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ABSTRACT

Birth and growth processes are known in materials science as nucleation and growth processes. In crystalline
materials nucleation almost always takes place in an internal crystalline defect. These defects are classified
according to their dimensionality: point, line or planar defects. Therefore, investigating nucleation on sets
of dimensionality lower than the set in which the transformation takes place is of paramount importance.
Cahn (1956) in a classical work derived expressions for transformation kinetics when nucleation took place
on random planes and on random straight lines. He used these expressions to describe nucleation in
polycrystalline materials. He considered that nucleation on grain faces could be treated as nucleation on
random planes and, likewise, nucleation on grain edges could be treated as nucleation on random lines. The
present work revisits and generalizes Cahn’s treatment of nucleation on planes and lines. First a general
expression for the case of nucleation on lower dimensional sets is obtained. After that general expressions for
nucleation on random planes and random lines are given. This paper provides the mathematical basis for the
development of more specific expressions to be used in practical applications. Although this work has been
done bearing applications to materials science in mind the results obtained here may be applied to birth and
growth processes in any field of science.

Keywords: birth-and-growth process, formal kinetics, phase transformations, point process, Poisson process,
random set, recrystallization.

INTRODUCTION

Formal kinetics is frequently employed to
analyze a variety of heterogenous transformations
in condensed phases. This methodology has its
origin in the early work by Kolmogorov (1937),
Johnson and Mehl (1939) and Avrami (1939;
1940; 1941) and is often called KJMA theory.
Heterogeneous transformations may be defined
as those transformations in which there is a
moving boundary between the transformed and
untransformed region. This formalism envisages
that the heterogeneous transformations may be
decomposed in two stages. The first stage, the
nucleation, is that in which the transformed region
originates. On the other hand, the second stage,
the growth stage, is that in which the transformed
region grows consuming the parent matrix. These
processes are usually called nucleation and growth

processes in materials science or also birth and growth
processes in mathematics. The application of this
formalism is by no means restricted to materials
science. Tomellini and Fanfoni (2008) pointed out
that it is applied to a variety of situations, such
as, the phase separations in multicomponent alloys
(Starink, 2004), the film growth on solid substrates

(Fanfoni and Tomellini, 2005), the kinetics of Ising
lattice-gas model (Ramos et al., 1999), and the DNA
replication (Jun and Bechhoefer, 2005). To these we
may add a recent extensive work by Aquilano et al.

(2009) on crystallization processes.

In materials science, the applicability of KJMA
formalism may be extended to transformations in
which nucleation and growth are treated as purely
“operational” concepts. Therefore, examples of formal
kinetics modeling can be found associated with
a variety of transformations, such as, austenite to
perlite transformation (Johnson and Mehl, 1939),
recrystallization (Vandermeer and Jensen, 2001),
abnormal grain growth in BaTiO3 (Rios et al.,
1998; Kondo et al., 1998), martensite “spread”
(Rios and Guimaraes, 2007; 2008) and polymer
crystallization (Burger et al., 2002a;b).

Specifically, nucleation in crystalline materials
almost always takes place in an internal crystalline
“defect”. These defects are classified in three kinds
according to their dimensionality: point, line or
planar defects. A good example is a polycrystalline
material. In this case the grain boundaries are planar
defects, the common edge belonging to three grains
is a line defect and the vertex(or “corner”) that is
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common to four grains is a point defect. Classical

nucleation theory demonstrates the importance of

these internal defects as nucleation sites. According

to the classical nucleation theory, the free energy

barrier for nucleation strongly depends on which

boundary site the nucleus is located. The free energy

barrier is smallest for vertices and progressively larger

for nucleation on edges and faces (Cahn, 1956).

Even in transformations in which classical nucleation

theory is thought not to be applicable, for example,

recrystallization, grain boundary sites are often the

places at which the transformation originates. Other

examples of nucleation sites are lattice vacancies,

dislocation lines and the particle/matrix interface in the

case that the polycrystal contains a particle dispersion.

In addition to internal defects in small specimens

like powders, thin wires or thin films nucleation on

the external surface give a significant contribution

to the transformation (Villa and Rios, 2010). From

these examples, it is clear that nucleation on sets

of dimensionality lower than the set in which the

transformation takes place is of paramount importance.

In its original form KJMA theory considered

that nucleation sites were uniform randomly located

in space. In other words, that the internal defects

were point defects and that they were located in

space according to a homogeneous Poisson point

process. Expressions for two fundamental nucleation

modes were obtained. The first fundamental nucleation

process takes places when the nuclei are “potent”

so that nucleation takes place very fast and all

possible nucleation sites are exhausted very early

in the reaction. This case is called “site-saturation”.

Mathematically speaking one may suppose that all

transformed regions originate at the start of the

reaction taken to be the time origin, t = 0. The

second fundamental nucleation mode considered that

the internal point defects were not equally “potent”.

As a consequence there was a different ”incubation”

time for each site to become a new transformed

region. Therefore nucleation took place over time

with what they called a “constant nucleation rate”. In

mathematical terms they supposed that nucleation was

a point process in R+ × R
d . It is clear that KJMA

considered only one possibility of nuclei distribution

in space whereas in real materials, as discussed above,

there are many possibilities.

Many metallic and ceramic engineering materials

are polycrystalline. As mentioned above, nucleation of

a transformed region in polycrystals does often take

place at grain boundaries, edges and vertices. Grain

boundaries are not exactly flat neither grain edges

are exactly straight lines. Nonetheless the accurate

analytical description of these boundaries and lines in

a real polycrystal would be unfeasible. Clearly, it is

necessary to represent grain boundaries and edges by

simple curves or surfaces. Cahn (1956) in a classical

work proposed that grain faces may be approximated

by random planes and grain edges by random straight

lines provided that there is an equivalence between the

area per unit of volume of the real grain boundaries

and the area per unit of volume of the random planes.

Cahn’s paper has been extensively cited not only in

connection with metallic materials recrystallization

and phase transformations, but also in connection with

non-metallic materials as well, such as, glass, cement

and even geological formations.

Cahn’s method has two main characteristics. The

first is that it captures the “randomness” in the

location of boundary sites. This randomness is a

consequence of the randomness in the distribution

of grain sizes and of the spatial location of the

grains. The second characteristic is that it also

captures the dimensionality of the nucleation site. Thus

distinct formal kinetics expressions are obtained for

nucleation in each boundary site. Dimensionality of

the operative nucleation site is clearly a key issue

for transformations taking place in polycrystalline

materials. These characteristics are probably what has

prompted metallurgists to continually apply Cahn’s

model to many transformation problems.

One complication that may arise in practice is that

metallic polycrystalline materials may be and indeed

they are often deformed. The deformation may change

the spatial arrangement of the grain boundaries. For

example, after severe rolling the grains are “flattened”

and are often called “pancake” grains. Clearly these

grains have most of their grain boundaries nearly

parallel to the rolling plane. In this case the grain

boundaries might be approximated by parallel planes.

Therefore depending on how the deformation is

conducted the spatial arrangement of planes or lines

may assume some specific characteristics. So it is

of practical interest to study how different spatial

arrangements of planes or lines may affect the

transformation originating from nuclei on these planes

or lines. This is the main goal of the present paper.

In previous work (Rios and Villa, 2009;

Villa and Rios, 2009; 2010), the present authors

resorted to the causal cone (Jackson, 1974; Cahn,

1996) concept and to recent developments in

stochastic geometry (Capasso and Villa, 2007a;b) to

obtain analytical expressions for transformations in

which nuclei were located in space according to an

inhomogeneous Poisson point processes, in spherical

clusters and in the bulk and on the surface of small

specimens (Villa and Rios, 2010). In this work we

continue to examine situations of engineering and
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scientific interest exerting the same mathematical tools
adopted in our previous work. In the present work
we revisit and generalize the problem of nucleation
on planes and lines treated by Cahn (1956) in the
aforementioned paper.

This paper is organized as follows. First a
short mathematical background is given. Then a
general expression for the case of nucleation on
lower dimensional sets is obtained. After that the
mathematical derivations of general expressions for
nucleation on random planes are given. The next
section is similar to the previous one excepting
that it treats lines instead of planes. Additional
mathematical background may be found in our
previous papers and references therein (Rios and Villa,
2009; Villa and Rios, 2009; 2010).

MATHEMATICAL BACKGROUND

AND BASIC NOTATION

Detailed mathematical background may be found
in previous work by the authors (Rios and Villa, 2009;
Capasso and Villa, 2007a;b). Here only some essential
definitions and some useful relationships will be
presented to make this paper more self contained and
easier to read. For a brief description of homogeneous
and inhomogeneous Poisson point process, the reader
is referred to Rios and Villa (2009) or for a more
detailed presentation to specific texts on stochastic
geometry (Stoyan et al., 1995).

BIRTH-AND-GROWTH PROCESSES

AND MEAN RELATED DENSITIES

A birth-and-growth (stochastic) process is a
dynamic germ-grain model (Stoyan et al., 1995), used
to model situations in which nuclei (germs) are born
in time and are located in space randomly, and each
nucleus generates a grain evolving in time according
with a given growth law. Since, in general, the
nucleation is random in time and space, then the
transformed region at any time t > 0 will be a random
set (Stoyan et al., 1995) in R

d , that is a measurable
map from a probability space to the space of closed
subsets in R

d . Denote by Tj the R+-valued random
variable representing the time of birth of the j-th
nucleus, and by X j the R

d-valued random variable
representing the spatial location of the nucleus born
at time Tj. Let Θt

Tj
(X j) be the grain obtained as the

evolution up to time t ≥ Tj of the nucleus born at time
Tj in X j; then, the transformed region Θt at time t is

Θt =
⋃

Tj≤t

Θt
Tj

(X j) , t ∈ R+ .

The family {Θt}t is called birth-and-growth process.
Birth-and-growth and nucleation and growth will be
used as synonyms in this paper.

Since Θt is a random set, it gives rise to a random
measure νd(Θt ∩·) in R

d for all t > 0 , having denoted
by νd the d-dimensional Lebesgue measure in R

d .
In particular, it is of interest to consider the expected

volume measure E[νd(Θt ∩ ·)] and its density (i.e.,
its Radon-Nikodym derivative), called mean volume

density of Θt and denoted by VV , provided it exists:

E[νd(Θt ∩A)] =
∫

A
VV (t,x)dx ∀A ∈ B

Rd , (1)

where B
Rd is the Borel σ -algebra of R

d .

Whenever A is the region of the physical sample
under observation, the ratio

VV(t,A) :=

∫

AVV (t,x)dx

νd(A)

is also called volume fraction. Let us notice that
whenever VV is independent of x (e.g., under
assumptions of homogeneous nucleation and growth),
then VV is independent of A and VV(t) = VV (t). (see
also Rios and Villa, 2009, Stoyan et al., 1995, p. 342).
We also mention that other quantities of interest in real
applications are the so-called mean extended volume

density at time t, denoted by VE(t, ·), defined as the
density of the mean extended volume measure at time
t, E[µex

Θt ]( ·) := E[∑ j:Tj≤t νd(Θt
Tj

(X j)∩ ·)] on R
d , that

is

E[µex
Θt ](A) =

∫

A
Vex(t,x)dx , ∀A ∈ B

Rd ,

and the mean surface density SV (t, ·) and the mean

extended surface density SE(t, ·) at time t, defined
as the density of the mean surface measure at time
t, E[µ∂Θt ]( ·) := E[H d−1(∂Θ∩ ·)] and of the mean

extended surface measure at time t, E[µex
∂Θt ]( ·) :=

E[∑ j:Tj≤t H
d−1(∂Θt

Tj
(X j) ∩ ·)], respectively, where

H d−1 is the (d− 1)-dimensional Hausdorff measure.
In other words, the mean extended volume and surface
measures represent the mean of the sum of the volume
measures and of the surface measures of the grains
which are born and grown until time t, supposed free

to grow, ignoring overlapping (see also Rios and Villa,
2009; Villa, 2008).

It is clear that to find out formulas for the mean
volume density VV (and so for VV and the other
quantities we mentioned above, as a consequence) is
of particular interest in real applications.

Of course, different kinds of nucleation and growth
models gives rise to different kinds of processes {Θt}t .
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Aim of this paper is the study of the mean volume

density of birth-and-growth processes with different

types of nucleations on planes and lines, and so, for

sake of simplicity, we shall assume throughout the

paper that the velocity of growth of each grain is

constant and homogeneous in space, so that any grain

Θt
Tj

(X j) born in X j at time Tj and grown up to time

t is given by the ball BG(t−Tj)(X j) centered in X j

with radius G(t − Tj). Such a simplification does not

limit the applications of our results to real situation;

moreover the interested reader in the more general case

of non-constant velocity could generalize our results

by applying the same approach presented here. We

also refer to Burger et al. (2002a); Capasso and Villa

(2007a); Villa (2008) for models of birth-and-growth

processes whose grains have space and time dependent

growth rate.

MODELLING THE NUCLEATION

PROCESS

As mentioned in the Introduction, we shall

consider the case in which all the nucleation takes

place at t = 0 (namely, site-saturated case), and the

case in which the nucleation takes place in time

(namely, time-dependent case).

Site-saturated nucleation processes and space-

time dependent nucleation processes can be modeled

by point processes and marked point processes,

respectively. We give here some basic concepts and

definitions useful for the sequel (see also, for instance,

Rios and Villa, 2009, Sec. 2.3) We remind that a

point process in R
d is an almost surely locally finite

sequence of points {Xi}i randomly located in R
d ,

according with a given probability law. It can be

described by the counting process, say N, associated

to the sequence {Xi} defined as

N(A) := number of the Xi’s, which belong to A,

for any A ∈ B
Rd .

A marked point process in R+×R
d , is a sequence

N := {(Ti,Xi)}i of points in R+ × R
d such that the

sequence {Ti}i is a point process in R+, while each

Xi ∈ R
d is said to be the mark associated to the point

Ti. A space-time nucleation process can be modeled

by a marked point process, identifying Ti as the time of

birth of the i-th nucleus, and Xi as its spatial location in

R
d . Analogously to the site-saturation case, a counting

process N on R+×R
d can be defined as

N([s, t]×A′) := number of nuclei, which are

born in A′ during the time

interval [s, t].

The measure Λ on R
d and on R+ ×R

d , respectively,
defined as Λ(A) := E[N(A)] for all A ∈ B

Rd and A ∈
BR+×B

Rd , respectively, is called intensity measure
ofN; in other words, Λ(A) represents the mean number
of nuclei born in A ⊂ R

d of a site-saturated process,
and the mean number of nuclei born in A′ during a
time interval [s, t], where A = [s, t]× A′ ⊂ R+×R

d ,
of a time-dependent nucleation. We intentionally use
the same notation N for the site-saturated nucleation
process and for the time-dependent one because the
site saturated process may be seen as a particular case
of the time-dependent one by assuming Tj ≡ 0 for
any j. In the sequel it will be clear from the context
which process we are referring to (note also that Λ
is a measure on R

d in the site saturated case, and on
R+×R

d in the time-dependent case).

In this paper we shall assume Poissonian
nucleation, that is N will be a Poisson process (in R

d

in the site-saturated case, and in R+ ×R
d in the time-

dependent case). We point out that the resulting birth-
and-growth process is then a particular case of the
well-known general Boolean model (Matheron, 1975);
namely, due to the assumption of constant velocity, a
time dependent Boolean model of spheres.

CAUSAL CONE AND MEAN VOLUME

DENSITIES: BASIC DEFINITION AND

RESULTS

It is well known and easy to prove that

VV (t,x) = P(x ∈ Θt) for νd-a.e. x ∈ R
d .

The so-called “causal cone” of a point x at time t,
denoted here by C (t,x), plays a fundamental role
in evaluating VV (t,x). It is defined as the space-time
region in which at least one nucleation event has to take
place in order to cover the point x at time t; namely, it
is the subset of R+×R

d

C (t,x) := {(s,y) ∈ [0, t]× R
d : x ∈ Θt

s(y)}.
(see, e.g., also Rios and Villa, 2009, Sec 2.4.)

Let us observe that under our assumption above on
G, it follows that

C (t,x) =

{
BGt(x)
{(s,y) ∈ [0, t]×R

d : y ∈ BG(t−s)(x)}
in the site-saturated and in the time-dependent
case, respectively. (For the general case of space-
time dependent growth rate, see, e.g., Villa (2008);
Rios and Villa (2009) and references therein.) Quite
general results on VV (t,x) in terms of the causal cone
are proved in Villa (2008). In particular we recall here
that

VE(t,x) = Λ(C (t,x)) ,
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and that

G =
1

SV (t,x)

∂VV (t,x)

∂ t
=

1

SE(t,x)

∂VE(t,x)

∂ t
, (2)

moreover, under Poissonian assumption on the

nucleation process it holds

VV (t,x) = 1− e−VE (t,x) (3)

and

SV (t,x) = (1−VV (t,x))SE(t,x) .

It is clear the importance of the relationships above

in real applications. For instance, if the velocity G

is known, Eq. 2 can be used to find out the mean

interfacial area density or the interfacial area per

unit of volume from the corresponding mean volume

density or volume fraction.

GENERAL EXPRESSION IN THE

CASE OF NUCLEATION ON

LOWER DIMENSIONAL SETS

In order to model the situation in which the

nucleation takes place spatially in lower dimensional

subsets and subspaces of R
d , we shall make use of

the so called “delta-formalism”, as follows. Let Sn
be a H n-measurable subset of R

d with Hausdorff

dimension n ∈ {1,2, . . . ,d − 1}, having denoted by

H n the n-dimensional Hausdorff measure; then δSn(y)
is the so-called delta function associated to Sn (which

can be seen as a generalization to the well-known

delta-function δx0 associated to a point x0 ∈ R
d). It is

the generalized function defined formally by

∫

A
δSn(y)dy := H

n(Sn∩A) ∀A ∈ B
Rd .

Thus, we may consider Poisson nucleation processes

on Sn with intensity measure Λ given by

Λ(dy) = λ (y)δSn(y)dy ,

and

Λ(d(s,y)) = λ (s,y)δSn(y)dsdy ,

in the site-saturated and in the time-dependent case,

respectively.

Therefore VV (t,x) is given by Eq. 3 with

VE(t,x) =







∫

BGt(x)
λ (y)δSn(y)dy

∫ t

0

(∫

BG(t−s)(x)
λ (s,y)δSn(y)dy

)

ds

in the site-saturated and in the time-dependent case,

respectively.

Of course in real situations nucleation cannot

take place on unbounded subsets; nevertheless there

are situations in which it could be more convenient

(because more tractable mathematically in order to

obtain explicit formulas) to consider nucleation on

unbounded domains, such as planes or lines, as we

shall see in the sequel. Anyway, in order to model the

real general case in which nucleation takes place in a

bounded regionC (the sample where the reaction takes

place) it is sufficient to consider the nucleation process

having intensity measure Λ of the type

Λ(dy) = λ (y)δSn∩C(y)dy ,

and

Λ(d(s,y)) = λ (s,y)δSn∩C(y)dsdy ,

in the site-saturated and in the time-dependent case,

respectively.

In what follows, we consider the case d = 3

and n = 2 or n = 1 to model situations in which

nucleation takes place on planes or lines, respectively,

which are of particular interest in real applications.

In particular, we shall consider the case in which

the nucleation is homogenous in space in the site-

saturated case, and homogeneous in space and time

in the time-dependent case, which corresponds to take

λ (y) ≡ λ > 0 and λ (s,y) ≡ c > 0, respectively, in

the above equations. This assumption allows us to

provide explicit formulas for VV (and so for their

related quantities), useful in various real applications.

Indeed, under such homogeneity assumption the above

expressions for VE simplify as follows:

VE(t,x) =

{
λH

n(Sn∩C∩BGt(x)) ,

c

∫ t

0
H

n(Sn∩C∩BG(t−s)(x))ds ,
(4)

in the site-saturated and in the time-dependent case,

respectively; so the problem reduces to evaluate the

H n measure of the intersection of a ball with the

spatial region (Sn ∩C) where the nucleation takes

place. Note also that for point x and time t such

that BGt(x) ⊂ C (for instance at the very beginning

of a reaction or for points x sufficiently far from

the boundary of the sample), then H n(Sn ∩ C ∩
BG(t−s)(x)) = H n(Sn ∩ BG(t−s)(x)) for any s ∈ [0, t],
so that the computation of VE might be simpler.

In the subsequent sections the constants λ and c

in Eq. 4 will be denoted by λS and IS, respectively,

in the case of nucleation on planes, and by λL and IL,

respectively, in the case of nucleation on lines. Thus,

λS will represent the mean number of nuclei per unit of
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area of a plane, whereas λL the mean number of nuclei
per unit of length of a line, and IS and IL will represent
the nucleation rate in the time-dependent nucleation
(i.e., the mean number of nuclei per unit of time) in
the plane case and the line case, respectively.

NUCLEATION ON RANDOM

PLANES

In Villa and Rios (2010, supplementary material)
explicit expressions for VV and VE in the case of
nucleation on one fixed plane B in R

3 are provided,
both in the case of time dependent nucleation and
in the case of site-saturation. By denoting r(x) the
distance of a point x ∈ R

3 to B, we recall that

VE(t,x) =

{
λSπ(G2t2− r(x)2)1[0,Gt](r(x))

ISπ
(
2r(x)3

3G
− r(x)2t+ G2t3

3

)

1[0,Gt](r(x))

in the site-saturated and in the time-dependent case,
respectively, where 1A(a) is the indicator function of
any set A.

Let us notice from the formulas above that the
value of VE depends on the distance r(x) from x to the
plane; thus, in order to find out explicit formulas for
unions of random planes it is convenient to represent
any plane B by giving its orientation and distance from
the origin. Indeed, we recall that a plane B in R

3 is
uniquely determined by its distance from the origin,
say u, and by its normal outer vector, say w ∈ S2 (S2 is
the unit sphere in R

3). The equation of B = B(w,u) is
then given by

B(w,u) := {x ∈ R
3 : 〈w,x〉 = u}

and it is well known that dist(x,B) = |〈w,x〉 − u| for
any x ∈ R

3 (〈w,x〉 is the scalar product of w and x).
As a consequence, by denotingV

u,w
V (t,x) andV u,w

E (t,x)
the corresponding mean volume density and the mean
extended volume density, respectively, associated to
the transformed region Θt = Θt(w,u) at time t due to
the nucleation on the plane B(w,u), it follows that

V
u,w
V (t,x)

Eq. 3
= 1−P(x 6∈ Θt(w,u)) = 1− e−V

u,w
E (t,x),

(5)

with

V
u,w
E (t,x) =






λSπ(G2t2−|〈w,x〉−u|2)1[0,Gt](|〈w,x〉−u|)
ISπ

(
2|〈w,x〉−u|3

3G
−|〈w,x〉−u|2t+ G2t3

3

)

· 1[0,Gt](|〈w,x〉−u|)
(6)

in the site-saturated and in the time-dependent case,
respectively.

Remark 1 In Cahn (1956, p. 451) a formula for the

mean total volume at time t (denoted by V0 in that

paper) occupied by the grains with nucleus on a unit

area of B is given in the site-saturated case. We may

notice that such a formula coincide with the mean

volume of Θt in the spatial region A := [0,1]× [0,1]×
[−∞,+∞], due to the time-dependent nucleation on the
plane B := {x3 = 0}. Indeed, by Eqs. 1 and 6 we get

E[ν3(Θt ∩A)]

=
∫ 1

0

∫ 1

0

(
∫ +∞

−∞

(

1− e
−ISπ

(
2|x3|3
3G −|x3|2t+G2t3

3

))

· 1|x3|<Gt dx3

)

dx1 dx2

= 2

∫ Gt

0



1− e
−ISπ

(
2x3
3

3G −x23t+
G2t3

3

)

 dx3 ,

which coincides with the above mentioned result in

Cahn’s paper, after the change of variable z = x3/Gt.

NUCLEATION ON ONE RANDOM

PLANE

Let us now consider the case in which B is random,

i.e let B = B(W,D) := {x ∈ R
3 : 〈W,x〉 = D} be a

random plane in R
3, whereW is a random unit vector

in S2 with probability law PW , and D is the random

distance from the origin, with probability law PD. We

denote by PD,W their joint probability on R+× S2. It

follows that the transformed region Θt at time t is

due to double stochasticity: the random location of the

plane, and the random nucleation on the plane. Thus,

observing that PD,W (R+×S2) = 1, the following chain

of equalities holds:

VV (t,x) = 1−P(x 6∈ Θt)

= 1−
∫

R+

∫

S2
P(x 6∈ Θt(w,u))PD,W (d(u,w))

= 1−
∫

R+

∫

S2
exp{−V u,w

E (t,x)}PD,W (d(u,w))

=

∫

R+

∫

S2
(1− exp{−V u,w

E (t,x)})PD,W (d(u,w))

=
∫

R+

∫

S2
V
u,w
V (t,x)PD,W (d(u,w)) (7)

Analogously, we get that

VE(t,x) =
∫

R+

∫

S2
V
u,w
E (t,x)PD,W (d(u,w)) .

By noticing that

1− eg(s)1A(s) = (1− eg(s))1A(s) ,
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then from Eqs. 5, 6 and 7 we obtain the following

general expressions for VV , for the site-saturated case:

VV (t,x)=
∫

R+

∫

S2

(

1−exp{−λSπ(G2t2−|〈w,x〉−u|2)}
)

·1[0,Gt](|〈w,x〉−u|)PD,W (d(u,w)) , (8)

and for the time-dependent case:

VV (t,x) =
∫

R+

∫

S2

(

1− exp{−ISπ(
2|〈w,x〉−u|3

3G
−|〈w,x〉−u|2t

+
G2t3

3
)}

)

1[0,Gt](|〈w,x〉−u|)PD,W (d(u,w)) .

Example: uniform orientation and uniform

distance from the origin

As a simple example of applicability of the above

formulas, let us consider the case in which W is

uniform in S2 and the distance D from the origin is

uniform in [0,M], and they are independent. In such a

case Eq. 8 becomes

VV (t,x) =

1

4πM

∫ M

0

∫

S2

(
1− exp{−λSπ(G2t2−|〈w,x〉−u|2)}

)

1[0,Gt](|〈w,x〉−u|)H 2(dw)du ,

by changing to spherical coordinates (w1 =
sinθ cosφ ; w2 = sinθ sinφ ; w3 = cosθ , θ ∈
[0,π], φ ∈ [0,2π]), it can be written in an even more

explicit form, useful for practical purposes:

VV (t,x) =
1

4πM

∫ 2π

0

∫ π

0
(∫ M

0
(1− exp{−λSπ(G2t2− ( f (θ ,φ ,x)−u)2})

1[ f (θ ,φ ,x)−Gt, f (θ ,φ ,x)+Gt](u)du
)

sinθ dθ dφ ,

where

f (θ ,φ ,x) := x1 sinθ cosφ + x2 sinθ sinφ + x3 cosθ .
(9)

Obviously, one might proceed similarly for the time-

dependent case.

NUCLEATION ON UNION OF RANDOM

PLANES

In this section we model nucleation on union of

random planes.

Assumptions: Let B1 = B1(W1,D1), . . . ,BM =
BM(WM,DM)) independent random planes, distributed

as B = B(W,D), where M is a positive integer-valued

random variable with mean E[M] = m; that is m is

the mean number of planes where nucleation takes

place. We assume that D1,D2, . . . and W1,W2, . . . are
independent and identically distributed as D and W ,

respectively, and independent of M, and that D is

a continuous random variable (this implies that the

probability that two or more planes Bi coincide is

zero).

Then, by denoting Θt
Bi
the union of the grains with

nuclei on Bi, the transformed region Θt at time t is the

random set given by

Θt =
M⋃

i=1

Θt
Bi

.

Theorem 2 Under the above Assumptions, we have

that

VE(t,x) = m

∫

R+

∫

S2
V
u,w
E (t,x)PD,W (d(u,w)) ,

and

VV (t,x) = 1−GM

(∫

R+

∫

S2
e−V

u,w
E (t,x)PD,W (d(u,w))

)

(10)

where GM is the probability generating function of M,

and V
u,w
E (t,x) is given by Eq. 6.

Remark 3 Note that, if t = 0, then VV (0,x) = 1−
G (1) = 0, as expected.

Proof. Given M = n, we know that B1, . . . ,Bn

are independent with random distances Di ∼ D and

random orientation Wi ∼W . Given then the distances

D1 = u1, . . . ,Dn = un of B1, . . . ,Bn, respectively, to the

origin, and given the orientations W1 = w1, . . . ,Wn =
wn, the mean volume extended density conditioned to

(n,u1, . . . ,un,w1, . . . ,wn), sayV
n,u1,...,un,w1,...,wn

E (t,x), is
given by

V
n,u1,...,un,w1,...,wn

E (t,x) =
n

∑
i=1

V
ui,wi
E (t,x) (11)

It follows that

VE(t,x) = ∑
n

n

∫

R+

∫

S2
V
u,w
E (t,x)PD,W (d(u,w))P(M = n)

=

∫

R+

∫

S2
V
u,w
E (t,x)PD,W (d(u,w))∑

n

nP(M = n)

= m

∫

R+

∫

S2
V
u,w
E (t,x)PD,W (d(u,w)) .
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By noticing that

∫

A
. . .

∫

A
︸ ︷︷ ︸

n-times

f (a1) f (a2) · · · f (an)da1 · · · dan

=
[∫

A
f (a)da

]n

,

we obtain

VV (t,x) = 1−P(x 6∈ Θt)

= 1−∑
n

∫

R+

∫

S2
. . .

∫

R+

∫

S2
︸ ︷︷ ︸

n-times

e−V
n,u1,...,un,w1,...,wn
E (t,x)

·PD,W (d(u1,w1)) · · ·PD,W (d(un,wn))P(M = n)

Eq. 11
= 1−∑

n

∫

R+

∫

S2
. . .

∫

R+

∫

S2
︸ ︷︷ ︸

n-times

n

∏
i=0

e−V
ui,wi
E (t,x)

·PD,W (d(u1,w1)) · · ·PD,W (d(un,wn))P(M = n)

= 1−

∑
n

(∫

R+

∫

S2
e−V

u,w
E (t,x)PD,W (d(u,w))

)n

P(M = n)

= 1−G (z) ,

where G is the probability generating function of M,

and

z :=
∫

R+

∫

S2
e−V

u,w
E (t,x)PD,W (d(u,w))

¤

Remark 4 Let us notice that if M is a Poisson random

variable with mean m, then GM(z) = e−m(1−z), and so,

by Eq. 10 and PD,W (R+×S2) = 1,

VV (t,x) =

1− exp

{

−m

∫

R+

∫

S2

(

1− e−V
u,w
E (t,x)

)

PD,W (d(u,w))

}

(12)

More numerically tractable expressions for the above

equations can be obtained by passing into spherical

coordinates as the example given in the previous

section.

PARTICULAR PROBABILITY

DISTRIBUTIONS OF THE RANDOM

ORIENTATION W USEFUL IN

APPLICATIONS

Throughout this section, without any other

specification, the number M of planes is assumed to

be a Poisson random variable, so that Eq. 12 holds. As

a consequence, such a model can be seen as a network

of Poisson hyperplanes in 3D (Matheron, 1975). We

consider here a few particular cases of interest in

applications.

Parallel and orthogonal planes

Let us consider the general case in which the

distribution of the orientation W is discrete, and

assume that D and W are independent. Therefore W

is a discrete random vector in S2, that is there exist

w1,w2, . . . in S
2 and p1, p2, . . . in [0,1] such that ∑i pi =

1 and P(W = wi) = pi for all i. Then Eq. 12 simplifies

as follows:

VV (t,x) =

1− exp

{

−m

∫

R+
∑
i

((

1− e−V
u,wi
E (t,x)

)

pi

)

PD(du)

}

(13)

with V
u,wi
E (t,x) given by Eq. 6.

A particular case of the above model is obtained

by assuming that the planes are parallel. In such a

case, the outer normal vector of each plane is fixed,

say w̄ = (0,0,1) (that is, the planes are parallel to the

xy plane); as a consequence we obtain

VV (t,x)= 1−exp

{

−m

∫

R+

(

1− e−V
u,w̄
E (t,x)

)

PD(du)

}

.

An explicit expression in the case D is uniformly

distributed in [0,K] is then given by

VV (t,x) =

=







1− exp
{

− m

K

∫ K

0

(

1− e−λSπ(G2t2−(x3−u)2)
)

·1[x3−Gt,x3+Gt](u)du
}

1− exp
{

− m

K

∫ K

0

(

1− e−ISπ(
2|x3−u|3

3G −|x3−u|2t+G2t3

3 )

)

·1[x3−Gt,x3+Gt](u)du
}

in the site-saturated and in the time-dependent case,

respectively.

Note that m/K is the mean area fraction of the

planes in [0,K]× [0,1]2 .

Remark 5 Let us consider for instance the site-

saturated case. Since we assumed that each random

plane Bi is of the type x3 = D with D ∼U [0,K], and
λS nuclei per unit of area in mean for each plane, then

nucleation takes place in the spatial region between

the plane x3 = 0 and the plane x3 = K with λsm nuclei

in mean in [0,1]2 × [0,K]. Thus, we expect that for
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m sufficiently large, such a birth-and-growth process

approximates one with nucleation process given by a

homogeneous Poisson point process between the two

parallel planes x3 = 0 and x3 = K, with intensity λ =
λsm/K. Indeed, e.g., in the case t > K/G, for any

x = (x1,x2,x3) with x3 ∈ [0,K],

VV (t,x) = 1−exp

(

−m

K

∫ K

0
(1− e−λSπ(G2t2−(x3−u)2))du

)

∼ 1−exp

{

1−λπ

(

G2t2K− K3

3
+K2x3−Mx23

)}

,

that coincides with Eq.(101) in Villa and Rios (2010),

where the case of nucleation between two parallel

planes is studied.
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Fig. 1. Microstructural path for transformations nucleated

on random points and planes. The solid black line:

homogeneous Poisson point process with intensity λ = 10.

The other lines represent a transformation nucleated on

m planes x3 = [−K,K] with λS number of nuclei per unit

of area, so that λSm/2K = 10: a)thin solid line λS =

20; b)short-dashed line: λS = 10; c)medium-dashed line:

λS =
√
10; d)dashed line: λS = 1. The clustering effect

is accentuated for low m/2K and high λS, thin solid

line. In contrast for high m/2K and low λS, dashed line,

the microstructural path approaches that of a reaction

nucleated according with a homogeneous Poisson point

process, solid curve.

Fig. 1 illustrates the above Remark. The thick solid

line is the microstructural path, evaluated in x= 0, of a

transformation for which nuclei are located in space

according to a homogeneous Poisson point process

with intensity λ = 10. The other lines represent

transformations nucleated on m planes x3 ∈ [−K,K],
with λS number of nuclei per unit of area, so that

λSm/2K = 10 The thin solid line represents the case

in which m/2K = 0.5 and λS = 20. A pronounced left-

hand skew is apparent. As the number of nuclei per

unit of area decreases and the area per unit of volume

increases (thus keeping the total number of nuclei

per unit of volume constant) the curves progressively

approach the thick solid line as expected. Preferential

nucleation on planes and lines may be understood as

a clustering effect according to Vandermeer (2005).

It is the severity of this clustering that shows as an

asymmetry in the microstructural path plot. Such a

clustering effect is more intense for low m/2K and

high λS.

It might be of interest also to model nucleations

on orthogonal planes. Since in many real applications

it is of interest the behavior of the process in the

centre of the specimen, for sake of simplicity we shall

assume here that the distance D from the origin is

uniformly distributed in [0,K], so that it is easy to

get an explicit expression for VV (t,x), which might be

used to represent the mean volume density at points x

sufficiently far from to the boundary of the specimen.

Therefore, denoted by w1 = (1,0,0), w2 = (0,1,0),
and w3 = (0,0,1), with P(W = wi) = pi, we obtain

VV (t,x)
Eqs. 13,5

=






1− exp
{

− m

K

∫ K

0

3

∑
i=1

pi(1− e−λSπ(G2t2−(xi−u)2))

1[xi−Gt,xi+Gt](u)du
}

1− exp
{

− m

M

∫ M

0

3

∑
i=1

pi(1− e
2|xi−u|3

3G −(xi−u)2t+G2t3

3 )

1[xi−Gt,xi+Gt](u)du
}

in the site-saturated and in the time-dependent case,

respectively.

An example of continuous not-uniform

distribution of W

Let us consider the following simple model where

nucleation takes place on planes having continuous but

not uniform orientation. It may be used as model for

recrystallization processes in which nucleation takes

places on ellipsoidal grains, for instance.

For sake of simplicity we consider here the site-

saturated case, and we assume, as above, that the

distanceD from the origin in uniformly distributed, but

now dependent on the orientation of the plane. Thus,

denoted by PD|W (du|w) the conditioned probability

law of D givenW , let us assume
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PD|W (du|w) :=

1

M(αw2
1 +βw2

2 + γw2
3)
1[0,M(αw2

1+βw2
2+γw2

3)]
(u)du ,

and

PW (dw) :=
3

4π

a2w2
1 +b2w2

2 + c2w2
3

a2 +b2 + c2
1S2(w)H 2(dw) ,

where a := 1/
√

α , b := 1/
√

β , and c := 1/
√

γ .

Then it follows

VV (t,x) = 1− exp

{

− 3m

4π(a2 +b2 + c2)
∫ 2π

0

∫ π

0
η(u;θ ,φ)

(

a2 sin2 θ cos2 φ

+b2 sin2 θ sin2 φ + c2 cos2 θ

)

sinθ dθ dφ

}

with

η(u;θ ,φ) :=
∫ M(α sin2 θ cos2 φ+β sin2 θ sin2 φ+γ cos2 θ)

0

(1− exp{−λSπ(G2t2− ( f (θ ,φ ,x)−u)2)})
M(α sin2 θ cos2 φ +β sin2 θ sin2 φ + γ cos2 θ)

·1[ f (θ ,φ ,x)−Gt, f (θ ,φ ,x)+Gt](u)du

and f (θ ,φ ,x) given by Eq. 9.

Remark 6 Note that the case of uniform distribution

of W in S2, with W and D independent, follows as a

particular case with a = b = c = 1.

NUCLEATION ON RANDOM LINES

As mentioned before, nucleation on lines might be

used as model for nucleation on the edges of grains in

recrystallization processes. Thus, let L be a fixed line

in R
3, and λL and IL be as in Sec ”General expression

in the case of nucleation on lower dimensional sets”.

Then it is not difficult to see that Eq. 4 becomes in this

case

VE(t,x) =






λL2

√

G2t2− r(x)2 1[0,Gt](r(x))

ILG
[

t

√

t2− (r(x)/G)2− (r(x)/G)2

· log
(
t+
√

t2−(r(x)/G)2

r(x)/G

)]

1[0,Gt](r(x))

(14)

in the site-saturated and in the time-dependent case,

respectively, where r(x) is the distance of x ∈ R
3 from

L.

By following the representation given in

Stoyan et al. (1995, Sec. 8.5)) (see also Matheron

(1975)), we may uniquely determine a line L in R
3

with positive distance u from the origin by u and by

a pair (v,w) ∈ T (S2), being T (S2) the tangent bundle
to S2, that is the collection of pairs (v,w) with v ∈ S2

and w unit vector tangent to S2 at v. In other words,

v is the outer normal vector to the plane on which the

line lies, while w is the direction of the line. If u = 0,

only the direction w is needed to identify the line,

so T (S2) has to be replaced by S2 and L is the line

L(0,w) through the origin with direction w ∈ S2. We

are going to consider nucleation on random lines of

interest for real applications, whose distance from the

origin is random with continuous distribution, so that

P(u = 0) = 0. Then, let us denote by Lu,(v,w) the line

having distance u from the origin uniquely determined

by the pair (v,w) ∈ T (S2); it follows that Lu,(v,w) is the

line through the point uv and direction w, and so

dist(x,Lu,(v,w)) =
√

(x1−uv1)2 +(x2−uv2)2 +(x3−uv3)2−〈x−uv,w〉2

:= j(x;u,(v,w))

As a consequence, denoted by V
u,(v,w)
V (t,x) and

V
u,(v,w)
E (t,x) the corresponding mean volume density

and the mean extended volume density, respectively,

associated to the transformed region Θt = Θt(u,(v,w))
at time t due to the Poissonian nucleation on the line

Lu,(v,w), it follows that

V
u,(v,w)
V (t,x) = 1−P

(
x 6∈ Θt(u,(v,w))

)

= 1− exp
(

−V u,(v,w)
E (t,x)

)

,

with

V
u,(v,w)
E (t,x) =






2λL

√

G2t2− j2(x;u,(v,w)) 1[0,Gt]( j(x;u,(v,w)))

ILG
[

t
√

t2− ( j(x;u,(v,w))/G)2− ( j(x;u,(v,w))/G)2

· log
(
t+
√

t2−( j(x;u,(v,w))/G)2

j(x;u,(v,w))/G

)]

1[0,Gt]( j(x;u,(v,w)))

in the site-saturated and in the time-dependent case,

respectively.

By proceeding along the same lines of the previous

sections in the case of nucleation on a random

line LD,(V,W ) with D and (V,W ) random quantities
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with probability law PD on R+, and PT on T (S2),
respectively, we have that

VV (t,x) =
∫

R+

∫

T (S2)

(

1− exp
{

−V u,(v,w)
E (t,x)

})

·PD,T (d(u,(v,w)) ,

and

VE(t,x) =
∫

R+

∫

T (S2)
V
u,(v,w)
E (t,x)PD,T (d(u,(v,w)) ,

having denoted by PD,T the joint probability of D and

(V,W ) on R+ ×T (S2). Whereas, by considering now

the nucleation on unions of M independent random

lines L1, . . . ,LM as LD,(V,W ), with E[M] = m, and

denoted by Θt
Li
the union of the grains with nuclei on

Li, the transformed region Θt at time t is the random set

given by Θt =
⋃M

i=1 Θt
Li
. Then, by proceeding similarly

to the case of random planes, we obtain

VV (t,x) =

1−GM

(∫

R+

∫

T (S2)
e−V

u(v,w)
E (t,x)PD,T (d(u,(v,w))

)

,

and if M has Poisson distribution

VV (t,x) = 1− exp
{

−m

∫

R+

∫

T (S2)

(
1− e−V

u,(v,w)
E (t,x)

)
PD,T (d(u,(v,w))

}

.

The model proposed above might be particularly

useful in real applications when the behavior at the

origin would be investigated; indeed, by noticing that

j(0;u,(v,w)) = u, it follows that VV (t,0) does not

depend on the orientation of the lines, but only on their

distance D from the origin.

Nevertheless, in dependence of different purposes

it might be useful to consider different line models;

for instance, by defining the random lines by a point

process of their intersection with planes containing the

origin and with different orientations, or, more simply,

if the mean number of lines is finite (as occurs in

applications), by giving a finite (in mean) collection

{Ai,Wi} of random points Ai in R
3 and random

directionsWi in S
2, so that L(Ai,Wi) := {Ai + tWi : t ∈

R} is the random line through Ai with directionWi. By

observing that for any x,a ∈ R
3 and w ∈ S2

dist(x,L(a,w)) =
√

(x1−a1)2 +(x2−a2)2 +(x3−a3)2−〈x−a,w〉2

:= h(x;a,w) , (15)

and denoted by V
a,w
V (t,x) and V

a,w
E (t,x) the mean

volume density and the mean extended volume density,

respectively, associated to the transformed region at

time t due to the nucleation on the line L(a,w), it
follows that

V
a,w
V (t,x) = 1− e−V

a,w
E (t,x),

with

V
a,w
E (t,x)

Eq. 14
=







λL2
√

G2t2−h2(x;a,w) 1[0,Gt](h(x;a,w))

ILG
[

t
√

t2− (h(x;a,w)/G)2− (h(x;a,w)/G)2

log
(
t+
√

t2−(h(x;a,w)/G)2

h(x;a,w)/G

)]

1[0,Gt](h(x;a,w))

(16)

in the site-saturated and in the time-dependent case,

respectively. Therefore, similarly as above, we may

consider now the nucleation on the union of random

lines L(A1,W1), . . . ,L(AM,WM), with E[M] = m ∈ R

and {(Ai,Wi)} independent and identically distributed

as (A,W ) with joint probability distribution PA,W on

R
3×S2 and independent of M. Under the assumption

that A is a continuous random point (so, the probability

that two or more lines Li coincide is zero), we get

VE(t,x) = m

∫

R3

∫

S2
V
a,w
E (t,x)PA,W (d(a,w)) ,

and

VV (t,x) = 1−GM

(∫

R3

∫

S2
e−V

a,w
E (t,x)PA,W (d(a,w))

)

.

(17)

Such a model makes the particular case of nucleation

on parallel lines easier to study, with respect to the

previous one, as shown in the next section.

PARALLEL LINES

A particular case of the above model is obtained

assuming that the lines are parallel. In such a case, the

direction of each line is fixed, say w̄ = (0,0,1) (that is
the lines are parallel to the z-axis); as a consequence,

by assumingM ∼ Po(m), Eq. 17 simplifies as follows

VV (t,x) = 1− exp
{

−m

∫

R3

(

1− e−V
a,w̄
E (t,x)

)

PA(da)
}

with V
a,w̄
E (t,x) as in Eq. 16 and noticing that

h(x;a, w̄) =
√

(x1−a1)2 +(x2−a2)2.

Remark 7 Let us consider for instance the site-

saturated case. If in particular A is uniformly
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distributed in [0,K]3, then

VV (t,x) = 1−

exp
{

− m

K2

∫

[0,K]2

(

1− e−λL2
√

G2t2−((x1−a1)2+(x2−a2)2))
)

1[0,Gt]

(√

(x1−a1)2 +(x2−a2)2
)

da1 da2

}

(18)

Note that m
K2 is the length volume fraction of the lines

in [0,K]3, and that the mean number of nuclei on the

lines in [0,K]3 is λLmK.

Similarly to the case of nucleation on random

parallel planes discussed in Remark 5, if the mean

number m of lines is sufficiently large, we expect that

for any point x not too close to the boundary of

[0,K]2× (−∞,+∞) (in particular for any x such that

Gt ≤ x1 ≤ K−Gt and Gt ≤ x2 ≤ K−Gt), the value

of VV (t,x) have to approximate that one associated

to a Poisson homogeneous nucleation with intensity

λ = λL
m
K2 .

Indeed, for any x such that Gt ≤ xi ≤ K−Gt for

i = 1,2,

VV (t,x)

Eq. 18
= 1− exp

{

− m

K2

∫ Gt

0

∫ 2π

0

[

1− e
−2 λ

m

K2

√
G2t2−ρ2

]

·ρ dθ dρ

}

∼ 1− exp
{

−4πλ

∫ Gt

0

√

G2t2−ρ2ρ dρ
}

= 1− e−
4
3πλG3t3 ,

which is just the mean volume density associated to a

homogeneous Poisson nucleation with intensity λ .

SUMMARY AND CONCLUSIONS

– General expressions were derived for the mean

volume density of the transformed phase when

nucleation takes place on random planes and

lines in R
3. The general expression makes no

assumption on the distribution of planes and of

lines in space.

– Using superposition of processes (see, e.g.,

Stoyan et al., 1995), one may derive an expression

for the situation in which nucleation takes place

simultaneously on planes (grain boundaries)

and lines (grain edges) and points (grain

corners). Namely, we recall that if Φ1, . . . ,Φn are

independent nucleation processes, then

VV (t,x) = 1−
n

∏
i=1

(
1−V i

V (t,x)
)

, (19)

having denoted by V i
V the mean volume density

associated with the nucleation process Φi. Note

that nucleation on grain corners may be easily

modelled by point processes. Thus, by assuming

simultaneous independent nucleation on planes,

lines and points, and by denoting V S
V , V

L
V and VP

V

the corresponding mean volume densities, we have

VV (t,x)
Eq. 19
= 1−

(
1−V S

V (t,x)
)

·
(
1−V L

V (t,x)
)(

1−VP
V (t,x)

)
.

We point out that, even if the independence

assumption may seem to be too restrictive for

practical purposes, actually it is often implicitly

assumed in modelling various situations. For

instance, analysis of experimental results with

the assumption of independence are discussed

in Rios and Padilha (2003); Vandermeer and Rath

(1989a;b).

– This paper provides the mathematical basis for

the development of more specific expressions to

be used in practical applications. By studying

particular cases of practical relevance new

expressions, such as the expression for parallel

planes, may be obtained. These expressions

significantly increase the scope of exactly solvable

cases available to formal kinetics.
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Rio de Janeiro, FAPERJ, for financial support. P.R.R.

would like to thank the Alexander von Humboldt

Foundation for the Humboldt Research Award and

Professor Günter Gottstein for his hospitality at the

Institut für Metallkunde und Metallphysik, RWTH-

Aachen, where this work was carried out. E.V. would

also like to thank Professor Günter Gottstein for the

financial support during her stay in Aachen. The

authors would also like to thank the anonymous

reviewers for useful comments and suggestions that

significantly improved the paper.

REFERENCES

Aquilano D, Capasso V, Micheletti A, Patti S, Pizzocchero

L, Rubbo M (2009). A birth and growth model for

kinetic-driven crystallization processes. I. Modeling.

Nonlinear Anal Real 10:71–92.

Avrami MJ (1939). Kinetics of phase change. I. General

theory. J Chem Phys 7:1103–12.

164

http://dx.doi.org/10.1016/j.nonrwa.2007.08.015
http://dx.doi.org/10.1063/1.1750380


Image Anal Stereol 2011;30:153-165

Avrami MJ (1940). Kinetics of phase change. II.

Transformation-time relations for random distribution

of nuclei. J Chem Phys 8:212–24.

Avrami MJ (1941). Granulation phase change, and

microstructure kinetics of phase change. III. J Chem

Phys 9:177–84.

Burger M, Capasso V, Micheletti C, Salani C (2002a).

Mathematical models for polymer crystallization

processes. In: Capasso V, ed. Mathematical modelling

for polymer industry. Math in Industry Series, vol. 2

(2002) Berlin, Springer Verlag, 167–242.

Burger M, Capasso V, Salani C (2002b). Modelling multi-

dimensional crystallization of polymers in interaction

with heat transfer. Nonlinear Anal Real 3:139–60.

Cahn JW (1956). The kinetics of grain boundary nucleated

reactions. Acta Metall 4:449–59.

Cahn JW (1996). The time cone method for nucleation and

growth kinetics on a finite domain. Mat Res Soc Proc

398:425–37.

Capasso V, Villa E (2007a). On the evolution equation of

mean geometric densities for a class of space and time

inhomogeneous stochastic birth-and-growth processes.

In: Weil W, ed. Stochastic Geometry, Berlin: Springer,

267–81.

Capasso V, Villa E (2007b). On mean densities of

inhomogeneous geometric processes arising in material

science and medicine. Image Anal Stereol 26:23–36.

Fanfoni M, Tomellini M (2005). Film growth viewed as

stochastic dot processes. J Phys Condens Mat 17:R571.

Armstrong RA, Jackson JL, Glass L (1974). Dynamics of

expanding inhibitory fields. Science 183:444–6.

Johnson WA, Mehl RF (1939). Reaction kinetics in process

of nucleation and growth. Trans AIME 135:416–42.

Jun S, Bechhoefer J (2005). Nucleation and growth in one

dimension. II. Application to DNA replication kinetics.

Phys Rev E 71:011909.

Kolmogorov AN (1937). On the statistical theory of metal

crystallization. Izv Akad Nauk USSR Ser Mat 1:355-9.

Kondo T, Sakuma T, Rios PR (1998). Application of

microstructural path analysis to abnormal grain growth

of BaTiO3 with an excess TiO2. Scr Mater 39:1713–7.

Matheron G (1975). Random sets and integral geometry.

New York: Wiley.

Ramos RA, Rikvold PA, Novotny MA (1999). Test

of the Kolmogorov-Johnson-Mehl-Avrami picture of

metastable decay in a model with microscopic

dynamics. Phys Rev B 59:9053–69.

Rios PR, Guimaraes JRC (2007). Microstructural path

analysis of athermal martensite. Scr Mater 57:1105–8.

Rios PR, Guimaraes JRC (2008). Formal analysis of

isothermal martensite spread. Mat Res 11:103–8.

Rios PR, Padilha AF (2003). Microstructural path of

recrystallization in a commercial Al-Mn-Fe-Si

(AA3003) Alloy. Mat Res 6:605–13.

Rios PR, Villa E (2009). Transformation kinetics for

inhomogeneous nucleation. Acta Mater 57:1199–208.

Rios PR, Yamamoto T, Kondo T, Sakuma T (1998).

Abnormal grain growth kinetics of BaTiO3 with an

excess TiO2. Acta Mater 46:1617–23.

Starink MJ (2004). Analysis of aluminium based alloys

by calorimetry: quantitative analysis of reactions and

reaction kinetics. Int Mater Rev 49:191–226.

Stoyan D, Kendall WS, Mecke J (1995). Stochastic

Geometry and its Application. Chichester: Wiley.

Tomellini M, Fanfoni M (2008). Impingement factor in the

case of phase transformations governed by spatially

correlated nucleation. Phys Rev B 78:014206.

Vandermeer RA (2005). Microstructural descriptors and the

effects of nuclei clustering on recrystallization path

kinetics. Acta Mater 53:1449–57.

Vandermeer RA, Jensen DJ (2001). Microstructural path

and temperature dependence of recrystallization in

commercial aluminum. Acta Mater 49:2083–94.

Vandermeer RA, Rath BB(1989a). Modeling

recrystallization kinetics in a deformed iron single

crystal. Metall Trans A 20:391–401.

Vandermeer RA, Rath BB(1989b). Microstructural

modeling of recrystallization in deformed iron single

crystals. Metall Trans A 20:1933–42.

Villa E (2008). A note on mean volume and surface densities

for a class of birth-and-growth stochastic processes. Int

J Contemp Math Sci 3:1141–55.

Villa E, Rios PR (2009). Transformation kinetics for nuclei

clusters. Acta Mater 57:3714–24.

Villa E, Rios PR (2010). Transformation kinetics for surface

and bulk nucleation. Acta Mater 58:2752–68.

165

http://dx.doi.org/10.1063/1.1750631
http://dx.doi.org/10.1063/1.1750872
http://dx.doi.org/10.1016/S1468-1218(01)00019-0
http://dx.doi.org/10.1016/0001-6160(56)90041-4
http://dx.doi.org/10.1557/PROC-398-425
http://dx.doi.org/10.1007/978-3-540-38175-4_6
http://dx.doi.org/10.5566/ias.v26.p23-36
http://dx.doi.org/10.1088/0953-8984/17/17/R02
http://dx.doi.org/10.1126/science.183.4123.444
http://dx.doi.org/10.1103/PhysRevE.71.011909
http://dx.doi.org/10.1007/978-94-011-2260-3_22
http://dx.doi.org/10.1016/S1359-6462(98)00389-3
http://dx.doi.org/10.1103/PhysRevB.59.9053
http://dx.doi.org/10.1016/j.scriptamat.2007.08.019
http://dx.doi.org/10.1590/S1516-14392008000100020
http://dx.doi.org/10.1590/S1516-14392003000400030
http://dx.doi.org/10.1016/j.actamat.2008.11.003
http://dx.doi.org/10.1016/S1359-6454(97)00340-6
http://dx.doi.org/10.1179/095066004225010532
http://dx.doi.org/10.1103/PhysRevB.78.014206
http://dx.doi.org/10.1016/j.actamat.2004.10.054
http://dx.doi.org/10.1016/S1359-6454(01)00074-X
http://dx.doi.org/10.1007/BF02653918
http://dx.doi.org/10.1007/BF02650280
http://dx.doi.org/10.1016/j.actamat.2009.04.014
http://dx.doi.org/10.1016/j.actamat.2010.01.012

	Introduction
	Mathematical background and basic notation
	Birth-and-growth processes and mean related densities
	Modelling the nucleation process
	Causal cone and mean volume densities: basic definition and results

	General expression in the case of nucleation on lower dimensional sets
	Nucleation on random planes 
	Nucleation on one random plane
	Nucleation on union of random planes
	Particular probability distributions of the random orientation W useful in  applications
	Parallel and orthogonal planes
	An example of continuous not-uniform distribution of W


	Nucleation on random lines 
	 Parallel lines 

	Summary and Conclusions
	Acknowledgements


