) is that it only 
approximates the non-linear shape variations because 
it is not using a priori knowledge on the organization 
of structures. However even though Mahmoodi et al. 
(2000) did use the a priori knowledge, it was used 
only to initialize a model and not throughout the 
segmentation process. Bernard et al. (2001) introduced 
the statistical model of topology to model the spatial 
relationships of anatomical structures. They applied 
the principal component analysis on pose and shape 
parameters of all structures to extract the most signi-
ficant eigen-topologies that describe anatomically 
plausible topological variations of structures. Their 
strategy can be viewed upon as a hierarchical PCA. The 
statistical model of topology that describes plausible 
topological variations of connected anatomical struc-
tures at the upper level of hierarchy is constructed 
from the sets of shape and pose parameters describing 
plausible variations of shapes and poses of individual 
structures at the lower level of hierarchy. Pham et al. 
(2006) used a Gaussian model on translation invariant 
shape descriptions to describe spatial relationships 
between object parts. They also proposed to model 
objects appearance by learning long-distances depen-
dences between pixel values using Bayesian networks. 
De Bruijne et al. (2005) used the normal probability 
distribution to model spatial relationships between 
shape particle set and its expected neighbour. Addi-
tionally, multi-scale probabilistic Markov models 
have also been employed to characterize inter-object 
relationships (Lu et al., 2007). Tsai et al. (2004) 
applied PCA to the collection of multiple signed 
distance functions, wherein zero level sets are implicit 
representations of shapes, to obtain a coupling between 
the multiple shape models. Another type of spatial 
modelling was used in level-set segmentation (Litvin 
and Karl, 2005), where relative inter-object distances 
were used in an energy functional for a curve evolution. 
The coupling constraint dependent on all contours is 

introduced as an overlap penalty in energy functional 
(Zimmer and Olivo-Marin, 2005). The principal 
geodesic analysis (PGA) was applied to object pose 
and medial m-rep shape description (Styner et al., 
2006). The problem of splitting image data into sub-
models for a given set of training images was 
addressed by Langs et al. (2007), where minimum 
description length (MDL) principle was proposed as a 
criterion function. Modelling of variations in spatial 
relationships of the anatomical structures depends on 
the type of the model used (linear, nonlinear, proba-
bilistic model, etc.) and on information (pose, shape) 
that is being used to model spatial relationships. 

In this paper, we present a general framework for 
simultaneous segmentation of a number of anatomical 
structures by connected statistical models. In contrast 
to Bernard et al. (2001), vectors of pose and shape 
parameters are aligned before they are submitted to 
PCA to generate the statistical model of topology. In 
this way, the spatial relationships of connected 
structures are better modelled. We demonstrate the 
feasibility of the proposed segmentation method by 
connected statistical models on anterior-posterior X-
ray images of the hips and pelvis. We show that 
better segmentation results can be obtained with a 
two-level hierarchical segmentation procedure using 
statistical models of shape, appearance and topology 
than with unconnected models.  

METHODS 

GENERIC, CONNECTING AND 
SUPERVISING MODELS 
The framework for image segmentation by con-

nected statistical models consists of three types of 
models, i.e., a generic, a connecting, and a supervising 
model. A generic model (G) is a statistical model, 
which operates directly on image intensities and 
models an object of interest. A connecting model (C) 
imposes restrictions on spatial relationships of 
generic models. A supervising model (S) represents 
an arbitrary number of generic and connecting models. 
An arbitrary hierarchy of models may be built by 
connecting supervising models. 

Generic model 
A generic model G, G(u, fG, OA), is defined by 

vector u, containing all parameters of the generic 
model, criterion function fG, which defines how well 
the model matches the underlying image I and an 
optimization procedure OA, which optimizes the vector 
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u in order to optimize the criterion function fG. Opti-
mization OA starts with a set u0 of initial parameters 
and when fG reaches the optimum, ends with a set of 
optimized parameters uOPT. If generic models are not 
connected, each generic model is optimized indepen-
dently of other generic models (Fig. 1). 

As a generic model of an anatomical structure we 
use the statistical model of appearance (Cootes and 
Taylor, 2001) which models both the shape and 
texture of an anatomical structure. The statistical 
model of appearance consists of two sub-models – 
the statistical model of shape maintaining the 
structure’s shape variation behaviour, and the 
statistical model of texture maintaining the structure’s 
texture variation behaviour. The statistical model of 
shape of an anatomical structure is constructed by 
first establishing N corresponding sets xi, xi = [xi1, yi1, 
xi2, yi2, …, xin, yin]T, i=1,…,N, of coordinates of n 
landmark points representing the shape of the 
structure in the i-th training image. In each of the N 
training images, points should be placed in the same 
way on the object’s boundary. Next, the sets x1, x2, 
…, xN are aligned with respect to translation, rotation, 
and scaling (Goodall, 1991). The result of the 
alignment are aligned point sets Xi, Xi = [Xi1, Yi1, Xi2, 
Yi2, …, Xin, Yin]T, i=1,…,N , and corresponding pose 
vectors vi=[vx vy vφ vs]T. After the alignment, there is 
still a substantial amount of variability in the 
coordinates of corresponding points, which is due to 
differences in shape of an anatomical structure across 
different training images. Given N aligned shapes, 
described by shape vectors X1, X2, …, XN, the mean 
shape X , is defined to be: 

 
1

1 N

i
iN =

= ∑X X . (1) 

Singular value decomposition (SVD) (Press et al., 
1992) is next used to compute the eigenvalues and 
corresponding eigenvectors of the covariance matrix: 

 ( )( )T

1

1
1

N

x i i
iN =

= − −
− ∑Ψ X X X X . (2) 

The eigenvectors corresponding to the largest 
eigenvalues of the covariance matrix represent the 
most significant modes of shape variation. It is 
sufficient to keep only some of the first t eigenvectors 
to sufficiently describe the variability of shapes in the 
set of training images. Any aligned shape X of a 
structure in the training set can be approximated by: 

 x x≈ +X X Θ p , (3) 

where xΘ  is the matrix of the first t eigenvectors and 
1( )x x i
−= −p Θ X X , is a vector of shape parameters, 

i.e., projections of ( )i −X X  to the first t eigenvectors 
of xΘ . Let the vector u of a generic model contain 
the pose and shape parameters u, u = [vT, px

T]T, 
corresponding to one image. To be comparable to the 
shape parameters, the pose parameters v are 
normalized. Usually the number of the first t 
eigenvectors is selected in such a way to describe 
some predetermined amount of variability. However, 
this is not the case in the connecting model, where the 
number of shape parameters (t) is fixed according to 
all generic models in order to achieve the same 
dimensionality of the pose and shape vector (u). 

The next step in building a statistical model of 
appearance is to warp, for instance with the thin-plate 
spline interpolation method (Bookstein, 1989), each 
training image so that its landmarks match those of 
the mean shape. In this way, “shape-free” images are 
obtained. The images are intensity normalized to 
eliminate global intensity variations between the 
images and raster scanned into texture vectors Y1, Y2, 
…, YN. Next, PCA is applied to the shape-free and 
intensity-normalized texture vectors, yielding a linear 
model that characterizes the intensity variations: 

 y y≈ +Y Y Θ p , (4) 

where Y  is the mean normalized texture vector, yΘ , 
a matrix of significant modes of intensity variations 
of covariance matrix yΨ , and, py a vector of texture 
parameters. 
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Fig. 1. Generic model and steps involved in image segmentation by unconnected statistical model. 

 

 

Connecting model 
A connecting model is a parametric model which 

models the spatial relationships of an arbitrary number, 
say M, of anatomical structures. A connecting model 
C, C(z, T, fC) is defined by topology vector z, z = 
[u1

T, …, uM
T]T, which is composed of unaligned 

parameters of M generic models that C connects, 
geometrical transformation T and criterion function 
fC. The geometrical transformation T is used during 
training to obtain the aligned topology Z, which is a 
vector composed of aligned parameters of the M 
generic models. The inverse geometrical transformation 
T-1 maps the aligned topology Z back to the 
unaligned topology z and is used during segmentation 
to generate plausible spatial relationships among 
structures. The criterion function fC represents the 
energy of the connecting model. 

As a connecting model we use the statistical 
model of topology which is obtained by the same 
principle as the statistical model of shape. The 
construction of the statistical model of topology thus 
consists of two steps: topology alignment and 
principal component analysis. Let zi, zi = [ui,1

T ui,2
T … 

ui,M
T]T, i = 1,…,N, be a vector containing all or just 

some of the pose and shape parameters of M generic 
models extracted from each of the N images. A vector 
ui,j corresponding to image i and model j may contain 
all parameters of pose and shape ui,j = [vi,j

T, pi,j
T]T, 

only some pose and shape parameters, or only 
parameters of pose ui,j = vi,j. The sets z1, z2, …, zN are 
first aligned (Fig. 2) which results in aligned topo-

logies Zi, Zi = [Ui,1
T Ui,2

T … Ui,M
T]T, i = 1,…,N , 

corresponding transformations Ti, Ui,j = Ti ui,j, and 
mean topology Z . Topology alignment clusters the 
sets of pose-shape vectors u before they enter PCA. 
Using the PCA, any aligned topology Z in the training 
set can be approximated by: 

 z z≈ +Z Z Θ p , (5) 

where pz is a vector of topology parameters. 

Besides applying PCA to the aligned topologies, 
PCA may also be performed on the set W of 
parameters of the geometrical transformation T-1: 

 w w≈ +W W Θ p . (6) 

This results in a reduced set of parameters pw that 
approximates the transformation T-1, which may prove 
useful during segmentation, because segmentation 
process involves optimization of parameters. 

Supervising model 
A supervising model S, S(psm, fSM, G, C, OA) is a 

union of generic models G and connecting models C 
(Fig. 3). It is composed of a vector psm, criterion 
function fSM= fSM(psm), vector of generic models G, 
vector of connecting models C, and optimization 
algorithm OA. The vector psm, psm=[pz

T, pw
T]T contains 

the topology parameters pz and parameters pw of the 
transformation T-1 that are used to generate plausible 
topologies in the image segmentation process (Fig. 2).  
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Fig. 2. Topology alignment (left to right) of three connected models in training phase and plausible topology 
generation (right to left) during image segmentation. 

 

 

The supervising model represents geometrical 
(pose and shape vectors) and textural representation 
of the image (Fig. 3). Using the statistical connection 
model, whole collection of generic models is steered 
in the optimization process. At the level of super-
vising model, other segmentation strategies can be 
applied. For example, one could apply sequential 
generic model fitting, e.g. fit one or few models and 
then use connection model to predict initial poses and 
shapes for subsequent generic models. Another app-
roach could be to connect generic models between 
two or more images of the same anatomical structures 
but with different modalities. 

IMAGE SEGMENTATION BY 
UNCONNECTED AND CONNECTED 
STATISTICAL MODELS 
The goal of segmentation is to find the landmarks 

of each of the M anatomical structures present in a 
previously unseen image I. Segmentation of an image 
I with statistical models is in effect an optimization 
procedure. We have explored two different statistical 
model-based segmentation strategies: one strategy 
with unconnected statistical models, and another 
strategy with connected statistical models. 

Image segmentation by unconnected 
statistical models 
By unconnected statistical models, each anato-

mical structure is segmented independently of other 
structures. We have adopted the segmentation app-
roach of Bernard et al. (2001), which does not require 
optimization of texture parameters py (Fig. 1). Given 

the image I to be segmented and the initial pose and 
shape parameters u0, u0 = [vT, px

T]T, of a statistical 
model describing one anatomical structure, a shape-
free and intensity normalized image Ĩ and correspon-
ding texture vector Y% are created and used to obtain 
the vector of texture parameters: ( )1

y y
−= ⋅ −p Θ Y Y% . 

Next, the texture vector Y% is transformed to texture 
vector YT by the texture model with only t eigen-
textures: T y y≈ +Y Y Θ p  and the image IT corres-
ponding to the YT is obtained. By optimizing the 
energy function fG: 

 ( )G INT EXT1f f fα α= ⋅ + − ⋅ , (7) 

the optimal parameters uOPT, uOPT = [vT, px
T]T of pose 

(v = [vx vy vφ vs]T) and shape (px) are found. The 
internal energy fINT measures the extent of defor-
mation of the model: 

 
2

INTf = −X X , (8) 

while the external energy fEXT measures the similarity 
between images Ĩ and IT: 

 ( )EXT T1/ 1 ( , )f MI= + I I% , (9) 

where Ĩ is a shape-free and intensity normalized 
image, IT is a best representation of an image Ĩ 
obtained by texture model, and MI denotes mutual 
information between two images. However, different 
similarity measures, such as normalized mutual infor-
mation or correlation coefficient, may be used. The 
external energy function fEXT (Eq. 9) is value always 
positive and suitable for minimization.  
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Fig. 3. Steps involved in segmentation of anatomical structures by connected statistical models. A detailed 
scheme of a generic model used in this strategy is same as shown in Fig. 1 without the optimization loop of the 
generic model. 

 
 

Image segmentation by connected 
statistical models 

Segmentation by connected statistical models is 
illustrated in Fig. 3. Training the statistical models of 
appearance and topology on a sufficiently large 
image database results in matrices Θx, Θy, Θz and Θw 
of eigenvectors and corresponding mean vectors of 
X , Y , Z  and W  of shape, appearance, topology 
and geometrical transformation, respectively. The 
segmentation starts with some initial values of 
topology pz and transformation pw parameters. Using 
the statistical models of topology (Eq. 5) and 
geometrical transformation (Eq. 6), the aligned 
topology Z and the set W of parameters of the 
geometrical transformation are first obtained. The 
parameters W are next used to derive the unaligned 
topology z which is further decomposed into pose 
and shape parameters [u1

T, u2
T, …, uM

T]T, 
uj=[vj

T, px,j
T]T, j = 1,…,M, of the M generic models. 

The pose and shape parameters together with the 
image I are used to derived the energy functions [fG1, 
…, fGM] and landmark positions of the M generic 
models according to the scheme shown in Fig. 1, 
where each generic model’s optimization loop is 
omitted. The optimization procedure OA (Fig. 3) 
optimizes a criterion function fSM to achieve the best 

fit of all generic models while keeping the defor-
mation of the topology small. The function fSM of a 
supervising model is defined as the weighted sum of 
internal fINT and external fEXT energies: 

 ( )SM INT EXT1f f fα α= ⋅ + − ⋅ , (10) 
The external energy of the supervising model is a 

weighted sum of all M generic models’ energies fGi: 

 EXT G
1

M
i i

i
f fβ

=
= ∑ . (11) 

The internal energy fINT corresponds to the 
deformation of the statistical model of topology: 

 
2 2

INTf = − + −Z Z W W , (12) 

where Z and W contain the parameters of the aligned 
topology and geometrical transformation, respectively. 

EXPERIMENTS AND RESULTS 

We have applied the above segmentation strategies, 
i.e., strategies using unconnected and connected stati-
stical models, to segment anterior-posterior X-ray 
images of hips and pelvis. 
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IMAGE DATABASE AND LANDMARKS 
The statistical models were trained on the training 

image database consisting of 42 anterior-posterior X-
ray images of hips and pelvis. The resolution of an 
image was 1700x1200 pixels. To construct statistical 
models in total 68 landmarks were defined on each 
image; 16 on left hip, 16 on the right hip, and 36 on 
pelvis, by three experts using a purpose-specific 
software tool. The position of each of the 68 
landmarks was selected as the position of that 
landmark out of three which was closest to the 
average of three. An example of an annotated X-ray 
image is shown in Fig. 4. 

GENERIC AND CONNECTING 
MODELS OF THE HIPS AND PELVIS 
Six generic models G1-G6 were chosen to model 

the hips and pelvis and the 68 landmarks were 
assigned to these models (Fig. 4, left). To derive the 
statistical model of appearance, rectangular regions of 
interest, each covering all corresponding landmarks, 
were selected (Fig. 4, right). The statistical model of 
topology was used as the model that connected the 6 
generic models. Fig. 5 shows unaligned and aligned 
topology vectors for 6 models and 41 images. The 
affine transformation was used for topology 
alignment. It is obvious that by topology alignment 
much more compact clusters are obtained than 
without alignment. Besides, if more pose and shape 

parameters are used to describe the topology more 
compact classes are obtained. However, as the 
number of pose and shape parameters (R) and the 
number of parameters of the affine transformation (R 
(R+1)) are related, a more complex topology model 
will result in optimization of more parameters. To 
reduce the number of parameters of the affine 
transformations we applied PCA on the parameters 
W, which resulted in vector pw. In special case, when 
M R equals R (R+1), the affine transformation maps 
all of the M pose and shape vectors of generic models 
to the average topology with zero variance (Fig. 5, 
right) and, therefore, optimization of topological 
parameters can be omitted. In this case (M=R+1), the 
number of unknowns (R (R+1)) equals the number of 
equations (M R). In any other case (Fig. 5, middle), 
geometrical information stored in landmarks positions is 
divided between topological and transformation 
parameters (Fig. 3), where former describes residual 
information after transformation/alignment and the 
latter the information about transformation that brings 
structures close to the average arrangement. Figure 
(Fig. 6) illustrates the effect of changing the first 4 
PCA parameters of affine transformation (pw) on the 
landmark position for the case shown in figure (Fig. 
5, right), where topology parameters (pz) have no 
effect. The non-linear effects of PCA parameters of 
the affine transformation (pw) on the landmarks 
positions can be observed, e.g. first parameter corre-
lates with generic models rotation parameter (Fig. 7). 

 

 

 

G6 

G1 G3 

G2 G4 

G5 

 

Fig. 4. AP X-ray image of the hips and pelvis with superimposed landmarks belonging to 6 generic models (G1-
G6) (left) and the 6 regions of interest used to obtain the statistical models of texture (right). Different symbols 
represent landmarks belonging to different generic models. 
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Fig. 5. Unaligned topology z consisting of 4 pose and one shape parameter (left), aligned topology Z consisting 
of 4 pose parameters (middle) and aligned topology Z consisting of 4 pose and one shape parameter (right) for 
6 models and 41 images. Only three dimensions are used to visualize the vectors.  

 

  
Fig. 6. Traces of landmark positions when changing the first four PCA parameters of the affine transformation 
(left to right) from –3 to 3 by a step of 1/3. 
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Fig. 7. Traces of landmark positions when changing the first parameter from –3 to 3 by a step of 1/3 (left). The 
non-linear effects on the landmarks positions can be observed (middle and right). 
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EXPERIMENTS 
Four statistical model-based segmentation methods 

have been applied to the 42 AP X-ray images of the 
hips and pelvis. The first method (M1) modelled the 
whole image by only one statistical model of appea-
rance. The number of shape parameters (px) was set 
to 15 to allow the single model to be flexible since it 
had to model 68 landmarks. The second method (M2) 
modelled the anatomical structures by 6 unconnected 
statistical models of appearance (Fig. 4). Each of 
them was independently optimized using 4 pose (v) 
and 5 shape parameters (px) and the strategy shown in 
Fig. 1. In the third (M3) method, the strategy, illustrated 
in Fig. 3, was applied. In method M3, the topology 
vector consisted of 4 pose parameters v and only the 
most significant shape parameter px,1, yielding u=[vx 
vy vφ vs px,1]T. Because in M3 the topology parameters 
pz had no effect on landmark positions (see Fig. 5, 
right), the relations between generic models’ pose-
shape vectors were modelled by the first twenty 
parameters pw of the PCA affine transformation. The 
fourth method (M4) used a two-level hierarchical 
strategy. First, the method M3 was applied, which 
was then followed by the segmentation strategy shown 
in Fig. 1 using 4 pose (v) and 5 shape parameters (px). 
The goal of the two-level strategy was to initialize the 
generic models’ parameters within their capturing 
ranges by first optimizing the parameters of the 
supervising model and then let the unconnected 
generic models to fine-tune their parameters. All 
experiments were conducted on 42 AP X-ray images 
with a leave-one-out test. In all experiments, the 
number of texture parameters, used to represent a 
shape-free and intensity normalized image Ĩ, was set 
to 3. For the supervising and generic models we used 
the downhill simplex optimization method (Press et 
al., 1992) with 300 iterations. The texture vectors of 
generic models were sub-sampled in horizontal and 
vertical directions by 5 pixels for G1, G3, G5, by 4 

pixels for G2, G4, and by 8 pixels for G6. In the first 
method M1, the texture was sub-sampled by 5 pixels. 
In all methods, we used the mutual information to 
estimate the external energy. Segmentation results 
obtained by each method were expressed as the 
average Euclidean distance (AED) in pixels between 
automatically and manually derived landmarks posi-
tions. Fitting of supervising model takes approximately 
10 sec on Intel i7-860 processor, where main compu-
tation burden represents computation of generic models 
cost function (image interpolation, computation of 
image representation with texture model, cost function 
computation). The same amount of time is spend on 
sequential fitting of unconnected models. However, 
computation of generic models cost function could be 
parallelized in both cases (connected and unconnected) 
to speed up the optimization.  

RESULTS 

Fig. 8 illustrates the segmentation results in the 
form of box-whiskers diagrams, showing the minimum, 
maximum, median, 1st and 3rd quartile of the dis-
tances between automatically and manually derived 
landmarks positions. Segmentation using only one 
model for the hips and pelvis (method M1) performed 
the worst. Using individual, unconnected, models 
(method M2) resulted in more accurate landmark 
positions. Even better results were, however, obtained 
by the optimization of the supervising model (method 
M3) using the statistical model of topology. Finally, 
the results of the two-level optimization (method M4) 
in which individual generic models were independently 
optimized after they had been initialized at the first 
level, show that the landmarks have been most accu-
rately segmented. Figure (Fig. 9) shows the manually 
defined landmarks and the landmark positions 
obtained by methods M1, M2 and M4 for 5 X-ray 
images.  
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Fig. 8. Box-whiskers diagrams, showing the minimum, maximum, median, 1st and 3rd quartile of distances in 
pixels between automatically (initial and four methods, M1-M4) and manually derived landmarks positions 
(left) and box-whiskers diagrams of distances relative to the initial displacement (right). 
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Fig. 9. Results in the form of landmarks (o) obtained by methods M1 (left), M2 (middle), and M4 (right) and 
their displacements from the manually (x) defined positions shown for 5 X-ray images (rows). 

 

Table 1 shows the segmentation performance (median 
of AED distances in pixels) as a function of the num-
ber of PCA components of the affine transformation 
used in the statistical connection model. The results 

of this sensitivity analysis show that the number of 
PCA components in statistical connection model 
affects the segmentation performance, which was to 
be expected. Method M4 shows the best performance
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Table 1. The median of AED distances in pixels between automatically and manually derived landmarks 
positions for the supervising model (method M3) and the two-level optimization (method M4), given as a 
function of the number of PCA components of the affine transformation used in the statistical connection model. 

Number of PCA components Method 3 5 8 10 13 15 20 25 30 
M3 54.9 39.6 28.1 24.9 24.1 24.0 22.9 24.7 23.6 
M4 41.8 30.6 26.0 23.4 22.7 22.6 22.3 23.6 23.4 

 

and was always better then M3 method. However, the 
differences in the performances were larger at small 
number of PCA components, while the differences at 
larger number of PCA components were much smaller. 
Both methods (M3 and M4), which are based on 
statistical connection model, yielded much better results 
(Fig. 8) than the method with one model (M1) or the 
method with unconnected models (M2). The two-layer 
scheme (Fig. 3) composed of statistical connection 
model with statistical shape model yields more 
accurate positions of the land-marks and makes more 
compact models with fewer parameters, which conse-
quently yields better and more robust segmentation of 
anatomical structures.  

CONCLUSION 

We have presented a general framework for seg-
mentation of anatomical structures by connected para-
metrical models. The framework with the statistical 
model of topology enables modelling of large 
variations of spatial non-linearity, which are due to 
complexity of anatomical structures and inter-patient 
and inter-acquisition variations in shape, appearance, 
and spatial arrangement of anatomical structures. The 
framework, incorporating the statistical model of 
topology has been tested on 42 AP X-ray images of 
hips and pelvis. It was shown that the two-level 
modelling of landmark positions with the statistical 
model of topology improved accuracy and robustness 
of the whole model. The results of the presented 
framework indicate that the framework and statistical 
modelling of topology is a promising and general tool 
for constructing robust supervising models, by which 
a number of generic models can be connected. 
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