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ABSTRACT

A large spatio-temporal data set monitoring the annual progress of bark beetle infestation in the Bavarian
Forest National Park (Germany) is statistically analysed by means of complex image analysis algorithms. The
infestation data were obtained by color-infrared (CIR) aerial image interpretation and cover 10 subsequent
years (2001–2010). Newly emerged infestation patches are hypothesized as spatially correlated to locations
of previous year’s infestation. Both areas, source patches and subsequently emerged patches, are considered
as two disjoint random sets. Their spatio-temporal dependence is analysed by two methods: the classical
approach based on the measurement of cross-covariance functions, and a second one based on nearest
neighbor distances. The resulting characteristics can be interpreted as pre-disposition probabilities of bark
beetle infestation depending on distance to sources. Both methods show a strong short-range preference, which
decreases with increasing distances.

Keywords: cross-covariance function, ecological data, Ips typographus, pre-disposition, image analysis,
Euclidean distance transform, Fast Fourier transform.

INTRODUCTION

The European spruce bark beetle Ips typographus

L. (Coleoptera, Curculionidae, Scolytinae) is one of

the most severe pest species killing living spruce

trees (Picea abies L. Karst., Pinaceae) in Europe.

Its horizontal larval galleries and maturation feeding

in adult stage girdle tree’s phloem and destroy

the cambium. The trees which are infested by

bark beetles are going to die. As a consequence,

the next emerging beetle generation is forced

to disperse from their breeding tree in order

to find new suitable host trees (Lieutier et al.,

2004). The complex process of beetle dispersal and

their habitat selection still offers several unsolved

questions, which are the focus of recent research

(Wermelinger, 2004). Generally, dispersal of bark

beetles within a habitat is assumed to be influenced

by various host and site specific factors, such as

tree vigor, species composition or solar radiation

(Jakus, 1995; Netherer and Nopp-Mayr, 2005). Since

these factors do not show spatial homogeneity at

landscape scale, the distribution of infestation patches

reflects the most preferred localities. Nevertheless,

dispersal distances are generally determined by a

combination of the specific flight capacity and

host selection behavior of the individuals, which

vary within populations (Wallin and Raffa, 2004;

Williams and Robertson, 2008; Hawkes, 2009), as

well as of the spatial availability of suitable habitats.

When attacking living trees a pheromone mediated

mass attack is necessary to overcome the tree’s

defense (Byers, 2004). Therefore, a successful attack

leading to an infestation event is generally more

likely in the vicinity of source patches where enough

beetles are present. Otherwise, a spatial spread is

crucial to maintain long-term population stability, both

through avoidance of inbreeding and the escape from

antagonists (Byers, 2004).

The Bavarian Forest National Park (Germany)

provides a sound data base for long-term investigations

of bark beetle infestation spread. Due to the protected

status, forest management measures were not applied

in the core zones and natural dynamics are allowed

to develop undisturbed by humans. Simultaneously,

annual aerial surveys provide high-resolution color-

infrared (CIR) images which document well the

spatio-temporal progress of infestations over the years

(Heurich et al., 2010; Kautz et al., 2011).

Both, for management purposes as well as to

understand the dispersal behavior of Ips typographus

the question arises, how subsequent infestation patches

are spatially correlated. Researchers in the field

of ecology recently approached that task by GIS-

based distance methods, suggesting a strong mutual
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dependence between infestation patches of subsequent

years (Wichmann and Ravn, 2001; Kautz et al., 2011).

Nevertheless, advanced techniques from the fields

of image analysis and spatial statistics presented in

this article can provide an appropriate alternative

to common GIS tools applicable to ecological data

such as bark beetle infestation. They are more

flexible, provide a broader range of characteristics

and can use full image resolution. We consider two

different approaches characterizing spatial dependence

of random sets: (i) the classical spatial cross-

correlation, and (ii) the distance method as nearest

neighbor measurement. Several challenges arising in

the computation of cross-covariance functions via

frequency space are addressed in detail. Furthermore,

due to the irregular shapes of the observation windows,

special attention must be payed to the handling of edge

effects.

Spatial cross-correlation is an extension of the

well-known concept of linear correlation for univariate

random variables. It has been previously studied for

marked point fields (Stoyan, 1984a;b) and between

a random point field, a random fiber system and

random sets, where the points are sites of trees,

the fibers are river courses, and the random sets

are regions of specific soil types (Stoyan and Ohser,

1982). Between such structures there may exist various

relationships, e.g., attraction between the point sites

and the river courses or inhibition between sites and

soil types. For further investigation of cross-correlation

applied to data from ecology and geoscience see

Agterberg and Fabbri (1979), Reich et al. (1994) and

Duffy and Hughes-Clarke (2005).

Single infestation patches strongly vary in their

size and shape (Kautz et al., 2011, see also Fig. 1),

and systems of infestation patches usually form very

irregular random sets. Therefore, it seems to be not

convenient to model a system of infestation patches

by a marked point process. A better (and probably

more natural) model is a random set with positive area

fraction.

Spatial cross-correlation of any two random sets

can be introduced by the cross-correlation measure of

the random area measures associated with the random

2 km

Fig. 1. Data example for one time step: shown are the infestation of 2007 (source) in red, the infestation of 2008

(target) in blue, and the susceptible forest area to potential 2008 infestation in green and blue. The frame of the

study site at Bavarian Forest National Park is colored in grey.
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sets. A fundamental theoretical introduction to cross-

correlation measures is given in Stoyan and Ohser

(1984). In the present article, mutual dependence of

random sets is characterized by their cross-covariance

function, which is the probability that two points, at a

given distance from each other, are both inside the sets.

In contrast to the cross-covariance function, we

also consider nearest neighbor distances between

the sets. More precisely, we measure the shortest

distance from a point randomly chosen in the first

set to the second set. Obviously, the kind of this

information differs from that contained in the cross-

covariance function. The subset of the second set

closest to a subset of the first one can be seen

as a zone of influence. This seems to be a more

natural description of the dispersal behavior of bark

beetles, which spread out to find susceptible trees

in their close vicinity. The use of nearest neighbor

distances for investigating stochastic dependence (or

independence) of random point fields was suggested

by Ma et al. (2006), Baddeley and Turner (2006) and

Illian et al. (2008, pp. 437 and 443). In Rack et al.

(2008) a distance method is applied in order to

characterize spatial dependence of constituents of

materials structures.

A specific problem addressed in this paper is that

the disjointness of the two random areas induces their

dependence even if subsequent infestation would be

independent of that in the previous year, i.e., the

distribution of the infestated area inside the susceptible

forest area is independent of the source.

CHARACTERIZATION OF MUTUAL

DEPENDENCE OF RANDOM

SETS

In the following we introduce two different

methods for describing spatial dependence of specified

areas within a forest. Mathematically these areas

are modelled as random sets Φ,Ψ,Ξ in the two-

dimensional space R
2. Furthermore, we assume that

these random sets are almost surely locally polyconvex

(i.e., the realization can be represented as finite

unions of compact and convex sets) and fulfill

certain regularity conditions, see Definition 9.2.1

in Schneider and Weil (2008). Finally, the random

sets are assumed to be jointly macroscopically

homogeneous, i.e., P(Φ ∈ A,Ψ ∈ B,Ξ ∈C) is invariant
under diagonal shifts,

P(Φ ∈ A,Ψ ∈ B,Ξ ∈C) =

P(Φ ∈ A+ x,Ψ ∈ B+ y,Ξ ∈C+ z)

for all x,y,z ∈ R
2 with x = y = z and for all systems A,

B andC of closed sets in R
2.

SPATIAL CROSS-CORRELATION

Because of the joint macroscopic homogeneity of
Φ and Ψ the probability that the point x is in Φ while
y is in Ψ depends on only the difference y− x, i.e.,
P(x ∈ Φ,y ∈ Ψ) can be seen as a function of h = y−x.
The cross-covariance function covΦ,Ψ of the random
sets Φ and Ψ with positive volume fractions AA(Φ)
and AA(Ψ) is defined as

covΦ,Ψ(h) = P(x ∈ Φ,x+h ∈ Ψ)

−P(x ∈ Φ) ·P(x+h ∈ Ψ) (1)

for h ∈ R
2.

Let be given three random closed sets Φ, Ψ and
Ξ in R

2, where Ψ is independent of Ξ. We introduce
two further random sets Φ′ and Ψ′ defined as the
intersections Φ′ = Φ∩Ξc and Ψ′ = Ψ∩Ξ, respectively,
where Ξc is the topological closure of the complement
of Ξ. Obviously, Φ′ and Ψ′ depend on each other even
if Φ and Ψ are independent random sets. In this respect
we formulate ‘conditionally independent infestation’,
given that Φ is independent of Ψ.

In the context of bark beetle infestation, the
specific interpretation of the random sets is as follows:

Φ′ – the area of infestation in the previous year (source,
red area in Fig. 1),

Ψ′ – the area of infestation in the subsequent year
(target, blue area),

Ξ – the area of trees which are susceptible for
infestation (spruce trees, green and blue areas).

The sets Φ and Ψ are auxiliary quantities introduced
in order to formulate independent random infestation.
Even for independent Φ and Ψ, the sets Φ′ and
Ψ′ depend on each other. (The infestation is called
conditionally independent, given that Φ is independent
of Ψ.)

Assume that Φ and Ψ are not observable, i.e.,
information on Φ and Ψ may be available only
indirectly from the observation of Φ′, Ψ′ and Ξ.
Independence of Φ and Ψ yields

P(x ∈ Φ′,y ∈ Ψ′) = P(x ∈ Φ′,y ∈ Ξ,y ∈ Ψ)

= P(x ∈ Φ′,y ∈ Ξ)P(y ∈ Ψ)

for all x,y ∈ R
2. In terms of normalized cross-

covariance functions, the last equation can be rewritten
as

covΦ′,Ψ′(y− x)

P(x ∈ Φ′)P(y ∈ Ψ′)
=

covΦ′,Ξ(y− x)

P(x ∈ Φ′)P(y ∈ Ξ)
. (2)
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Fig. 2. Simulation of a structure with a complete

spatial random infestation. The colors have been

chosen as in Fig. 1. In this case Φ, Ψ and Ξ are

independent Boolean models with discs of constant

diameter.

In the case of isotropy, both sides of Eq. 2 depend

on the radial coordinate r = ‖y− x‖ only. Let s1(r) be
the difference of the left- and the right-hand side of

Eq. 2,

s1(r) =
covΦ′,Ψ′(y− x)

P(x ∈ Φ′)P(y ∈ Ψ′)
−

covΦ′,Ξ(y− x)

P(x ∈ Φ′)P(y ∈ Ξ)
,

then the relationship s1(r) = 0 for all r ≥ 0

is a necessary (but not sufficient) condition for

the random sets Φ and Ψ to be independent of

each other. Deviations from 0 indicate dependence

(Rack et al., 2008; Ohser and Schladitz, 2009, Section

6.3.3). Estimates of s1(r) characterize the strength of

the dependence between the source and the target of

infestation depending on the distance r.

The interpretation with respect to bark beetle

infestation is as follows: Assume that the bark beetle

individuals infest subareas of the susceptible forest

independent of their source, then s1(r) would vanish

for all r > 0 (complete spatially random infestation)

as in Fig. 2. Spatial aggregation between source and

target infestation is indicated by s(r) > 0 for some r.

Second-order characteristics (such as cross-

correlations) or their counterparts in frequency

space can be measured from images of random

structures obtained from various sources (Frank,

1980; Manolakis and Proakis, 1996). The fast Fourier

transform (FFT) and sophisticated algorithms for

its computation (Marcotte, 1996; Frigo and Johnson,

1998) allow calculating these quantities fast and

efficiently. The idea to estimate the auto-covariance

function (and other second order characteristics) via

the Fourier transform has been around for some

time (Debye et al., 1957; Ohser and Mücklich, 2000,

chap. 5; Torquato, 2002). A sound mathematical basis
for the computation of the auto-covariance function
and its counterpart – the so-called Bartlett spectrum
– is provided in Koch et al. (2003) and Ohser et al.
(2005).

In order to give an estimator of the cross-
covariance function we follow the ideas of Rack et al.
(2008). Denote by C the space of complex numbers,
and let f be a function f : R

2 7→ C belonging to the
quotient space L1(R2) = L 1(R2)/N , where L 1(R2)
is the set of functions with

∫

R2 | f (x)|dx < ∞ and N

is the set of functions with f = 0 almost everywhere.
Then the Fourier transform f̂ = F f of f is defined by

F f (ξ ) =
1

2π

∫

R2

f (x)e−iξxdx , ξ ∈ R
2.

Analogously, the inverse Fourier transform F̄ f of f is
defined by

F̄ f (x) =
1

2π

∫

R2

f (ξ )eixξdξ , x ∈ R
2.

The cross-covariance function is continuous but in
general not positive definite. Hence, one can not apply
Bochners theorem (Schempp and Dreseler, 1980, Part
II, Satz 3.7 and Satz 3.2), in order to introduce a
spectral measure associated with the cross-covariance
function, and until now it is not known if there exists
any counterpart of the cross-covariance function in the
frequency space.

Let Φ and Ψ be macroscopically homogeneous
random sets with positive area fractions, and let W
be a compact observation window with non-empty
interior containing the origin (the complement of the
grey frame in Fig. 1). In order to give an estimator of
the cross-covariance function of two macroscopically
homogeneous random sets Φ and Ψ, we introduce the
windowed functions

ϕW (x) = 1W (x)
(

1Φ(x)−AA(Φ)
)

, x ∈ R
2

and

ψW (x) = 1W (x)
(

1Ψ(x)−AA(Ψ)
)

, x ∈ R
2

associated with Φ and Ψ, respectively, where 1 is
the indicator function. The boundedness ofW ensures
the integrability of ϕW and ψW , and hence, their
Fourier transforms ϕ̂W and ψ̂W exist almost surely.
Furthermore, let cW = 1W ∗ 1W̌ denote the window

function ofW , where ∗ is the convolution and W̌ is the
reflection ofW at the origin. Furthermore, let ϕ̂ denote
the complex conjugate of ϕ̂ . Then, analogously to the
estimator of the auto-covariance function of a random
set as described in Koch et al. (2003) and Ohser et al.
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(2005), the cross-covariance function of Φ and Ψ can

be estimated via

covΦ,Ψ(x) ≈
2πF̄ (| ¯̂ϕW · ψ̂W |)(x)

cW (x)

for all x with cW (x) > 0. Here ≈ means that the

expression on the right-hand side is an unbiased

estimator for covΦ,Ψ(x).

DISTANCE METHOD

Let ‖x− y‖ denote the Euclidean distance of two

points x,y ∈ R
2. The shortest distance dist(x,Φ) =

inf{‖x−y‖ : y ∈ Φ} between a given point x ∈ R
2 and

the random set Φ is a random variable and the mapping

dist( · ,Φ) can be considered as a random field. If Φ
is macroscopically homogeneous then so is dist( · ,Φ),
i.e., the distribution of dist(x,Φ) is independent of the
position x.

We consider the probability that the distance

dist(x,Φ) is less than a given value r ≥ 0 given that

x belongs to Ψ. Let A⊕ B = {x+ y : x ∈ A,y ∈ B}
denote the Minkowski sum of the sets A,B ⊂ R

2. For

the particular case of a ball Br with radius r centered at

the origin, it holds A⊕Br = {x ∈ R
2 : dist(x,A) ≤ r).

If P(x ∈ Ψ) > 0 then

P(dist(x,Φ) ≤ r |x ∈ Ψ)

=
P(dist(x,Φ) ≤ r,x ∈ Ψ)

P(x ∈ Ψ)

=
P(x ∈ (Φ⊕Br)∩Ψ)

P(x ∈ Ψ)

for all x ∈ R
2 and r ≥ 0. In the case of macroscopic

homogeneity the conditional probability considered

above is independent of the position x and it holds

P(dist(x,Φ) ≤ r |x ∈ Ψ)

=
AA({x ∈ R

2 : dist(x,Φ) ≤ r}∩Ψ)

AA(Ψ)
(3)

=
AA

(

(Φ⊕Br)∩Ψ
)

AA(Ψ)
, r ≥ 0 . (4)

In the following we write FΦ,Ψ(r) = P(dist(x,Φ) ≤
r |x ∈ Ψ).

Again, we derive a relationship which can serve

as a condition for independence of random sets. As

before we assume that Ψ is independent of Φ and Ξ
with 0 < AA(Ξ) < 1 and AA(Ψ) > 0. As above we

define Φ′ = Φ ∩ Ξc and Ψ′ = Ψ ∩ Ξ, then from the

independence of Ψ and Ξ it follows

FΦ′,Ψ′(r) = P(dist(x,Φ′) ≤ r |x ∈ Ψ′)

=
P(dist(x,Φ′) ≤ r,x ∈ Ψ,x ∈ Ξ)

P(x ∈ Ψ,x ∈ Ξ)

=
P(dist(x,Φ′) ≤ r,x ∈ Ξ)

P(x ∈ Ξ)

= FΦ′,Ξ(r) , r > 0 .

Define f·,·(r) = 1
2π

d
dr
F·,·(r). Then the difference

s2(r) = fΦ′,Ψ′(r)− fΦ′,Ξ(r) , r ≥ 0 ,

can be used to check independence of Φ and Ψ.

Stochastic dependence of Φ and Ψ can be assumed if

there exist values r > 0 for which estimates of s2(r)
‘significantly’ differ from 0.

In principle, the function FΦ,Ψ can be estimated

using either Eq. 3 or Eq. 4. Because of the huge

amount of image data, we start from Eq. 3 and

apply a method proposed by Rack et al. (2008)

and Ohser and Schladitz (2009, Section 5.5.2), where

similar to the FFT for cross-correlation, the Euclidean

distance transform (EDT) is used as tool allowing

a fast computation of quantities like the spherical

contact distribution function (Mayer, 2004); we apply

Cuisenaire’s algorithm which is about linear in time

(Cuisenaire, 1999).

Assume that both Φ and Ψ are observed through

the same window. The distance dist( · ,Φ) is closely

related to the EDTΦc of Φc, which maps to each point

of R
2 its shortest distance to Φ,

EDTΦc : R
2 7→ [0,∞)

x 7→ dist(x,Φ).

Now the EDT is masked with the random set Ψ as

well as with the reduced window W ⊖ Br, where ⊖
denotes the Minkowski subtraction defined by A⊖B=
(Ac⊕B)c for sets A,B⊆ R

2. This means, we consider

the product

EDTΦc ·1Ψ ·1W⊖Br .

The observation of distances less than r in the reduced

window is free of edge effects (minus sampling).

Hence, for known area density AA(Ψ) the ratio

A({x ∈ R
2 : (EDTΦc ·1Ψ ·1W⊖Br)(x) ≤ r})

AA(Ψ) ·A(W ⊖Br)

is an unbiased estimator of FΦ,Ψ(r) for those r

with A(W ⊖ Br) > 0, i.e., A(W ⊖ Br) is a window

function appropriately chosen for the distance r. If

also AA(Ψ) is estimated from the image data then
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the above estimator is ratio-unbiased, i.e., FΦ,Ψ(r) is

equal to the ratio of the expectation of the denominator

and the expectation of the numerator. Note that the

distance values obtained from a discrete EDT must be

corrected. In the case of square pixels the half pixel

size must be subtracted from the obtained distance

values (Rack et al., 2008).
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Fig. 3. The function s1(r) for the years 2001 to 2009

(on top indicated by the years of source) and the

corresponding mean of s1(r) (bottom).

APPLICATION TO BARK BEETLE

INFESTATION DATA

The data obtained by CIR image interpretation (see

Kautz et al., 2011 for details) provide information on

the observation window, the area of susceptible trees,

and the area of newly emerged infestations for 10

subsequent years (2001–2010). The area of infested

trees (not removed from the forest) of the previous year

is considered as the source for subsequent infestation.

Clearly, those infestation patches where the trees are

removed by forest management cannot serve as a

source.

Each of the images consists of 6620 ×
4803 pixels with an uniform pixel size of

2.87m. Image processing and analysis are

made with MATLAB developed by MathWorks

Inc. and the C++ library MAVIlib created at

Fraunhofer ITWM, Department of Image Processing

(2011).

The results of computation are shown in Figs. 3

and 4. Comparing s1(r) and s2(r), we observe that

the shapes of the curves are very similar, although the

order of the curves differs. As it has been expected,

for large distances r both functions are decreasing and

the probability that infestation occurs more distant than

200m away from potential source patches is very low.

Further, we were interested in how our results depend

on the spatial association and the abundance (i.e.,

intensity) of source patches. The spatial association of

source patches was specified by the common Moran’s

I, an index with values theoretically ranging from

−1 (indicating regularity) over 0 (completely random

distribution) to 1 (strong clustering), see Moran (1950)

and Fortin and Dale (2005). Both functions s1(r) and

s2(r) are independent of Moran’s I of the sources

(Spearman’s rank correlation test yields |ρs| < 0.4 and
p-value > 0.4 for s1 and s2 with r = 50m; Table

1). The intensity of infestation affects significantly

s1 (|ρs| = 0.85; p-value= 0.004), while s2 is less

influenced by the intensity (|ρs| = 0.6, p-value=
0.088; Table 1). The most obvious difference between

both curves is that for small r the function s1(r) is

increasing, with a maximum value around r = 10m.

That is because s1(r) depends on the probability

that two points of a given distance r belong to the

interior of disjoint patches. In contrast to this, for

s2(r) the distances are measured from the boundary of

the source patches. The outer skeleton of the source

patches (i.e., the ridges of the EDT-image) can be seen

as bounds of spreading.

Table 1. Numerical data for evaluation of bark beetle

infestation.

year source Moran’s s1(50m) s2(50m)
area [ha] I

2001 44.81 0.76 0.32 9.41

2002 111.11 0.74 0.64 2.63

2003 71.95 0.47 0.55 6.14

2004 138.35 0.57 0.58 4.22

2005 245.74 0.58 0.59 2.49

2006 316.14 0.65 0.70 2.15

2007 384.61 0.59 1.03 2.86

2008 286.95 0.62 1.02 2.59

2009 178.03 0.76 0.75 1.88
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In the computation of s2(r) it is implicitly assumed

that a patch susceptible to infestation can only be

infested from the bark beetle subpopulation closest

to this patch. In contrast, the computation of s1(r)
does not involve any restrictions about the origin of

the bark beetles. The individuals spreading out from

their source can reach any location of the susceptible

forest. Although we obviously do not have knowledge

about the true spatial relations between source and

target patches, the assumptions implicitely included

in the definition of s2 are more likely describing

the natural dispersal behavior of Ips typographus.

However, since the curves of both functions have

similar shapes, knowledge on the origin seems not

be essential for describing spatial dependence of

subsequent infestation patches.

DISCUSSION

The study demonstrates how image analysis

can be applied efficiently on ecological data at

various spatial scales. Nevertheless, there are some

computational problems that need to be discussed. The

algorithmic core of the computation of the function

s1(r) from digital images is the FFT and, therefore,

the complexity of computing is O(n logn), where n is

the number of pixels. The FFT supposes periodicity

with respect to the windowW through which the data

are observed, i.e., the mask of spruce trees. However,

the forest is not periodic and in particular not W -

periodic. In higher dimensions the fraction of the

data close to the edge of W is considerably larger

than in the one-dimensional case. Thus, the kind of

windowing as described by Bloomfield (1976) which

was successfully applied in one-dimensional cases can

lead to a considerable bias in higher dimensions. For

the investigations presented in this article we used

the edge correction suggested by Koch et al. (2003),

which is based on a padding of the image with zeros

and choosing an appropriate window function.

The calculation of s2(r) uses a discrete version

of the EDT. There are known algorithms for the

discrete EDT having a complexity of about O(n),
see Ohser and Schladitz (2009) for an overview.

Therefore, computation of s2(r) is faster than s1(r) –

which is an important aspect when dealing with a huge

data set, as in our case.

Finally, we remark that in the CIR images one can

observe a considerable macroscopic inhomogeneity.

(In terms of image processing it is called a

gradient.) From our experience, the impact of this

inhomogeneity on the estimates seems to be negligible.

Nevertheless, the characterization of dependence

between macroscopically inhomogeneous random sets

is an open problem worth being explored.
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Fig. 4. The function s2(r) for the years 2001 to 2009

(on top the years of source) and the corresponding

mean of s2(r) (bottom).
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