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ABSTRACT

In this paper, a new skeleton-based algorithm for the segmentation of individual fiber in 3D tomographic
images is described. The proposed method is designed to deal with low-density materials featuring fibers of
varied sizes, shapes and tortuosities, like composite fiberboards used for buildings insulation. To this end
the paths of the skeleton are first classified according to their connectivity, the connectivity of their adjacent
nodes, their orientation, their average radius and the variation of the distance transform along each path. This
allows for the identification of spurious paths and paths linking two fibers. Reconstruction of the path of the
fibers is done thanks to an optimal pairing algorithm which joins paths that show the most similar orientation
and radius at each node/link. The segmented skeleton is finally dilated by means of a growing algorithm
ordered by the average radius of the fibers in order to reconstruct each identified fiber. As an application, the
algorithm is used to segment a 3D tomographic image of a hemp polymer fiberboard designed for buildings
insulation. Information such as the number of contacts, tortuosity, length, average radius, orientation of
fibers are measured on both the segmented skeleton and reconstructed image, which allow for a thorough
characterization of the fiber network.
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INTRODUCTION

The macroscopic properties of fibrous materials
(e.g., thermal conductivity, permeability, mechanical
properties) are related to the nature of the fibers on
one hand and to the microstructural characteristic
of the fiber network on the other hand. Most
important characteristics are the effective density,
the number and the nature of fiber-fiber contacts,
and the orientation, shape and tortuosity of the
fibers. Although a lot of structural parameters are
readily accessible without any prior segmentation,
e.g., porosity, size distributions, local or global
orientations (Lux et al., 2006; Altendorf and Jeulin,
2009), the individualization of each fiber allows for
complementary measures (like the number of fiber-
fiber contact) to be carried out on the segmented
image. The segmentation of complex fibrous materials
is however still a challenging issue, especially when
the fibers cover a wide range of sizes and shapes, as is
often the case with vegetable fibers.

Existing segmentation methods are either
dedicated to fibers having a solid core (polymer,
carbon, glass, etc.), or to hollow fibers, like wood or
other vegetable fibers. In the case of hollow fibers, the
idea is to segment the inner porosity in order to identify
each fiber and/or fibers agglomerate (Bache-Wiig and
Henden, 2005; Walther et al., 2006; Tessmann et al.,

2010 and Malmberg et al., 2011). These methods are
interesting because they allow to study materials with
a wide range of densities. However, these approaches
may break down if some fibers are heavily damaged or
if the fibrous medium is a composite made up of solid-
core and hollow fibers. For such composite materials
like those we are studying in this paper, it seems more
interesting to fill the inner porosity of the vegetable
fibers (Lux et al., 2006; Walther et al., 2006; Malmberg
et al., 2011) so that it is possible to use algorithms
dedicated to the segmentation of solid-core fibers.

Different approaches exist to deal specifically
with solid-core fibers. Eberhardt and Clarke (2002)
or Tessmann et al. (2010), propose two methods
to compute the center-lines of the fibers directly in
gray level images, based on the estimation of local
orientations. In Tessmann et al. (2010) the Hessian
matrix is computed at each voxel in order to find the
center points of the fibers (a subset of the medial axis).
Fibers path is then reconstructed thanks to a tracing
algorithm that follows the minimum eigenvectors.
It was applied successfully on densely packed fiber
reinforced polymers featuring fibers with a constant
and unique diameter. In Eberhardt and Clarke (2002)
the medial axis of the fibers is reconstructed with the
help of the local orientation vectors (Creighton et al.,
1999). In Yang and Lindquist (2000), Lux et al. (2006)
and Tan et al. (2006), the segmentation is performed
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LUX J: Automatic segmentation of low density fibreboards

on the medial axis of the fibers which is a simpler
representation of the actual fibers network. At each
node of the skeleton, tests are carried out to form
pairs of paths that show the most similar orientation.
Individualized fibers can then be reconstructed by
geodesic dilation of the segmented skeleton in the
initial image (Lux et al., 2006). In this work, we
are interested in these kind of methods based on the
segmentation of the skeleton, which are well suited to
deal with low density fibrous materials.

The skeleton (or medial axis transform) is a
compact representation of an object, which preserves
its shape (with the concept of end-points or anchor
points) and its topology, i.e., the skeleton must have
the same number of connected components, tunnels
and holes as the original object. A skeleton consists
of thin paths which join at nodes. Each voxel of a path
has at most two 26-neighbors, whereas the voxels of a
node have more than two 26-neighbors. Such simpler
representation of an image have been widely used as
a support for extracting geometrical features and/or
segmentation of various kind of materials (Liang et al.,
2000; Øren and Bakke, 2002; Prodanović et al., 2006).
For a set of fibers, it is assumed that a node is
generated when either two fibers cross each other
or when a fiber splits in two (as it is sometimes
the case for vegetable fibers). Existing skeleton-based
segmentation algorithms find and merge the correct
pairs of paths at each node in order to reconstruct
the real path of the fibers. The pairing algorithms
generally simply couple two paths that show the
most similar orientation as in Lux et al. (2006), with
sometimes a limitation of the angular deviation (Yang
and Lindquist, 2000). Note that these methods can only
be used for low density materials, i.e., when the contact
area between fibers is not too important so that the
skeleton transform is assured to produce one path per
fiber (which for example would not be the case for
dense bundle of fibers). These algorithms have several
shortcomings:

First, the fibers have a certain thickness and
therefore the contact between two fibers often
generates an additional skeleton path. Moreover, when
the angle between two touching fibers is small,
the digitization can also lead to the apparition of
several parasite skeleton paths which are needed
to preserve the topology. Fig. 1 shows a typical
skeleton configuration arising when two fibers touch.
The solution proposed by several authors (Yang and
Lindquist, 2000; Lux et al., 2006) is to merge nodes
that are too close from each other. This very simple
method is of course not well suited to handle materials
with fibers of different scales because it relies on a
fixed length constraint. Worst, this merging algorithm

may generate a snowball effect, whose consequence
is an artificial aggregation of nodes if the length
parameter is not well chosen.

Fig. 1. Example of a “ladder-shaped” skeleton
generated when two fibers (in black) touch. Blue paths
are created in order to preserve the number of 6-
connected components of the background.

The second problem is related to the over-
detection of end-points. Although a lot of methods for
computing the medial axis have been devised in the
last two decades, they all show to some extent a high
sensitivity to surface noise. The consequence is the
occurrence of spurious paths that may be a source of
artefacts when the skeleton is used for segmentation
purpose. Each non significant path indeed generates
an extra node, which may trigger the merging of
close nodes as explained above. Moreover, the fiber
path may be incorrectly detected at intersections of
3 skeleton paths. The commonly adopted solution is
to delete any dead-end path of a length smaller than
a user defined threshold (Yang and Lindquist, 2000;
Lux et al., 2006; Tan et al., 2006). Again, this is of
course not suited to deal with a material featuring a
large range of fibers radii, as it is the case of some
composite fiberboards.

In this work, we propose a more robust method
for both the fibers tracing algorithm and the detection
of the special skeleton configurations discussed above
in the text, without the need to fix an absolute length
constraint. This makes our algorithm more suited to
deal with materials made up by fibers of very different
sizes. To do so, our algorithm relies partly on the
distance transform of the original image, in order both
to estimate the radius of any skeleton path or node and
to track the variation of the distance transform along
the paths.
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In the first section, definitions and methods used
in this work are detailed. Then, the segmentation
algorithm is described and illustrated on a simple
image in the second section. Finally, the proposed
algorithm is applied to a 3D tomographic image of a
hemp polymer composite material.

DEFINITIONS AND METHODS

SKELETON PARTITIONING

In this work, the skeleton S ( f ) of a binary image
f is computed with a 6-subiterations parallel thinning
algorithm based on the work of Palágyi and Kuba
(1998). It features an additional parallel step to delete
the remaining surfaces and a final iterative step in
order to obtain a thin skeleton. See Lux (2005) for a
complete description of the algorithm. The obtained
skeleton is thin in the sense of a line of 1 voxel
thickness and, when possible, it is centrally located in
the sense of the city-block distance (Borgefors, 1984).

Each voxel of the skeleton is classified according
to its number of λ -neighbors (Liang et al., 2000). A
set of voxels P1 is said to be λ -adjacent to another set
P2 if it contains at least one voxel which is λ -adjacent
to a voxel in P2. In this work, we use the following
definitions (Yang and Lindquist, 2000):

– A medial axis path point (PP) is a voxel having less
than three λ -neighbors. A voxel having exactly
one λ -neighbor is called an end-point (EP). A
voxel with no λ -neighbor is called an isolated
point (IP),

– A branch-point (BP) is a voxel having more than
two λ -neighbors.

– A path P = {p1, . . . , pn} is a collection of n
λ -connected voxels having less than three λ -
neighbors. We note Z−path a path λ -adjacent to
Z nodes . Note that the number of adjacent nodes
of a path is at most 2.

– A node N = {n1, . . . ,nn} is a collection of n λ -
connected branch-points. We note Z-node a node
λ -adjacent to Z paths.

These definitions allow for a first partitioning of the
skeleton into paths and nodes based on local adjacency
properties. Additionally, we assume that each path can
be classified as one of the three following types:

– Spurious paths: a spurious path is a non significant
1-path, produced by surface irregularities of the
fibers.

– Center-lines: a fiber center-line is the union of
several paths λ -connected by common nodes. A
single 0-path is the simplest possible center-line.

– Links: a link is the union of a 2-path joining two
fibers center-lines with its two adjacent nodes.

Details about the identification of these types of paths
are given in the next sections. Once all the paths
are correctly classified, the segmentation consists in
identifying each complete center-line.

IDENTIFICATION OF SPURIOUS PATHS

Although a lot of pruning algorithms have been
developed for 2D and 3D skeleton (e.g., Svensson
and Sanniti di Baja, 2003; Serino et al., 2011), we
propose here a method specifically designed to prune
the skeleton of fibrous objects. The identification of
possible spurious paths is based on their connectivity,
length, orientation and medialness (relatively to the
center-lines of fibers). Spurious paths must satisfy the
four following criteria:

1. Connectivity: they are 1-paths (i.e., paths with an
end-point) connected to a node of order 3.

2. Length: their length is smaller or approximately
equal to the radius of the adjacent fiber.

3. Orientation: it is likely that these paths will show
the greatest angular deviation from the others paths
connected to the same node.

4. Decentering: they are preferentially oriented
perpendicularly to the iso-distance lines of the
distance transform image d (Rosenfeld and Pfaltz,
1968), or are located partly in flat zones (i.e., zones
where the gray level is constant) of distance value
equal to 1 (i.e., voxels located at the boundary of
the fibers), whereas the center lines of the fibers
follow the “crest lines” of the distance transform
(if we see the gray-level image as a topographic
relief), as illustrated in Fig. 2.

Note that the paths must have a length of more than
a few voxels to test for criteria 3 and 4 (typically, two
or three pixels at least). If the path is too short, then the
criteria 1 and 2 are sufficient to decide whether the path
should be deleted or not. In certain configurations, the
criterion 3 is not always true. In these cases, the fourth
criterion is useful to correctly discriminate between a
spurious path and a valid center-line.

PATHS LINKING TWO FIBERS

As already mentioned above in the text, when two
fibers touch, it may either generate a node or, if the
fibers are sufficiently thick, two nodes connected by a
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(a) (b)

Fig. 2. 2D distance transform (a) and distance transform superimposed with the skeleton (b). The paths linking
the two center-lines do not follow the maxima of the distance function.

path. Several paths can also appear due to the effect
of digitization near the contact area (Fig. 1). In the
existing works, these paths and their two adjacent
nodes are merged together if their length is smaller
than a fixed length threshold. We follow here the same
approach as in the above section, in order to do without
a fixed length parameter. The differences with the
spurious paths lie in the connectivity and the length
constraint:

1. Connectivity: they are connected to two nodes of
order 3 (or sometimes more).

2. Length: they have a length that is approximately
equal to the sum of the local radii of the two
adjacent fibers.

3. Orientation: it is likely that these paths will show
the greatest angular deviation from the others paths
connected to the same nodes.

4. Decentering: they are preferentially oriented
perpendicularly to the iso-distance curves of the
distance transform (Fig. 2).

As it was explained previously, if the path is too short
(e.g., its length is lower or equal to 2 voxels), criteria 1
and 2 are sufficient to decide whether the path is a path
linking two center-lines or not.

ESTIMATION OF THE LOCAL AND
AVERAGE RADIUS
The average radius of any object (path, node) may

be estimated thanks to the distance transform d ( f ) of
the initial image f . Due to the fact that the medial
axis is centered in the sense of the city-block distance,

we use also city-block distance transform throughout
this work. Here, the average radius of any object is
computed by taking the arithmetic mean of the values
of d for each voxel coordinates in the considered
object. The radius may be estimated locally by taking
only a subset of voxels in the object. Note that the
radius of a node is always a local estimation of the
radius of its adjacent paths.

This method gives of course the value of the minor
axis length in the case of fibers having a non-circular
cross section (like, e.g., vegetable fibers). A more
relevant approach would be to use a directed distance
transform (Altendorf and Jeulin, 2009) instead of the
classical distance transform, at the expense of a greater
computation time.

PATH-PAIRING ALGORITHM

In the existing literature, the most probable fiber
path at each node/link is computed by searching the
pair of paths that minimize their angular deviation.
As illustrated in Fig. 3, the orientation is not always
sufficient to correctly merge paths adjacent to a
node/link. In the present work, we therefore add a new
constraint based on the relative radius difference.

The algorithm works as follow for any node Nk:

1. Compute the main orientation ~vi over the first
nmax (or the total number of voxels of the path
if nmax > lBi) voxels of each path Pi adjacent to
the node Nk. ~vi is the average of the first nmax
unit tangent vectors. Note that it is important to
limit the number of voxels used to compute the
orientation, because we are only interested in the
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local properties of the fiber close to the node or
cluster. A fiber may indeed be very tortuous and its
orientation may change significantly along its path.
nmax should however be large enough to achieve
an accurate determination of the orientation of the
path. In this work, nmax is taken equal to five times
the radius of the current path.

2. For each pair of paths Pi and Pj adjacent to the
same node:

(a) Compute the angular deviation Fαi j = 1− αi j
π

,
where αi j = arccos(~vi ·~v j) is the angle between
the two local orientations ~vi and ~v j. Note that
the orientation vectors ~vi and ~v j are unit vectors
pointing toward the node. Fα therefore tends to
zero when the two vectors show an opposite
orientation (i.e., the angle αi j is close to π

radians).

(b) Compute the relative difference FRi j =
|Ri−R j|
Ri+R j

between the average radii Ri and R j of each
path.

(c) If Fαi j > Fmin
α and FRi j < Fmax

R , form the
following weighted sum:

Di j (Nk) = (1−wr)Fαi j +wrFRi j . (1)

(d) Finally, the algorithm returns a list containing
the values of the computed deviations Di j for
each possible pairs of paths i and j adjacent to
the considered node.

When Eq. 1 is close to zero, it means that the
two paths Pi and Pj have a similar orientation and
radius. wr ∈ [0,1] is a weighting factor, which may
be used to tune the relative importance of the two
terms. This parameter has a noticeable impact on
the segmentation results and how to fix an optimal
value is discussed later in the text. Note that the
choice of the two functions Fα and FR appearing in
Eq. 1 for quantifying the angular deviation and radii
difference is purely arbitrary. These two functions
were chosen for their simplicity, but also because of
positive tests results. Maybe more relevant functions
could be used to achieve a better quantification of
the relative difference between two fibers in term
of angular deviation and radii difference. Fmin

α and
Fmax

R are optional parameters prescribing a minimum
angular deviation and a maximum relative radius
difference. These parameters can be useful to limit the
authorized change of the fibers orientation before and
after an intersection, as in Lindquist et al. (1999), or
to prevent the merging of fibers having very different
radii.

Fig. 3. Example of a configuration where two skeleton
fibers F1 = {P1∪P2} and F2 = {P3∪P4} with a
different radius touch in such a way that the angle
between the two paths belonging to the same fiber is
π/2. In this case, the correct path of the fiber may not
be determined with only directional analysis.

The pairs of paths that show the smaller values for
Di j are the most probable fiber paths at the considered
node. If the number of paths adjacent to the node is
odd, it means either that the fiber splits into two paths
(which is the case if one of the paths is a non significant
path) or that one fiber touch the end of another fiber.

The weighting parameter wr has a significant
impact on the result of the path-pairing algorithm,
which is used throughout the segmentation process. It
is therefore very important to fix its value carefully.
Intuitively, wr should be closer to 1 than to 0, because
when the radii of two touching fibers are sufficiently
different, the knowledge of the orientation of the paths
is irrelevant to decide which paths should be merged
together. In order to understand how wr impacts on
our path-pairing algorithm and to fix an optimal value,
let us consider the very unfavorable configuration
depicted in Fig. 3 where two fibers touch and bends
with an angle of π/2 . Each fiber center-line F1 and F2
is made up by the union of two skeleton paths: F1 =
{P1∪P2} and F2 = {P3∪P4}. In order to reconstruct
correctly the path of these two fibers, the deviation D12
and D34 should be smaller than the other deviations. In
this case the value of the angle α12 between P1 and P2
is π/2 and is the same as the angle α34 between P3 and
P4, so we have also α14 = α23 = π . Furthermore, if we
assume that RP1 ' RP2 = R1 and RP3 ' RP4 = R2, the
deviations may be expressed as follow (Eq. 1):

D12 = D34 =
1
2
(1−wr) ,

D14 = D23 = wr
|R1−R2|
R1 +R2

.
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Since the two other deviations are necessarily
larger, they are not interesting for our demonstration.

To ensure that our algorithm merges the right paths
together, we seek the value of wr such that D12 < D14,
which gives:

wr >

R2
R1

+1

3 R2
R1
−1

, if
R2

R1
> 1 . (2)

This simple example shows that, in this very
unfavorable configuration (i.e., where Fα = 0 for two
paths that belongs to two different fibers) , the path-
pairing algorithm gives correct results when 2|R1−R2|

R1+R2
>

1−wr
wr

. It means that two paths showing the exact
opposite orientations (Fα = 0) won’t be merged if
the relative radius difference is greater than 1−wr

wr
.

As the estimation of the average radii of the paths
is not always very accurate (especially for the small
fibers, due to the digitization and the use of city-block
distance transform), the maximum relative radius
difference should be quite significant. As an example,
for a maximum relative difference of approximately
50% (i.e., R2

R1
= 1.7), wr = 0.65. The value of the wr

parameter can of course be changed depending on the
geometrical characteristics of the studied material.

DETECTION OF NON CENTERED
PATHS

As mentioned earlier in the text and illustrated in
Fig. 2, the center-lines of fibers follow approximately
the crest lines of the distance function, whereas
non significant paths or paths linking two fibers are
oriented perpendicularly to the iso-distance lines or are
partly adjacent to the boundary of the object (where the
value of the distance function is equal to 1).

To estimate if the path is medially located in a fiber
or not, a simple method consists first in computing the
number c(Pi) of iso-distance lines crossed along the
path Pi as follow:

If Pi = {x1, · · · ,xn} is a path of length lPi = n
voxels, where two voxels x j and x j+1 are λ -adjacent,
then we define the local difference ∆d (x j) for x j ∈
Pi \ xn as:

∆d (x j) =
∣∣d (x j+1

)
−d (x j)

∣∣ , (3)

where d (x j) is the value of the distance transform at
voxel x j.

c is then simply the sum of all d (x j) for x j ∈ Pi \xn
and of the number NFlatZones of zones with constant
gray-level of values 1 (this last term is of course only

taken into account for fibers with a radius greater than
2):

c(Pi) = ∑
x j∈Pi\xn

∆d (x j)+NFlatZones . (4)

To compare paths with different lengths, we form
the following ratio:

C =
c(Pi)

lPi−1
. (5)

If we assume that the radius of a path does not vary
too much along its length, a low C value means that
the path follows the center-line of the fiber, whereas a
high C means that the path crosses a lot of iso-distance
lines and is probably either a spurious path, or is a bond
between two fibers.

SEGMENTATION ALGORITHM

The aim the of segmentation is to retrieve and label
all the center-lines and then to reconstruct the whole
fibers from these markers. The proposed algorithm
implements the criteria defined previously for the
detection and the deletion of the spurious paths and
links. Fiber tracing is done with the new path-pairing
algorithm. Last, the segmented fibers are reconstructed
in the original image by a radius-ordered region
growing algorithm using the segmented skeleton as
seed points.

It is important to notice that the practical
implementation of the criteria needed to identify
spurious paths and paths linking two center-lines is not
straightforward.

The first difficulty lies in the correct estimation of
the local radius when the cross section is not circular.
As mentioned earlier in the text, the distance transform
only gives us the minor axis value in the case of
non-circular cross section. In order to correct this
estimation, the values of the radii are multiplied by a
corrective factor noted Γ. To set this corrective factor,
one can simply measure the ratio between the major
axis and the minor axis of a few fibers cross-sections.

The second question is how to use efficiently the
criterion 4 and how to fix a threshold value for the
decentering ratio C (Eq. 5). Note that a “high” (i.e.,
close to 100%) C ratio indicates that a path verifying
criteria 1&2 (connectivity and length) is very likely
to be either a spurious path or a path linking two
other center-lines. However, a “low” (close to 0%) C
value does not mean that the path is a center-line. As
an example, the distance function along a spurious

18



Image Anal Stereol 2013;32:13-25

path that follows the major axis of an ellipsoid cross-
section would be rather constant, and therefore the C
ratio will be low. Our idea is here to use criterion 4
only when the path to be tested verifies criteria 1&2
(connectivity and length) but do not verify the criterion
3, i.e., when the path shows an orientation similar
to one other path adjacent to the same node. The
logic is that the orientation vectors can be sometimes
inaccurate (especially when the length of the path is
small). In this case, a high C ratio indicates that the
path is not a center-line. Of course, contrarily to the
other input parameters, the threshold (denoted Cmax)
value for C has to be fixed quite arbitrarily. The rule is
that it should be “sufficiently” high (intuitively higher
than 50%) so that the risk of misclassification remains
acceptable.

PRUNING

1. For each 1-path Pi of length lPi connected to a 3-
node Nk, do in parallel:

(a) Compute the deviations Di j (Eq. 1) for all pairs
of paths adjacent to the node Nk. If the path
Pi is in the pair that shows the smaller value
for Di j (Nk), then set np (Pi) = 1, otherwise, set
np (Pi) = 0.

(b) Delete Pi if one of the following condition is
met:

– The length of the path lPi is lower than a
threshold length lT .

– lPi > lT and lPi < Γ1RNi and np (Pi) = 0,
where RNi is the radius of the adjacent
node.

– lPi > lT and lPi < Γ1RNi and np (Pi) = 1 and
C (Pi)>Cmax, where RNi is the radius of the
adjacent node.

(c) if Bi is deleted, then merge the node Ni and its
two remaining adjacent paths together to create
a new center-line with a new label.

The threshold length lT may be adjusted by the user
but it has to be greater or equal to 2 voxels, simply
because a minimum number of voxels is needed in
order estimate the orientation or the C-value of the
path.

Γ1 is the radius corrective factor, which must be
greater or equal to 1.

Cmax is, as explained above in the text, the
parameter fixed by the user to decide from which value
of C (Pi) the path Pi (which satisfy criterion 1 & 2) must
be deleted.

DELETING CONTACT PATHS

1. For each 2-path Pi of length lPi > lT and lPi <
Γ1

(
RNk +RNl

)
connected to two 3-nodes Nk and

Nl , with respective radii RNk and RNl , do in parallel:

(a) Compute the deviations D(Nk) and D(Nl)
(Eq. 1) for all pairs of paths adjacent to the two
nodes Nk and Nl . Count the number of time,
denoted np (Pi), where the path Pi is in a pair
of paths that show the smaller value for D(Nk)
and D(Nl).

(b) Temporarily delete path Pi if np (Pi) = 0 or if
np (Pi) = 1 and C (Pi)>Cmax:

(c) If Pi is deleted, then merge the two nodes N j
and Nk (which are now only 2-nodes) with their
respective adjacent paths and create two fibers
center-lines with their own label.

2. Merge the remaining 2-paths connected to two 3-
nodes with their adjacent nodes if lPi < lT or if
lPi <

(
RNk +RNl

)
and create a new link.

Note that the paths linking two fibers, identified in
step 1, are only temporarily deleted. Indeed, while
they are not needed in the fiber tracing step, they
are kept in the final segmented skeleton in order to
preserve the connectivity of the fibrous network for
later measurements.

COMPUTING THE FIBERS PATH

Once all the spurious paths or paths linking two
center-lines are deleted, the next step is to find the most
probable path for each center-line at the remaining
nodes or links of order 3 or more. This is achieved
with the path-pairing algorithm detailed earlier in the
text. Note that, in order to achieve a better pairing, it is
important to process nodes of lowest rank first. When
the number of paths is equal to 3, it means either that
the fiber splits into two paths or that one fiber touch the
end of another fiber. In both cases, the remaining path
keeps its own label. The routine ends when all nodes
or links are processed.

POST-PROCESSING AND
RECONSTRUCTION

To limit the over-segmentation, a last post-
processing routine is applied to suppress the center-
lines of small length adjacent to only one other center-
line. A path Pi is merged with its adjacent path Pj
if lPi < Γ2RN , where RN is the radius of the node
connecting the two fibers and Γ2 is a user controlled
parameter used to tune the intensity of the post-
processing.
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(a) (b) (c)

Fig. 4. A two dimensional test image of several fibers superimposed with its skeleton (a). Figs. 4b and 4c show the
segmented skeleton (nodes and links are in pink) and the final reconstructed image respectively. The parameters
used in this example are fixed as follow: Γ1 = Γ2 = 2, Cmax = 0.65, ωr = 0.75.

In order to reconstruct the individualized fibers, the
segmented skeleton is dilated using a region growing
algorithm ordered by the average radius of the center-
lines. This algorithm works as follow: at each iteration
i, only the voxels x of value I (x) such as R(x) ≥
Rmax − i are dilated by the unit ball (26-connexity),
where Rmax is the maximum average radius of all the
center-lines and R(x) is the radius of the fiber with
label I (x). This works well in the case of fibers with
circular cross-sections. It could be improved using
directed distance transform (Altendorf and Jeulin,
2009) in the case of fibers with different cross-sections,
but it would make the whole process more time-
consuming.

To illustrate how our algorithm performs, it is
applied on a simple two dimensional image featuring
fibers with very different radii, ladder shaped skeleton
at contact points, fibers that bends at an angle of nearly
90° and fibers splitting in two (Fig. 4a). Figs. 4b
and 4c show the segmented skeleton and the final
reconstructed image respectively. Note on the one hand
that all the contacts paths (in pink in Fig. 4b) and
fibers are correctly identified and on the second hand
that the radius-ordered growing algorithm allows for
an accurate reconstruction of the fibers.

RESULTS

As an application, we used our algorithm to
segment a 3D tomographic image of a composite
insulator made up of hemp fibers and thermo-
fused polyester fibers that ensure cohesion. The
image resolution is 8µm/voxel and the dimensions
of the studied volume is 512×512×256 voxels (i.e.,
approximately 4×4×2 mm3). The studied fiberboard

is highly porous (the porosity is slightly greater than
90%), and features two different kind of fibers:

– Hemp fibers and shives: both are thicker and
generally shorter than polymer fibers and show
an important variability in terms of diameter and
length. Diameters of hemp fibers are comprised
between 15 and 200 µm approximately, whereas
hemp shives have diameters of the order of
a millimeter. Shives show several inner voids
(lumen), which is not the case for hemp fibers.

– Polymer fibers: these are thin fibers showing a
rather constant diameter (about 15–25 µm) and
a greater length than wood fibers (greater than
1 mm). They can also be very tortuous, as
illustrated in Fig. 6.

Fig. 5. Macroscopic view of the hemp/polymer
composite fiberboard (polymer fibers in white).
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Fig. 6. Visualization of the 3D binary image of a hemp polymer fibrous insulator for building insulation (sub-
volume of size 384×384×192 voxels, 8 µm/voxel).

These fiberboards are manufactured thanks to a
non-woven textile process, adapted to such fiber based
materials. The fibers are randomly oriented before
the mechanical consolidation. This process induces
a main fibers orientation along transverse planes
(perpendicular to the thickness). Yet, a macroscopic
view of the fiberboard (Fig. 5) shows that the fibers
are not really all oriented on transverse planes, but can
show a deviation angle, up to approximately±45° with
the transverse planes.

The binary image is obtained after a filtering step
(opening by reconstruction filter; Salembier and Serra,
1995) followed by a region-growing thresholding. In
this simple algorithm, the seed points are voxels whose
value is higher or equal to the high threshold value.
Voxels are added to the regions if they are connected
and if their value is higher than a low threshold value.
Before computing the skeleton, the lumen of hemp
shives are filled using the simple method described in
Lux et al. (2006). As illustrated in the 3D visualization
of the image (Fig.6), the fibrous network forms a

very complex and interlaced structure, with fibers of
very different sizes. The z-axis is oriented along the
thickness of the fiberboard and therefore, xOy planes
correspond to transverse planes.

A series of segmentation are carried out for
different sets of input parameters detailed in table
1. The reference set is fixed as follow: Γ1 = 3
(because the cross section of hemp fibers is generally
anisotropic) wR = 0.65 and Cmax = 50%. Constant
parameters are Γ2 = 4, Fmin

α = π/2 and lT = 3 voxels.
The impact of a change of each input parameter on a
few geometric characteristics measured on the output
images is summarized in table 1. These results show
that the geometric characteristics and the number of
detected fibers do not change significantly for all tested
parameters. The number of identified fibers vary from
1118 (i.e., a 7% increase relative to the reference set)
when Γ1 = 2 and 1010 (i.e., a 3% decrease relative to
the reference set) when Cmax = 0.3. As it is expected, if
Γ1 is too small, some links and spurious paths are not
detected, hence the increase of the number of identified
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fibers. Conversely, if Cmax is too small, some paths
are wrongly marked as spurious or as links, hence the
decrease of the number of identified fibers. At last,
note that the impact of wr is quite moderate, because it
plays a role only in certain configurations, where the
radius of fibers are sufficiently different. The whole
sensitivity study, although not presented here, confirms
that our algorithm performs well for a reasonable range
of input parameters. In the following, we present the
segmentation results obtained with the reference set of
input parameters.

Fig. 7. Zoom on a volume with lots of interlaced fibers
(128×64×64). Each fiber is assigned a random color.

Fig. 8. A sub-volume of size 256×256×128 voxels
showing the segmented fibers.

Fig. 7 shows a small sub-volume of the final
segmented image in a zone containing a lot of
interlaced fibers (fibers are assigned random colors).
Note that despite the complexity and the high
connectivity of the fiber network, all the fibers are
correctly identified. A larger volume of 256×256×128
voxels is shown in Fig. 8 for visualization purpose.

Note however that the hemp shives are generally not
correctly reconstructed. Indeed, their rough surface
produce a very noisy medial axis which is not easy to
prune with the pruning algorithm presented on page
19 because of their very anisotropic cross section. The
computed average radius of the spurious paths is in
fact very close to the radius of their adjacent center-
line (length of the minor axis of the cross section).
The presence of these spurious paths of similar radii
also perturbs the path-pairing algorithm. A possible
solution of this problem would be to modify the
method for estimating the radius of the paths, using
directed distance transform (Altendorf and Jeulin,
2009).

Length and tortuosity of fibers (computed here
as the ratio of length of a center-line to the distance
between its two extremities) as well as the number
of bounds per fiber are measured on the segmented
center-lines. The average radius is measured for each
segmented center-line as explained in section 2.4.
Fig. 9 shows all the distributions measured on the 1045
identified fibers.

The fiber length distribution (Fig. 9a) shows that
about 30% of fibers have a length greater than 1 mm,
and should be mostly polymer fibers or shives. Fig. 9b
shows the distribution of fibers radius. Note that it is
not possible here to identify two distinct distributions
for polymer and hemp fibers because lots of hemp
fibers have a small radius (60% of the fibers have a
radius lower than 25 µm). However, if we plot the
relation between length and radius (Fig. 10a), we can
notice that long fibers are also always thin fibers and
that thick fibers are always short fibers. All these
elements show that the two populations of fibers can
be clearly identified in the segmented image using both
their length and radius. The average fibers length and
radius are 972 µm and 29 µm, respectively.

In Fig. 9c it is interesting to observe that while
most of the fibers have a tortuosity close to 1, some
of them can have a very high tortuosity. The average
number of bounds per fiber is 3.7 and while most of
the fibers have a number of bounds close to this value,
some polymer fibers show a very high connectivity, as
it is illustrated in Fig. 9d. If we plot the number of
bonds per fiber against the length of fibers (Fig. 10b),
we can notice that the number of bounds is quite
logically directly related to the length of the fibers.

Finally, the reconstructed image is also used to
perform directional analysis. The orientation vectors
of the fibers are deduced from the moment of inertia
tensors of the segmented fibers (note that the results
can be quite different if the orientation is computed
on the medial axis only). Fig. 11 shows the number of
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Table 1. Impact of input parameters on a few geometric characteristics of the output image.
Input parameters reference set

Γ1 3 3 3 2 4 3 3
wr 0.65 0.65 0.65 0.65 0.65 0.5 0.8

Cmax 0.3 0.5 0.7 0.5 0.5 0.5 0.5
Results

Number of identified fibers 1010 1045 1079 1118 1049 1054 1054
Average length (µm) 964 972 973.7 940 983 965 965

Maximum length (µm) 7612 7722 7722 7722 7722 7928 7928
Average radius (µm) 29.3 29 29.4 29.1 29.5 29.1 29.1

Maximum radius (µm) 274 274 241.3 274 274 274 274

fibers that have an orientation vector (θ ,φ) in spherical
notations. Here θ is the azimuth angle (varying from
0 to 360°) and φ is the polar angle (varying from
0 to 90°) defined such that φ = 90° corresponds to
the Oz direction. This graphic clearly emphasizes the
anisotropic structure of the fibers network, which is
linked to the manufacturing process as explained above
in the text. It also confirms the macroscopic evaluation
of the fibers orientation: indeed, only a negligible
proportion of fibers are oriented along the thickness
(φ = 90°) and the majority of the fibers form angles
φ varying from −45° to +45° with the xOy plane.
This is clearly not an optimal structure from a thermal
performance point of view. What is more surprising
here is that there are less fibers oriented along the y-
axis (θ = 90°and θ = 270°) than along the x-axis (θ =
0°and θ = 180°). The transverse planes are therefore
not isotropic, as would be expected. It is not clear at
the moment if this unexpected anisotropy is due to
the material deformation during the sample cutting and
preparation or if it can be linked to the manufacturing
process.

CONCLUSION

This work is an effort towards improving existing
skeleton-based methods for fiber identification in low-
density fiberboards. To do so, we make extensive use
of the distance transform in order to estimate the
radius of each path or node of the skeleton. This
allows us to propose new definitions for a more robust
identification of spurious paths and links, based on the
connectivity of the fibers and nodes, the length, radius
and variation of the distance transform along each
path, as well as an improved path-pairing algorithm
which merges the pairs of paths showing the minimal
radius and orientation deviation.

As an application, our segmentation algorithm is
applied to an image of hemp polymer fiberboard. The
results show that the new path pairing algorithm allows
to achieve a correct segmentation of complex and
interlaced fibers structure (Figs. 7 and 8), which would
not be possible with a classical pairing algorithm
based on the minimization of the paths orientation
only. Both the segmented skeleton and reconstructed
image can thus be used to carry out quantitative
analysis of geometrical and topological properties of
the fiberboard. In particular, some key factors affecting
mechanical, thermal or transport properties, like
number of bounds per fiber or orientation distribution
are readily accessible.

Several limitations of the current implementation
are identified: first, the direct estimation of the radius
from the classical distance transform is not well-
suited to deal with fibers with very anisotropic cross-
sections. A solution would be to use directed distance
transform to compute the length of the cross-section
major axis, instead of the minor axis. Secondly, this
kind of approach based on the skeleton is limited to
the study of low-density fiberboard. Indeed, when the
contact area between the fibers increases (i.e., when
fibers form clusters), the medial axis can be reduced
to only one main path instead of several segments
corresponding to the center-lines of each fibers. In
order to still use the proposed method, a new algorithm
for identifying the center-lines must be devised. A
possible solution could be to use local orientation
vectors for example (Eberhardt and Clarke, 2002; Lux
et al., 2006; Altendorf and Jeulin, 2009).
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(a) (b)

(c) (d)

Fig. 9. Distribution of length (a), radius (b), tortuosity (c), and number of bounds per fiber (d).

(a) (b)

Fig. 10. Bi-variate plots showing the relation between the length and the radius of fibers (a) and the relation
between the length and the number of bounds (b).
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Fig. 11. Surface plot whose height indicates the
fraction of fibers with an orientation (θ ,φ).
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