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ABSTRACT

Methods are introduced for analysing the shape and orientation of planar fibres from greyscale images of
fibrous systems. The sequence of image processing techniques needed for segmentation of fibres is described.
The identified fibres were interpreted as deformed line segments for which two shape and two orientation
parameters are estimated by the maximum likelihood method. The methods introduced are shown to perform
quite well for simulated systems of deformed line segments with known properties. They were applied to TEM
images of carbon nanotubes embedded in polycarbonate.

Keywords: binarization, carbon nanotubes, deformed line segments, multivariate von Mises distribution, 2D
fibre identification.

INTRODUCTION conductivity of the system. For getting a low
percolation threshold, straight and randomly oriented
Fibrous structures are common in biological nanotubes are expected to be preferred, but a small
tissues, like the actin network as a supporting structure  degree of orientation in a nanotube system has however
in eucaryotic cells, and in industrial materials, like the ~ been found to be favourable (Du ef al., 2005). Even
network of wood fibres in paper. Less known examples ~ though nanotubes are typically considered as rigid
include networks of fibres such as, for instance, rods, they rather are very flexible, and appear in
those formed by electrically conducting fibres, and  networks as curved and wavy, which complicates the
needed in applications like reinforcement elements,  determination of their orientation. Thus, new methods
smart clothing, electromagnetic shields or armors, are needed to properly determine their possible
and textile based sensors. Among such fibres the orientation, and thereby the effect of orientation on
exceptional mechanical and electrical properties of  e.g., the conductivity of the system.
carbon nanotubes make them particularly interesting
(Fig. 1). Here they were embedded in a polymer matrix
and melt spun to form electrically conducting fibres
(Potschke et al., 2005).

To this end we introduce a stochastic model for
the shape and orientation of fibres applied here to
carbon nanotubes. In addition, we strive to produce
a method for analyzing stochastic fibre systems

The fibrous shape of carbon nanotubes with very  (Mecke and Stoyan, 1980) in such cases in which the
large aspect ratios (length to diameter ratio), even  “rose of directions” as a measure of orientational
as high as 1000-10,000, allows already at very  anisotropy does not necessarily provide sufficient
low volume contents the formation of percolated  means for characterizing the system.
networks needed for electrical conductivity. Above the
percolation threshold the network provides mechanical
rigidity and connected pathways for conduction
electrons.

As a stochastic model for individual fibres we
used deformed line segments in a similar manner
as was used in Grenander and Manbeck (1993) for
shape analysis. Further, the collection of fibres was

The properties of percolating structures of e.g., modelled by a Boolean model (Matheron, 1975). To
carbon nanotubes are influenced by their aspect begin with, the model system was composed of a
ratio and spatial distribution. In Pegel ef al. (2009)  random collection of line segments. For the orientation
clustering of dispersed nanotubes by secondary  of line segments we chose a typical model for circular
agglomeration was found to enhance the electrical  data, i.e, a von Mises density (Mardia and Jupp,
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2000) described by two orientation parameters,
strength and direction (see an illustration in Fig. 4).
When deforming the line segments, each segment
was divided into short segments whose orientations
were thereafter ‘shaked’ stochastically such that the
distribution of angles between adjacent short segments
satisfied a multivariate von Mises distribution with two
shape parameters. One parameter described the affinity
of a segment angle to that of the previous segment, and
the other parameter its affinity to the orientation angle
of the original undeformed segment. The resulting
‘composite’ (deformed) segments were then the fibres
of the system and they had stochastically varying shape
and orientation (see an illustration in Fig. 5).

A given (two dimensional) image of a fibrous
system could then be fitted by the corresponding
Boolean model of fibres using the maximum likelihood
method by which the parameters of the fibre model,
two shape parameters and two orientation parameters,
were estimated. This work is an extension to a
previous model for individual fibres introduced in
Kirkkdinen er al. (2009).

Estimation of these four parameters from the
grey-scale data of the image required various
image processing phases, e.g., segmentation and
identification of individual fibres. In this case the
fibres were carbon nanotubes, and we needed to
know the pixels that belonged to each nanotube,
branching of fibres was not allowed as it is not
physically realistic. Therefore, we developed a method
for connecting segments of intersecting nanotubes
where the resulting structures were physically possible
and visually realistic. The method introduced is similar
to that in Rizvandi er al. (2008), but we also used
the integrated curvature of the fibres and the second
derivative of their orientation to properly describe their
shape near the intersection areas, in addition to the first
derivative already used in Kérkkéinen et al. (2009).

The methods developed were tested against
simulated data, and then real data were analyzed,
which were taken from carbon nanotubes embedded
in a polycarbonate matrix and melt spun to
form electrically conducting fibres in microscale
(Potschke et al., 2005). Images of this system were
acquired by transmission electron microscopy (TEM)
(Fig. 1). For this, ultrathin cuts of about 60 nm
thickness were prepared from melt spun fibres of
polycarbonate including 2 wt% multiwalled carbon
nanotubes, and for the cutting fibres were embedded
into an epoxy resin. Cutting was done along the axis
of the fibrous material, which was from south-east to
north-west in Fig. 1. TEM thus represents a specific
2D projection of the 3D material.
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Fig. 1. A TEM image of a system of 2 wt% carbon
nanotubes embedded in a polycarbonate matrix (the
image is reproduced from Potschke et al., 2005).

IMAGE PROCESSING

TEM images of carbon nanotube systems must be
transformed into those of abstract network structures
before they could be analyzed by the new segmentation
methods developed here. To this end we needed to
apply a set of image processing methods, and these are
described in this section.

TEM images typically contain imaging noise,
and the carbon nanotubes to be identified appeared
with an inhomogeneous background, see Fig. 1 for
an example. So as to obtain adequate segmentation
results, the image was first bandpass filtered
(Gonzalez and Woods, 2002). Filtering parameters
were chosen so that only details in the size range of
carbon nanotube diameter were preserved. To further
reduce the noise, a median filter was applied as in
Nisslert et al. (2007). This procedure substantially
improved the image quality and allowed us to use
isodata thresholding in the segmentation of the image
into binary form (Ridler and Calvard, 1978).

The binary image was processed by dilation to
increase the connectivity of the isolated structures
(Gonzalez and Woods, 2002). Since individual small
particles do not contribute to the shape of carbon
nanotubes, they were removed from the image. After
this the image was skeletonized (Gonzalez and Woods,
2002).

The pixels in the skeletonized image were
classified into four groups, the background points,
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skeleton end points, skeleton branch-intersection
points and normal skeleton points. This classification
was performed using the following ordered rules: If
the pixel colour was zero, the pixel was classified
as a background pixel. If the 8-neighbourhood of a
nonzero-valued pixel contained exactly one pixel with
a nonzero value, the pixel was classified as a skeleton
end point. If the 8-neighbourhood of a nonzero-valued
pixel contained exactly two pixels with nonzero values,
the pixel was classified as a normal skeleton point.
The remaining nonzero-valued pixels were classified
as skeleton intersection points.

After classification each sequence of pixels formed
by normal and end points represented a nanotube
or part of a nanotube in a bundle of nanotubes.
Intersection points were located in the areas where two
or more nonparallel nanotubes were touching or one
was on top of the other.

We observed that, in the above processing, some
physical intersection areas were divided into two or
more detached intersection areas. This problem was
dealt with such that intersection areas connected with
nanotube segments of lengths less than a predefined
intersection diameter were merged. The merged areas
contained then links to all the remaining segments
in the original areas. The short connecting segments
were also removed from the image. Furthermore,
intersection areas containing no nanotube segments
were as well removed.

At this point the actual segmentation of carbon
nanotubes could be performed as follows. All
intersection areas were processed one by one in
a random order. In each case a weight w”/ was
determined for each possible pair ij of nanotube
segments connected to the intersection area. The
segments in the pair with the lowest weight were
connected to form a single fibre and removed from
the intersection. This process was repeated until there
were no possible pairs left, i.e., there were one or none
segments left in the intersection area. Thereafter the
intersection area was considered as segmented and was
discarded from further segmentation.

For determination of the above weight, segment
directions and shapes near the intersection were
quantified. To this end a predefined number of pixels
was chosen from each fibre segment starting at the
intersection area. Let us mark this set of points for
segment i by {p},pb,...,p,}. For these points, the
centroid and principal components were determined.
The largest principal component provided a first
approximation for the segment-end direction, \7’i. This
set of points was then transformed so that the first
principal component became the x-axis, and a parabola
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yi(x) = a'x? + bix + ¢! was fitted to the transformed set

of points. A second approximation for the segment-

end direction was provided by the normalized tangent

vector, ¥, = V5 (x), of the parabola at x| such that
xy = argmin( ||y’ (x) — pi]). ey

X
See Fig. 2 for an illustration of the relevant parameters
in segment-end orientation.
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s

Fig. 2. Determination of the direction of segment end.
Dots mark the centres of adjacent pixels that form an
end of a fibre segment. On the top, the first principal
component of the set of points is determined and
drawn through its centroid. In the middle, the set of
points is transformed (T) so that the first principal
component becomes the x-axis. A parabola is fitted to
the transformed points. At the bottom, the set of points
and the parabola are transformed back (T ~").

Note that a parabola could have been fitted also
to the nontransformed set of points as a parametric
curve. The convergence speed and robustness of the
transformation — fit — inverse tranformation sequence
was however superior to that without transformation,
and the former algorithm was thus much better suited
for a completely automatic fitting method.

The shape of segment end was described by the
integrated curvature C of the parabola over an interval
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with

xézargmin(”yi(x)—pfl“) : (3)

The weight for segment pair a,b was then determined
such that

=a b =a . b

W = A |C = C 4 A 4y 2y
el Iz

in which A;, A, and A3 are material-specific

parameters, C** are integrated curvatures of the two
intersecting segments and Tff’b (173’2’) are first (second)
approximations to the segment-end directions. The
first term on the right hand side of this equation
describes the difference in the mean curvatures of the
two segments, the second and third terms describe the
differences in their directions. The signs of these terms
were chosen so that similar curvatures and different
directions of the segments resulted in a low weight.
This choice favoured the formation of straight fibres.

After identification of the segments connected in
the fibre crossings, we could construct sequences of
unequally spaced points that could be combined so
as to approximate nanotubes in the source image
using a linear interpolation technique. For a resulting
segmented image, see Fig. 10.

The optimal parameters of the above method
(intersection diameter, segment length, A, A», A3)
were determined by segmentation of simulated data.
To this end the fibre model described in the next
section was used to create artificial images for
varying fibre coverage, here defined as the percentage
of the total (substrate) area covered by fibres.
Segmentation result was estimated by comparing
segmented simulated data with the corresponding
original data with labelled fibres. The number of
correctly classified pixels was used as the measure
of agreement. Notice that it is possible that the
segmentation splits one fibre into two or more regions.
In those cases it is ambiguous which of the regions is
considered correct. To assure agreement with visual
perception, the largest of the regions was chosen as
the correct one. Optimization of the agreement with
respect to parameters resulted in the optimal parameter
vector (intersection diameter, segment length, A, A;,
A3) = (1, 6, 1.5, 2.5, 1.2). For this set of parameters,
the fibre-detection efficiency as a function of coverage
is shown in Fig. 3.
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Fig. 3. Detection efficiency as a function of coverage
for simulated data. The coverage in the real carbon
nanotube sample is also indicated.

MODELLING THE SHAPE AND
ORIENTATION OF FIBRES

As a stochastic shape and orientation model for
planar fibres we introduced a model of deformed
line segments which we call a von Mises fibre. This
model is a modification of the shape model used in
Grenander and Manbeck (1993).

Let us consider a single line segment that has a
fixed length and makes an angle 6y € [0,27) (the
“main angle” in the following) with the horizontal
axis. This segment was first ‘deformed’ such that it
was divided into n short segments of equal length, and
the orientations of these short segments {6;} € [0,27)
were then ‘shaked’ such that they were distributed by
a multivariate von Mises density in the following way.
Firstly, the density of angle 6; for a given previous
angle 6;_; and the main angle 6y, was given by

f(6i|6i71760aa7ﬁ)

oc exp{ocos(6; — 6p) + Bcos(6;—0;_1)}, (5)

where the shape parameters, @ and f3, describe the
shape of the fibre such that o measures the ‘affinity’ of
0; to 6 and f its affinity to 6;_;. In addition, &, 8 > 0
with o + B > 0. Using standard rules of trigonometric
functions and algebra, the right hand side of Eq. 5 can
be expressed in the form

exp{acos(6; — 6y) + B cos(6; —6;_1)}
= exp{(acosBy+ B cosH;_1)cosb;
+ (asinBy+ Bsin6;_;)sin 6;}.

(6)

then
in

Express
ﬁ sin 91'_1 )

(accosBy + Pcosb_i,osinfy +
terms of the polar coordinates
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(K;cos W, K; sin ;) with

K = [(x2+ﬁ2+2aﬁ COS(G,'_l —90)]% (7)
B o sin 6y + B sin6; 4
Hi = arctan (acos 60 + B cos 6 > ’ ®

where the branches of the arctan function must be
taken appropriately. With these definitions the right
hand side of Eq. 6 can be expressed as exp[k; cos(60; —
W;)] which is an unscaled density of the von Mises
distribution. Together with Egs. 5 and 6 this yields

f(9i|6i71>905a7ﬁ)

- 27:1;(,(1_)6’(?{“005(91‘ —6p)+Pcos(6;,—6,_1)}.
)]

Here the constant Ip(k;) is a zero-order modified
Bessel function of the first kind (Mardia and Jupp,
2000). A similar type of density was used in
Hughes et al. (2005).

Due to the Markovian way of shaking the
orientation angles of subsegments, the density of
angles (6,...,0,) for a given ) can be expressed in
the form

f(elw"aen;e()aa)ﬁ):Hf(9i|9i71390’avﬁ)' (10)
i=1

This density is called a multivariate von Mises
density, and it differs from the one introduced in
Grenander and Manbeck (1993) in which modelling
was done of closed curves. Also, here 6y is regarded
as a non-observable random variable in contrast with
Kérkkdinen et al. (2009), where it was considered
as an unknown parameter. Further, Breckling (1989)
defined a von Mises process of angles with longer
dependence structure instead of having 6 in the model
to be estimated.

Consider now a set of von Mises fibres that have
random main angles 6({ . Without loss of generality
we can assume that these 6ys follow a von Mises
distribution with density

f(e();K',T) = exp{KCOS(OO_T)}7 (11)

1

21l (K)
where 0 < 6y < 27, 0 < 7 < 2w and k¥ > 0, see
Mardia and Jupp (2000) for this and other possible
distributions. Parameter 7 stands for a “preferred
value” of the main angles and k measures the strength
of concentration of the main angles around 7 such
that small values lead to nearly isotropic fibre systems.
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Combining the models, Eqs. 10 and 11, the density of
angles of a single von Mises fibre is given by

f(61,...,6,,60;a,B,%,7)

= f(60:x,7) [ ] /(61]6:-1,60, 2, B) . (12)
i=1

Regarding 6 as an unobserved random variable, we
will focus in the following on the density which results
from averaging over this angle,

f(61,...,6,;0,B,x,7)

21 n
= ) f(60:&. D[]/ (6i]6i-1, 60,0, B)d6, (13)
i=1

in which the integration will be performed numerically.

In order to estimate the parameters of a set of m
von Mises fibres described above, we introduce the
following notations: Let 6] be the main angle of the
jth von Mises fibre and 6/ = (6{,..., 6;;) the angles
of its segments, where n; is the number of these
segments. Combining Eqgs. 9, 11 and 13, the density
of the observable angles (8!,...,6™) of all of the von
Mises fibres is given by

f(Q17"'7Qm;a7ﬁ7K7T)

f(elj,...,e,{i;a,ﬁ,x,‘c)

=

~.
Il
—

s

27 . " o . .
IR (IR
(14

~.
Il
—

In practice, we can consider any image data of
fibrous systems as a realization of a random collection
of fibres, which can be modelled using a Boolean
model (Matheron, 1975) of deformed line segments
as described above. The positions of the original line
segments (von Mises fibres) derive from a stationary
Poisson point process with an intensity given by the
mean number of points in unit area. This means that
the number of fibres can be considered as a random
variable. The von Mises fibres may also have a random
number of segments of equal length, with the density
of Eq. 12 for their angles.

ESTIMATION OF PARAMETERS

We estimated the shape (¢, B) and orientation
(x, T) parameters (generating 6p) from a measured
greyscale image by fitting the density of the observable
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angles by Eq. 14. This estimation required an effective
use of the image processing procedures described
above for obtaining the needed outlines of single
fibres. Furthermore, determination of the division into
segments of each outlined fibre of varying length
had to be performed. A similar type of approach has
been introduced in Grenander and Manbeck (1993) for
modelling the shape of potatoes.

After image processing, we had a collection of
pixel coordinates for the outlines of m fibres (j =
1,...,m). Using these coordinates, we divided the
outline of each fibre into segments as follows. For a

chosen end point zj of fibre j, pixel points 23, ...,z L1
T

were searched such that the distance between points z/
and z‘i’ 11 along the fibre was (almost) constant (/) for

all i. We thus obtained n; segments. Then the angles 6/
of the segments were determined from the orientations
of the lines connecting the end points z] and z] 41 of
the segments (i = 1,...,n;). For the segment length
we chose [ = 5 pixels so as to be able to apply
the continuous density of angles in [0,27) introduced
above.

For the estimation of the parameters, we used the
maximum likelihood method. The observable angles
of the von Mises fibres follow the combined density of
Eq. 14. Further, the log-likelihood of the density Eq. 14
is given by

la,B,x,1)

= ilog[f(ei]7"'79}"l/j;a7ﬁ’K7T)]

~.
I
—

15)

nj L . .
X Hf(eljlelj_179({7avﬁ)d9({] 9
i=1

containing thus only four parameters that must be
estimated. This is a clear advantage over the estimation
of likelihood applied in Kérkkéinen et al. (2009). The
actual estimation was based on using the R-function
optim (R Development Core Team, 2008).

ANALYSIS OF SIMULATED DATA

We can also use the von Mises fibre model to
produce simulated data with known properties, which
can be used to evaluate the performance of the analysis
methods developed.

When producing simulated data, we applied the
Boolean model of von Mises fibres as follows. First, a

realization of the Boolean model of line segments was
produced by numerical simulation. Each line segment
had a fixed length of 85 pixels, and the main angles
6y of these segments followed the von Mises density
Eq. 11 with (7,x) = (2.2,10). The locations of the end
points (one end) of the line segments, i.e., the starting
points of von Mises fibres, were uniformly distributed
in the sampling window of size 1024 x 1024 pixels
with an edge length of 85 pixels. 309 starting points
and related line segments were created in that window,
and they are shown in Fig. 4.

/

7
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= 7',/9‘7{/‘(///)4/%5/7//,

/
/

\
Fig. 4. Simulated line segments with a preferred
main angle that indicated orientation of fibres in the
north-west direction (orientation parameters (T,K) =
(2.2,10)). The starting points of the von Mises fibres

are denoted by circles. The square is the sampling
window of a size of 1024 x 1024 pixels.

Then von Mises fibres were created from the
above line segments. Each line segment was divided
into 17 segments of a length of 5 pixels. The angles
{61,...,617} of these segments were generated from
the multivariate von Mises density Eq. 10 utilizing the
von Mises densities of Eq. 9. Here we used the shape
parameters @ = 0.5 and 8 = 7.0. For an illustration of
the resulting set of von Mises fibres see Fig. 5. Since
in practice we most often deal with binary or greyscale
images, we transformed the contents of the sampling
window into a binary image of 1024 x 1024 pixels (not
shown).

Assessment of the performance (log-likelihood) of
the analysis methods could directly be based on the

simulated angles ({Glzi}, i=1,...,17, j=1,...,309)



Image Anal Stereol 2012;31:17-26

of von Mises fibres in the whole area of Fig. 5.
Using the log-likelihood of Eq. 15, we thus obtained
for the estimated parameters (standard errors were
calculated using the inverse of an information matrix

in a standard way): & = 0.57 (0.07), B =7.11 (0.14),
Kk =8.60 (0.54) and 7 = 2.22 (0.03). It is evident that
the parameter values determined through the analysis
tools developed are fairly close to their input values.

A YA
SR ¢ 1
\;NK’\Q\,\ —~ ~—o—9

ST

Fig. 5. A simulated set of von Mises fibres starting
from the line segments of Fig. 4 such that (a,p) =
(0.5,7.0).

We then considered a binarized version of the
simulated set of von Mises fibres. Using the image
processing techniques descibed above, fibres of the
binary image were segmented from the background,
and the outlines of single fibres were determined. The
starting point of a fibre was chosen such that

(16)

was maximized with p the known production direction
of the material, i.e., the average direction of fibres; X,
is the centroid of fibre pixels and X the chosen starting
point of the fibre, which can be at either end of the
pixel sequence. As described in the previous section,
division into segments was performed starting from the
chosen starting point. As the result, we obtained 261
single fibres with a starting point inside the sampling
window of Fig. 5. The identified fibres are shown
in Fig. 7, and Fig. 6 illustrates how well individual
fibres of the image were identified in one of the most
challenging locations in the image.

23

Fig. 6. Part of a binary image of simulated
fibres corresponding to the upper-middle part of
Fig. 5 (top-left) and the corresponding image of
identified fibres coloured with random colors (top-
right). The same region coloured according to true
fibre paths (bottom-left) and the identified fibres with
the following markers (bottom-right): circles depict
correctly identified fibre intersections, rectangles
depict incorrectly identified intersections, black circles
depict correctly identified starting points of fibres and
black triangles depict incorrectly identified starting
points of fibres.
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Fig. 7. The single fibres together with their starting
points identified from a binary version of an image of
simulated von Mises fibres. The fibres are divided into
segments of a length of 5 pixels.



KARKKAINEN S ET AL: A stochastic shape and orientation model

From the determined segments of the fibres (Fig.
7) the angles {60/} were determined so as to be
able to estimate the parameters. Maximizing the log-
likelihood of Eq. 15, we found for their estimates with
standard errors: & = 0.42 (0.10), f = 8.49 (0.21), k =
3.98 (0.42) and 7 = 2.24 (0.04). In comparison with
the previous (ideal) case, the estimated values are less
accurate. This was also expected as now the image was
first binarized and then the single fibres together with
their starting points were identified. Further, division
into segments of the fibres using their outlines is
expected to have had a small effect. To this end we
made a small simulation study where 2 % of the fibres
in Fig. 5 had wrong starting points. We found, as an
example, the estimates & = 0.57, [§ =7.15, k=4.73
and T =2.21, from which we can see that K is sensitive
to the selection of starting points. In order to assess
the decrease of k, we further simulated line segments
and von Mises fibres using the estimated values & =
0.42,B = 8.49,k =3.98 and T = 2.24 as the parameter
values. It is evident that orientation is weaker in Figs.
8 and 9 than in Figs. 4 and 5.

AN ARSI
N SR

Fig. 8. Simulation result using the parameter values
(1,k) = (2.24,3.98) estimated from the binarized
image. The starting points of the von Mises fibres are
denoted by circles. The square is the sampling window
of 1024 x 1024 pixels.
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Fig. 9. A simulated set of von Mises fibres starting
from the line segments of Fig. 8 such that (a,p) =
(0.42,8.49).

ANALYSIS OF REAL DATA

In this analysis we used the TEM image of a
system of carbon nanotubes shown in Fig. 1. The
image processing techniques decribed above were
applied to segmentation of single fibres in this image,
and segmentation results are illustrated in Fig. 10.
Then we proceeded to determine the corresponding
von Mises model of the identified fibres. The starting
point of a single fibre was chosen such that the
p of Eq. 16 described the production direction of
the material evident in the image: from south-east
to north-west. Having determined the starting points,
the segments of the fibres and their angles {6/}
were determined as described above. The resulting
identification of 644 von Mises fibres is shown in Fig.
11. Having now the angles {6/}, the shape (@, 3) and
orientation (K, T) parameters could be estimated with
standard errors by maximization the log-likelihood
of Eq. 15, with the result & = 0, f = 5.10 (0.15),
kK =233 (0.17) and 7 = 2.28 (0.04). Using these
values, we simulated line segments and von Mises
fibres shown in Figs. 12 and 13. As the lengths of line
segments, we used the mean length of the identified
fibres, which was about 30 pixels. Further, each von
Mises fibre had 6 short segments of a length of 5 pixels.
Orientation seems to be weaker in the simulated data.
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Fig. 10. Part of Fig. 1 (left) and the corresponding
image in which identified fibres appear with random
colouring.
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Fig. 11. The single fibres together with their starting
points identified from the TEM (greyscale) image of
carbon nanotubes shown in Fig. 1.
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Fig. 12. Simulated line segments using the parameter
values (T,K) = (2.28,2.33) estimated from the real
data. The starting points of the von Mises fibres are
denoted by circles. The square is the sampling window
of 1024 x 1024 pixels.
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Fig. 13. A simulated set of von Mises fibres starting
from the line segments of Fig. 12 such that (o.,) =
(0,5.10).

DISCUSSION

New and improved methods were introduced for
analysis of the shape and orientation of fibres from
greyscale images of fibrous systems. Systems of von
Mises fibres were generated numerically to estimate
the performance of the methods developed, and as a
special example a TEM image of a system of carbon
nanotubes was analyzed.

Image processing techniques were introduced
for handling noisy greyscale images so that they
could be properly binarized, and individual fibres
could be segmented from them. In segmentation the
challenge was to handle fibre intersections, and to this
end a rotationally invariant method was introduced.
The accuracy obtained in segmentation using these
techniques compared well with the present state of
the art, see e.g., Rizvandietal. (2008). Note that
the segmentation algorithm introduced does not try
to guess fibre paths through intersection areas. It is
evident that also these new methods work best for low
density systems, and that the easiest way to improve
the result of segmentation is to increase the image
resolution and to decrease the inhomogeneity of the
background.

To analyze the shape and orientation of the
segmented fibres, they were interpreted as von Mises
fibres. Thereafter their shape and orientation could be
estimated based on the maximum likelihood method.
The fibre model introduced is an application of the
model of deformed line segments. It included two
orientation and two shape parameters which were
estimated. This estimation was much faster than that
in Kirkkidinen et al. (2009), in which a somewhat
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similar approach was introduced, but the number of
parameters was there very large.

The performance of the shape and orientation
analysis methods developed could be evaluated using
simulated systems on von Mises fibres with known
parameters. In the ideal case, when the angles
of the simulated segments were directly used, the
estimated and input values of the shape and orientation
parameters were in good agreement. When various
image processing techniques were used before the
analysis, the results of estimation were less accurate
very much as expected. When analyzing binary or
greyscale images, identification of fibres and their
starting points, and division into segments of fibres
using their outlines, all affect the results. The most
sensitive parameter to defects in the analysis appeared
to be the one that describes the strength of orientation,
while the orientation direction appeared to be rather
insensitive to such factors. Both shape parameters
behaved in a rather similar manner, and their values
could be estimated with a 15-20 percent accuracy even
after image processing was applied.

Using simulation studies, we showed that the
selection of starting points is critical for the estimation
of orientation strength. In practical applications, it will
be important to utilize all possible prior information
of the system as an input so as to reduce the size of
the estimation problem. In the application to carbon
nanotube systems considered here, the overall process
direction, deduced very easily from the image, made
the selection of the starting points of the fibres a
much easier and more accurately performed task than
otherwise would have been possible.

In the future work, a fibre model less sensitive to
the selection of starting points will be sought for.
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