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ABSTRACT 

Nowadays, information-theoretic similarity measures, especially the mutual information and its derivatives, 
are one of the most frequently used measures of global intensity feature correspondence in image 
registration. Because the traditional mutual information similarity measure ignores the dependency of 
intensity values of neighboring image elements, registration based on mutual information is not robust in 
cases of low global intensity correspondence. Robustness can be improved by adding spatial information in 
the form of local intensity changes to the global intensity correspondence. This paper presents a novel 
method, by which intensities, together with spatial information, i.e., relations between neighboring image 
elements in the form of intensity gradients, are included in information-theoretic similarity measures. In 
contrast to a number of heuristic methods that include additional features into the generic mutual 
information measure, the proposed method strictly follows information theory under certain assumptions on 
feature probability distribution. The novel approach solves the problem of efficient estimation of multi-
feature mutual information from sparse high-dimensional feature space. The proposed measure was tested on 
magnetic resonance (MR) and computed tomography (CT) images. In addition, the measure was tested on 
positron emission tomography (PET) and MR images from the widely used Retrospective Image 
Registration Evaluation project image database. The results indicate that multi-feature mutual information, 
which combines image intensities and intensity gradients, is more robust than the standard single-feature 
intensity based mutual information, especially in cases of low global intensity correspondences, such as in 
PET/MR images or significant intensity inhomogeneity.  

Keywords: computed tomography, magnetic resonance, multi-feature mutual information, positron emission 
tomography, registration, similarity measure 

INTRODUCTION 

Geometric alignment or registration of images is 
a fundamental task in numerous computer-assisted 
applications in medical imaging (Hawkes, 1998; Maintz 
and Viergever, 1998). Finding spatial relations between 
two or more images of the same modality and of the 
same subject is useful for observing and quantifying 
changes that anatomical structures undergo during a 
period of time, whereas registration of multimodal 
images is important for combining the complementary 
information of different imaging modalities. Further-
more, registration of images of different subjects allows 
comparative studies, which are needed to capture 
how a structure and its function vary in large popu-
lations, across age and gender and in different disease 
states. Registration algorithms can be classified 
according to the image features and the feature 
correspondence criterion used to compute geometric 
transformations between images. According to image 
features, registration algorithms can be divided into: 

fiducial-based, segmentation-based, and image-based. 
Image-based registration methods optimize a similarity 
measure between image features, which are usually 
intensities of image elements, i.e., pixels or voxels. 
The comparison and evaluation of retrospective inter-
modality brain registration techniques has shown that 
the best registration results were obtained by the image-
based registration technique using mutual information 
as the similarity measure (West et al., 1997). 

Mutual information was first proposed for the 
purpose of image registration by Collignon et al. 
(1995) and Viola and Wells (1995), independently. The 
idea was further developed in their later publications 
(Wells et al., 1996; Maes et al., 1997). Since then, the 
mutual information measure, as well as its derivatives, 
have become the most popular and most studied 
similarity measure in the medical image registration 
community. The original idea of Collignon et al. (1995) 
and Viola and Wells (1995) has been implemented 
and modified by various researchers in their registration 
studies, resulting in numerous publications, a survey 
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of which can be found in Pluim et al. (2003) and 
Maes et al. (2003). The main reason for the frequent 
use of the mutual information measure is that it only 
assumes that image features have a probabilistic rela-
tionship which is the loosest of assumptions which 
can be made. However, mutual information based 
registration can fail when statistical dependence 
between image features is weak or as a result of 
interpolation artifacts. Weak dependence between 
image intensities can either be due to fundamentally 
different imaging modalities, such as MR and 
ultrasound (Roche et al., 2000), noise (Tsao, 2003), 
low resolution of images (Pluim et al., 2000b) or small 
image overlap (Studholme et al., 1999). Interpolation 
artifacts are often enhanced due to image noise and 
low resolution of images (Pluim et al., 2000b; Tsao, 
2003), but can be reduced by higher order interpolation 
schemes (Thevenaz and Unser, 2000). Because the 
traditional mutual information similarity measure 
ignores the dependency of feature values of neighboring 
image elements, some researchers argued that the 
problem of weak statistical dependence of intensities 
could be resolved by adding explicit spatial information 
into the registration process (Pluim et al., 2000a; 
Rueckert et al., 2000). Rodríguez-Carranza and Loew 
(2000) proposed to use the Jumarie S-entropy, which 
considers the difference of gray values of neighboring 
image elements. Pluim et al. (2000a) incorporated 
spatial information by multiplying the mutual infor-
mation similarity measure with the similarity measure 
of gradients of corresponding points. Their results 
show that without the loss of accuracy the combined 
criterion is more robust than standard mutual infor-
mation. However, ad hoc multiplication of two or more 
different criteria opens the problem of controlling the 
amount of contribution of each criterion. Rueckert et 
al. (2000) introduced an extension of mutual infor-
mation called second order mutual information, which 
was estimated from the co-occurrence of gray values 
of neighboring image elements within the image and 
gray values of corresponding image elements of images 
to be registered. The approach requires estimation of 
joint probability distributions from a four-dimensional 
joint feature histogram. A potential disadvantage of 
this approach is that the high dimensionality of the 
joint histogram decreases the power of histogram 
statistics and makes estimation of the similarity measure 
less reliable. Estimation of high dimensional probability 
distributions can be avoided if entropy can be estimated 
directly from feature samples. In the work of Hero et al. 
(2002) it was shown that joint entropy can be efficiently 
estimated from the length of minimum spanning trees 
(MST) that connect all samples in the feature space. 
For multi-feature registration, the MST approach was 

implemented in the work of Sabuncu and Ramadge 
(2003), Neemuchwala et al. (2005), Neemuchwala et al. 
(2006) and Staring et al. (2009). A potential disadvan-
tage of MST registration as introduced by Hero et al. 
(2002) is the time-consuming optimization that is 
required to obtain a minimum spanning tree for each 
evaluation of similarity measure. Sabuncu and Ramadge 
(2008) have shown how the alignment measure and a 
descent direction with respect to alignment parameters 
can be determined directly from MST, which makes 
MST-based registration more efficient. A different 
approach to more effective joint entropy estimation 
has been introduced by Špiclin et al. (2012), where 
the authors propose gradient based joint entropy mini-
mization by implementation of Hilbert kernel joint 
density estimation. 

In this paper we propose an extension of the 
standard single-feature mutual information similarity 
measure to a multi-feature mutual information measure, 
and solve the problem of efficient estimation of feature 
joint probability distribution in a high-dimensional 
feature space. The proposed measure incorporates 
spatial information by combining the commonly used 
image intensity feature with additional features. Addi-
tional features, such as intensity gradients or second 
order derivatives may be derived from basic features 
or obtained by multi-channel imaging. Furthermore, 
the proposed multi-feature mutual information measure 
can be computed for an arbitrary number of additional 
features, as long as the probability distributions of 
these features are approximately normal.  

MATERIALS AND METHODS 

Image registration is concerned with finding the 
geometrical transformation T that brings a floating 
image A into the best possible spatial correspondence 
with a reference image B. Let images A and B be 
represented by image features za(x) and zb(x), respec-
tively, where z(x) is the value of image feature z at 
position x in image space. Let SM denote the criterion 
function or similarity measure between two correspon-
ding feature sets za(x) and zb(T(x)) for a given 
transformation T. Registration is then concerned with 
finding the spatial transformation T̂  that maximizes 
the similarity measure SM 

 )))((),((maxargˆ xTzxzSMT ba
T

= .  (1) 

The mutual information (MI) similarity measure 
assumes that image features za(x) and zb(x) are observed 
values of random variables Za and Zb, respectively. In 
terms of entropy, MI is defined as (Cover and Thomas, 
1991) 



Image Anal Stereol 2012;31:43-53 

45 

 ),()()(),( bababa ZZHZHZHZZMI −+= , (2) 

where H(Za) and H(Zb) are corresponding entropies of 
random variables Za and Zb. The entropy H(Z) of a 
random variable Z (Za or Zb) is defined as 

 ( ) ( ) log ( )H Z p z p z dz= −∫ , (3) 

where p(z) (p(za) or p(zb)) is the probability density 
function describing the probability of feature z (za or 
zb). The third term in (Eq. 2), H(Za, Zb), is the joint 
entropy of random variables Za and Zb and is defined as 

( , ) ( , ) log ( , )a b a b a b a bH Z Z p z z p z z dz dz= −∫ ∫ ,  (4) 

where p(za,zb) is the joint probability density function, 
defining the probability of feature values za and zb 
appearing at corresponding positions x and T(x) in 
images A and B, respectively.  In case of discrete 
values of image features, calculation of the entropy 
and the joint entropy can be simplified by calculating 
Shannon’s entropy of discrete random variables 

 ( ) ( ) log ( )
az

H Z p z p z= −∑ .  (5) 

In general, entropy is a measure of the amount of 
uncertainty, variability, or complexity of a random 
variable, whereas mutual information of two random 
variables is a measure of the amount of uncertainty of 
one random variable, knowing the value of the other 
variable.  

NEW MULTI-FEATURE MUTUAL 
INFORMATION MEASURE 
Let us extend the image representation from a 

single-feature z(x) to a multi-feature representation 
z(x), where z(x) is a vector function z(x) = (z1(x),…, 
zK(x)) defining the value of features zk(x), k = 1…K, 
at position x in image space. The values of features 
zk(x) are observed values of random variable Zk, 
comprising the vector of random variables Z. Multi-
feature mutual information of corresponding vectors 
of random variables Za and Zb is defined as  

),()()(),( bababa HHHMI ZZZZZZ −+= , (6) 

where H(Za), H(Zb) and H(Za,Zb) are the joint 
entropies of vectors of random variables Za = 
(Za1,…,ZaK), Zb = (Zb1,…,ZbK) and (Za,Zb) = (Za1,…, 
ZaK,Zb1,…,ZbK), respectively. In general, the entropy 
of a vector of random variables Z = (Z1,…,ZK) is 
defined as 

KKK dzdzzzpzzp
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while in case when (Z1,…,ZK)  are discrete random 
variables, the entropy H(Z) may be obtained as  

∑ ∑
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As with single-feature mutual information, the 
probabilities p(za), p(zb) and p(za,zb) can be estimated 
from a multi-feature joint histogram h(za,zb). 
Unfortunately, even in case of two features, the four-
dimensional joint histogram h(za,zb) would be so 
sparse that a correct estimation of joint probabilities 
would become practically impossible. Fortunately, by 
making certain assumptions on feature probability dis-
tributions, the estimation of joint probability in a high 
dimensional feature space can be solved efficiently. 

Let the features in image feature vector z(x) be 
divided into feature i(x), which we call the basic 
feature, and the vector v(x) of remaining features, 
which we call additional features, i.e., z(x)=(i(x),v(x)) 
and v(x)=(v1(x),…,vK-1(x)). Using the known property 
of entropy (Cover and Thomas 1991) that 

)),...,,,...,(()()( 111 kKkkk ZZZZZHZHH +−+=Z ,  (9) 

the multi-feature mutual information defined by (Eq. 6) 
may be decomposed into mutual information MI(Ia,Ib) 
of basic features ia(x) and ib(x), and additional 
information AI(Ia,Ib,Va,Vb) that is contributed by 
additional features va(x) and vb(x)  
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where H(Va|Ia), H(Vb|Ib) and H(Va,Vb|Ia,Ib) are con-
ditional entropies of Va, Vb and (Va,Vb), respectively.  

If basic features ia(x) and ib(x) are observed values 
of discrete random variables Ia and Ib then the con-
ditional entropies H(Va|Ia), H(Vb|Ib) and H(Va,Vb|Ia,Ib) 
can be obtained as (Cover and Thomas 1991) 

 ∑=
i

iHipIH )|()()|( VV , (12) 

 vvvV dipipiH )|(log)|()|( ∫−= , (13) 

where p(i) stands for probabilities p(ia), p(ib) or 
p(ia,ib), and H(V|i) for entropies H(Va|ia), H(Vb|ib) or 
H(Va,Vb|ia,ib) of conditional distributions Va|ia, Vb|ib 
or VaVb|iaib, respectively, while p(v|i) stands for 
conditional probability distributions p(va|ia), p(vb|ib) 
or p(va,vb|ia,ib). The additional information AI(Ia,Ib, 
Va,Vb) is thus defined by conditional joint probability 
distributions p(va|ia), p(vb|ib) and p(va,vb|ia,ib).  

Suppose that the conditional distributions Va|ia, 
Vb|ib and VaVb|iaib, are approximately normal. If 
random variables in feature vector V are distributed 
normally, then their joint probability p(v) may be 
defined by the vector of mean values μv and the 
covariance matrix Σv. Furthermore, the entropy of V 
can be easily assessed (Cover and Thomas, 1991) 
from the determinant of the covariance matrix Σv as  

 )2log(
2

log
2
1)( enH π+= vΣV .  (14) 

where n is the dimension of Σv. The conditional 
entropies H(Va|ia), H(Vb|ib) and H(Va,Vb|ia,ib) may be 
thus defined by covariance matrices Σva|ia, Σvb|ib and 
Σvavb|iaib, of conditional distributions Va|ia, Vb|ib and 
Va,Vb|iaib, respectively. In conclusion, the estimation 
of conditional entropies H(V|i) for each intensity 
value i (Eq. 13) through covariance matrices requires 
much fewer samples than the estimation through high 
dimensional histograms, which makes the proposed 
approach more effective. Conditional entropies H(V|i) 
of all intensity values i are used to estimate condi-
tional entropies H(V|I) (Eq. 12), defining the infor-
mation AI(Ia,Ib,Va,Vb).  

EXPERIMENTAL DATA SETS 

Two different image data sets were used to eva-
luate the proposed multi-feature mutual information 
similarity measure. The first data set consisted of  
 

MR-T1 and CT images of vertebra L3 of a lumbar 
spine phantom (Fig. 1), which was originally designed 
to evaluate 3D/2D registrations (Tomaževič et al., 
2003). The MR and CT images were acquired with 
intra-slice resolutions of 0.39 x 0.39 mm and 0.27 x 
0.27 mm and inter-slice resolutions of 1.9 mm and 1 
mm, respectively. A sub-volume, containing the whole 
vertebra L3 and some of the two neighboring vertebrae 
was manually defined for each MR and CT image. The 
sizes of MR and CT sub-volumes were 238 x 238 x 22 
and 341 x 340 x 43 voxels, respectively. The “gold 
standard” rigid registration was established by mini-
mizing the distance between the centers of six 
fiducial markers rigidly attached to the spine phantom 
and visible on both MR and CT images. The accuracy 
of “gold standard” registration was obtained by 
estimating the target registration error (TRE) from the 
residual of fiducial marker registration (Fitzpatrick et 
al., 1998). For vertebra L3, the expected TRE of 
“gold standard” MR to CT image registration was 
estimated to be 0.31 mm. A detailed description of 
image acquisition and “gold standard” registration 
can be found in Tomaževič et al. (2004). To evaluate 
the performance of the proposed registration algorithm 
in case of poor image quality, the MR image was 
artificially corrupted by adding intensity inhomogeneity. 
Intensity inhomogeneity was simulated by changing 
the original intensities i(x) to i’(x) by applying the 
following inhomogeneity model 

 
2

0)()(' xxexixi −−= ε  (15) 

where x0 was the spatial position where inhomo-
geneity was centered and ε was the inhomogeneity 
scale factor. The position x0 was set at the image 
corner x0 = (0,0,0), while four different scale factors ε 
were implemented (ε = 5⋅10-5, 15⋅10-5, 25⋅10-5, 35⋅10-5) 
to obtain MR images with different levels of inho-
mogeneity (Fig. 2). 

 
Fig. 1. A cross-section of CT (left) and MR-T1 (right) 
image of lumbar vertebra L3. 
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Fig. 2. Cross-sections of the MR-T1 image of lumbar 
vertebra L3 artificially corrupted by different levels 
of intensity inhomogeneity ε = 5⋅10-5 (top left), ε = 
15⋅10-5 (top right), ε = 25⋅10-5 (bottom left), and ε = 
35⋅10-5 (bottom right). 

The second image data set consisted of PET images 
of a human head and corresponding proton density 
(PD), T1 relaxation time (T1), and T2 relaxation time 
(T2) magnetic resonance (MR) images (Fig. 3).  

 
Fig. 3. Cross-sections of corresponding PET (top 
left), PD (top right), T1 (bottom left) and T2 (bottom 
right) images from the RIRE project. 

The images of heads of seven different patients 
were acquired as part of Retrospective Image 
Registration Evaluation (RIRE) study (West et al., 
1997). Six subsets of MR images were available, with 

four to seven images in each subset. Three subsets 
consisted of raw images of each MR modality (PD, 
T1, T2) and three subsets (PDr, T1r, T2r) consisted of 
corresponding images, corrected (rectified) for scanner-
dependent geometric distortions. The size of PET 
images was 128 x 128 x 15 voxels. The inter-slice 
distance of PET images was 8 mm, and the intra-slice 
resolution was 2.59 x 2.59 mm, except of one image, 
which had intra-slice resolution 1.94 x 1.94 mm. The 
sizes of MR images were 256 x 256 x 26 or 256 x 
256 x 24 voxels. The intra-slice resolution of all MR 
images was 1.25 x 1.25 mm with 4 mm of inter-slice 
distance. Gold standard registrations, not revealed to 
participants of RIRE, between PET and MR images 
were obtained by means of fiducial markers implan-
ted into the patient’s scull.  

FEATURE EXTRACTION AND 
SIMILARITY MEASURE OPTIMIZATION 
For calculating the proposed multi-feature mutual 

information, image intensities of floating and reference 
images were used as basic features, ia(x) and ib(x), 
while gradients of image intensities were used as 
additional features, va(x) and vb(x), each containing 
gradient components in x, y, and z directions. The 
original images used in our experiments had highly 
anisotropic image voxel sizes. The frequency of 
intensity signal in the intra-slice direction was much 
higher than the frequency in inter-slice direction. To 
correct for the anisotropic voxel sizes and different 
frequencies, each image was first isotropically resam-
pled by linear interpolation. For MR-CT registrations 
the MR and CT images were resampled to 0.954 mm 
and 0.526 mm voxel sizes, respectively, while for 
PET-MR registrations images were resampled to voxel 
sizes equal to the smallest voxel dimension before 
resampling. The basic features ia(x) and ib(x) used for 
calculating the single-feature and multifeature mutual 
information measures were obtained directly from 
intensities of resampled images. To reduce image noise 
and obtain similar magnitudes of intra-slice and inter-
slice intensity gradients, the gradients were obtained 
by implementing a simple symmetric gradient operator 
after convolving intensities with a Gaussian kernel of 
scale σ 

 ( )),(*)()( σxgxix ∇=v .  (16) 
The choice of scale σ should assure that inter-

slice gradients are suppressed while intra-slice gradients 
are not affected by filtering. The sizes of convolution 
kernels were chosen to be 1/3-1/4 of the average intra-
slice resolution of two images involved in registration, 
and were 0.5 mm and 1.5 mm for MR-CT and PET-
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MR experiments, respectively. Image intensities were 
discretized into M, M = 256, 64 and 16 intensity 
levels. In both registration experiments, Powell’s 
optimization method (Press et al., 1992) was used to 
optimize the chosen similarity measure for six rigid-
body transformation parameters (tx, ty, tz, ωx, ωy, ωz). 

RESULTS 

MR-CT REGISTRATION 
To test the accuracy and reliability of the multi-

feature mutual information similarity measure and 
compare it to the single-feature mutual information, 
registrations were performed from twenty different 
starting positions around the “gold standard” regis-
tration for each MR-CT data set and each similarity 
measure. The starting positions of the floating MR 
image with respect to the registered reference CT 
image were randomly generated by alternating three 
translation parameters (from 0-8mm) and three rotation 
parameters (from 0-22.9°) in such a way that the 
distance from “gold standard” position in normalized 
space of rigid transformations was uniformly distributed 
on the interval of 0-8mm (0-22.9°). The following 
assumption was used to normalize the parametrical 
space of rigid transformation: rotation of a volume 
containing a single-vertebra of size 80 mm around its 
center for 0.1 radians (5.7°) causes mean translation 
of vertebra points of 2 mm (Tomaževič et al. 2003). 
For each individual registration, the registration error 
was calculated as the root mean square (rms) target 
registration error (TRE). The positions of CT image 
voxels belonging to bone and obtained by bone thres-
holding were chosen as target points. A registration 
was treated as successful if the obtained rmsTRE was 
below 1.9 mm, which was the largest voxel size of 
images involved in registrations. The mean of 
rmsTRE of all twenty starting positions, none of 
which was smaller than 1.9 mm, was 4.3 mm with a 
standard deviation of 1.62 mm. The results for MR-

CT registrations, using the two similarity measures, 
five different intensity inhomogeneities, and M = 256, 
64 and 16 intensity levels are presented in Table 1. 
Table 1 also gives the percentage of misregistration 
and the mean and standard deviation of registration 
errors of all successful registrations. In addition, Table 1 
gives the significance (P = 0.01) of a two tailed 
hypothesis test on differences of mean registration 
errors of two similarity measures. Results in Table 1 
indicate, that by increasing the intensity inhomogeneity 
the registration error and percentage of misregistrations 
increase much more when the single-feature mutual 
information is used. This is true regardless of the 
number of intensity levels.  

RIRE PET-MR REGISTRATION 
In these experiment 35 combinations of PET-MR 

images were rigidly registered by the standard single-
feature mutual information of image intensities and 
the proposed multi-feature mutual information of image 
intensities and image intensity gradients as similarity 
measures. For both similarity measures, the starting 
position for each individual PET-MR registration was 
obtained by aligning the centers of the floating PET 
image and reference MR image, while the number of 
intensity levels was set to 64. The obtained transfor-
mations were submitted to the authors of RIRE project, 
and in return, they provided the registration errors for 
a particular registration. A PET-MR registration was 
considered successful if the average TRE error over 
the volumes of interest was smaller than 8 mm, which 
was the largest voxel dimension of the MR or PET 
image. A summary of registration errors for both mutual 
information measures and for each PET-MR subset 
appears in Table 2. All median and maximum regis-
tration errors, except for PET-T1r were smaller for 
the multi-feature mutual information than for the single-
feature mutual information. Multi-feature mutual 
information also outperformed the classical mutual 
information when the number of misregistrations was 
taken into account.  
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Table 1. Results of MR to CT image registrations with the single-feature mutual information (SF) and multi-
feature mutual information (MF) similarity measure for different number of intensity levels and different levels 
ε of intensity inhomogeneity in the MR image. (-) indicates that none of the registrations was successful.  

 
 Registration errors (mm) 

[Mean (Std)] 
Misregistrations (%) 

 
Significance 
(P=0.01) * 

 SF MF SF MF μSF<μMF μSF>μMF

256 intensity levels         
ε =0 0.84 (0.027)     0.90 (0.045)      0 15 *  
ε =5⋅10-5  1.06 (0.018)     0.85 (0.117)      0 5  * 
ε =15⋅10-5  1.34 (0.028)     0.97 (0.070)      50 25  * 
ε =25⋅10-5 -  0.90 (0.038)      100 25  * 
ε =35⋅10-5 -  0.99 (0.045)      100 40  * 

64 intensity levels        
ε =0 0.98 (0.018)     0.84 (0.010)      0 0  * 
ε =5⋅10-5  1.11 (0.018)     0.89 (0.010)      0 0  * 
ε =15⋅10-5 1.22 (0.042)     0.92 (0.008)      25 35  * 
ε =25⋅10-5 1.45 (-) 0.90 (0.020)      95 40  * 
ε =35⋅10-5 -  0.97 (0.012)      100 25  * 

16 intensity levels        
ε =0 1.04 (0.015)     0.79 (0.020)      0 0  * 
ε =5⋅10-5  1.11 (0.016)     0.85 (0.019)      0 0  * 
ε =15⋅10-5  1.38 (0.132)     0.98 (0.010)      40 15  * 
ε =25⋅10-5 1.89 (-) 0.99 (0.016)      95 35  * 
ε =35⋅10-5 -  0.92 (0.023)      100 40  * 

 

Table 2. Registration results for single-feature (SF) and multi-feature (MF) mutual information registration of 
PET and MR images. 

Registration errors (mm)
Median Maximum

Misregistrations Registration
experiments

SF MF SF MF SF MF
PET-T1 4.17 4.13 196.98 8.82 2 - 7
PET-T2 4.21 2.23 80.91 4.54 2 - 7
PET-PD 4.47 3.39 52.10 12.66 2 - 7
PET-T1r 2.25 3.24 4.78 7.60 - - 4
PET-T2r 2.23 2.17 5.40 4.72 - - 5
PET-PDr 3.34 3.04 130.28 4.79 2 - 5

 
 

COMPARISON WITH OTHER 
REGISTRATION METHODS IN THE 
RIRE PROJECT 

Fig. 4 summarizes the results of various PET to 
MR registration methods tested in the RIRE project 
and compares these results with the results of the 
proposed multi-feature mutual information similarity 
measure based on image intensities and intensity 
gradients. Fig. 4 comprises registration results of 
those registration methods published on the RIRE 
web page which contain complete results, i.e., results 
of all patients in a data subset. Fig. 4 shows results 
for six PET-MR data subsets. Each dot in a graph 

represents the median and maximum registration 
errors for a particular method. The results of the 
proposed multi-feature mutual registration method 
are illustrated by dotted lines. Three different imple-
mentations of mutual information based registration, 
i.e., the methods of Collignon et al. (1995), Studholme 
et al. (1996), and Thevenaz and Unser (2000), are 
especially marked as CO, HI and TH, respectively. In 
Fig. 4, the absence of TH result for PET-T1 regis-
tration is due to TH maximum error, which exceeds 
the graph’s boundaries, while the results of CO are 
excluded from PET-T1r results because the authors 
did not report the registration results for the complete 
PET-T1r data set. 
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Fig. 4. Performance of the proposed multi-feature mutual information (dotted lines) and other registration 
methods (dots) in the RIRE study. For a PET-MR data subset, each dot represents the median and maximum 
errors of a particular registration method. 

 

DISCUSSION 

In the last decade, information-theoretic similarity 
measures, especially mutual information and its deri-
vatives, have been extensively used for rigid and non-
rigid, mono- and multi-modal image registrations. 
However, in cases of low global intensity feature 
correspondence these measures are not robust enough. 
The robustness can be improved by adding spatial 
information in the form of local intensity feature 
changes to the global intensity correspondence. In 
this paper we have showed how spatial information in 

the form of intensity gradients may be included in 
information-theoretic similarity measures. The proposed 
measure was evaluated by registering intensity inhomo-
geneity corrupted MR images with CT images. In 
addition, the measure was tested for the registration 
of PET to MR images from the widely used Retro-
spective Image Registration Evaluation project image 
database.  

The aim of the MR to CT registration experiments 
was to establish and compare the performances of 
standard single-feature mutual information and the 
proposed multi-feature mutual information similarity 
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measure in the presence of intensity inhomogeneities, 
which is an important problem in MR imaging. 
Intensity inhomogeneity is primarily caused by 
variation in the deposition of energy into tissue and 
the reception of energy from tissue by the radiofreq-
uency coil. The problem gets worse with increasing 
magnet strength and it is especially bad in the new 7T 
MR scanners. Intensity inhomogeneity is visibly 
noticeable as gradual spatial intensity changes that are 
difficult to correct by retrospective shading correction 
methods (Vovk et al., 2007). Results in Table 1 show, 
that by increasing the intensity inhomogeneity of an 
MR image, the single-feature mutual information 
registration error increases significantly, regardless of 
the number of intensity levels, while the multi-feature 
mutual information registration error is significantly 
lower and much less affected by intensity inhomo-
geneities. When intensity inhomogeneity is increased, 
the percentage of misregistrations increases for both 
similarity measures, but the use of single-feature 
mutual information results in a higher percentage of 
misregistrations and fails completely at intensity 
inhomogeneity ε = 25⋅10-5. On the contrary, the multi-
feature mutual information is successful in at least 
60% of registrations at intensity inhomogeneities 
ε = 25⋅10-5 and 35⋅10-5. Finally, multi-feature mutual 
information results in significantly smaller registration 
errors than single-feature mutual information, except 
when registering an inhomogeneity free image and 
using 256 intensity levels.  

The summary of the RIRE PET-MR registration 
experiment (Table 2) shows that median TREs were 
smaller for multi-feature mutual information criterion 
than for standard mutual information, except for PET-
T1r registrations where the median and maximum 
TREs were somewhat larger. Furthermore, large 
maximum registration errors obtained by the standard 
mutual information suggest that some of the obtained 
registered positions did not come even close to true 
registration, which was reflected in the number of 
misregistrations. Moreover, for misregistrations we 
observed that the size of image overlap was 
significantly smaller after registration than before. 
This suggests that misregistrations were probably 
caused by a possible effect of the size of image 
overlap on mutual information, i.e., smaller image 
overlap probably increases the mutual information 
despite the fact that the image transformation is 
moving away from the true registration solution. The 
effect of the size of image overlap was stronger when 
there was little information between images, which is 
true for PET to MR registrations.  

When comparing the registration results of the 
proposed multi-feature mutual information similarity 
measure with other methods in the RIRE project (Fig. 
4), the median registration error may be an indication 
of the accuracy of a registration method, while the 
maximum error points to the robustness of a method. 
When taking into account the median and maximum 
registration errors, it is clear that the results of the 
proposed method outperformed the results of other 
methods for PET-T2 and PET-T2r registrations. For 
PET-T2 registration, our method achieved the lowest 
maximum registration error and second lowest median 
error, while for PET-T2r seven methods showed better 
median errors but were less robust in comparison to 
our method. Similarly, for PET-PDr registration our 
method provided one of the lowest maximum regis-
tration errors. Unfortunately, this cannot be claimed 
for PET-T1, PET-T1r and PET-PD registrations, 
where our method was less successful compared to 
other methods. However, it should be emphasized 
that some methods were especially designed for PET 
to MR registrations of the human head. Therefore, we 
further focused our comparisons on mutual information 
based registration methods. While the method of 
Studholme et al. (1996) is similar to the one proposed 
by Collignon et al. (1995), the method of Thevenaz 
and Unser (2000) implements an improved multi-
resolution approach, based on B-spline image intensity 
interpolation and optimization, employing analytically 
obtained gradients of the similarity measure. The 
median errors of CO, HI, TH methods and our method 
were within 1 mm. The median error produced by the 
TH method was slightly lower than ours, most 
probably due to the more sophisticated interpolation 
scheme used by TH. In addition, our method resulted 
in smaller maximum registration errors for four out of 
six PET-MR data sets. Its superiority was especially 
obvious in PET-T2, PET-T2r and PET-PDr regis-
trations. 

In this work we have proposed an extension of the 
standard single-feature mutual information similarity 
measure to a multi-feature mutual information measure. 
The proposed multi-feature mutual information strictly 
follows the information theory and solves the problem 
of efficient estimation of multi-feature mutual infor-
mation from sparse high-dimensional histograms. 
Estimation is comprised of the classical approach to 
mutual information calculation, which is conducted 
on joint histograms of basic features and the esti-
mation of additional information from conditional 
covariance matrices of additional features. Such an 
approach is more efficient and applicable to an arbitrary  
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number of additional features as long as they are 
approximately normally distributed. As presented, 
multi-feature mutual information registration approach 
is general. The approach is feasible when additional 
features will provide additional information on corres-
pondence between two images that are registered. If 
features from one image have large correspondence 
with features on the other image, then their contri-
bution to multi-feature mutual information will be 
larger than for features with lower correspondence. If 
features between images have no correspondence, 
their contribution to similarity measure will be insig-
nificant. Furthermore, the contribution of features 
that are highly correspondent with other features 
within a single image will be irrelevant since those 
features are redundant. Rigid registration experiments 
indicate that the multi-feature mutual information 
outperforms the single-feature mutual information 
measure. The contribution of additional image features 
is especially significant in cases of poor intensity 
dependences.  
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