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ABSTRACT

During production of mechanical components, residual dirt collects on the surfaces, thus creating a
contamination that affects the durability of the assembled products. Residual particles are currently analyzed
based on microscopic 2D images. However, the particle’s shape is decisive for the damage it can cause, yet
can not be judged reliably from 2D data. Micro-computed tomography allows to capture the complex spatial
structures of thousands of particles simultaneously. Now new methods to characterize three dimensional
shapes are needed to establish 3D cleanliness analysis. In this work, unambiguously indicative geometric
features are defined and it is investigated how they can yield a reliable classification in three typical classes:
fibers, chips and granules. Finally, the efficiency of the proposed method is proved by analyzing samples of
real dirt particles.

Keywords: classification, computed tomography, intrinsic volumes, minimum bounding box, shape factor.

INTRODUCTION

Technical cleanliness refers to the task of ensuring

a certain level of cleanliness in manufacturing industry.

Residual dirt particles collecting on the surface

of mechanical components are unavoidable during

production. The expected performance and durability

of the assembled products can significantly decrease

due to the presence of contaminants, thus it is

necessary to investigate the cleanliness level of the

surfaces of single components on the factory line.

Internationally agreed standards as VDA-19 and ISO-

16232 contain the basic rules for quantitative and

qualitative inspection of contaminants. Typically, the

dirt particles are imaged microscopically and analyzed

based on the resulting two-dimensional images. More

precise analyses can be performed if the whole

three dimensional shape is captured. Micro computed

tomography (µCT) offers exactly this possibility. A

thorough geometric characterization of the three-

dimensional shapes helps the manufacturers to identify

potentially dangerous dirt particles.

In various application fields, the form of particles

conveys very interesting information. For example,

chemical reactions generating cellular or molecular

particles can be better understood by looking at

their shapes (see Merson-Davies and Odds, 1989 or

Landry et al., 1999). In geology (Kaminski et al.,

2008), hydrodynamics (Stückrath et al., 2006),

mechanical engineering (Lin and Miller, 2005) and

several other applied sciences, a detailed description of

particle shapes is of crucial importance. Our methods

for characterizing shapes can be applied in all cases

where volume images of particles are available.

For what concerns planar objects, several

geometric features had been defined (see for instance

Stoyan and Stoyan, 1994, for a purely theoretical

overview, and ASTM F1877 , 2003, which deals

with an application to contaminating particles

characterization). Nevertheless, when observing 2D

images of real objects, only a projection on a plane

is visible, thus essential information is lost. On the

other hand, by increasing the dimension, also the

complexity of the estimations grow. In this paper, we

aim at rigorously defining parameters that describe 3D

shapes and at suggesting how to efficiently estimate

them from given volume data.

Besides parameters to characterize 2D shapes,

ASTM F1877 (2003) introduces a classification

of planar particles, too. Two classes of objects

can be naturally distinguished by comparing the

two dimensions. Granular shapes are those with

comparable length and width, while fibers or needles

have typically length much larger than the width. If the

third dimension is also available, that is the thickness

of the object, then another class can be recognized,

i.e., chips. Our work includes the introduction of
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techniques to perform a reliable classification on the

basis of the estimated features.

To conclude, we will apply the proposed

methodology to a dataset of dirt particles from

automotive industry and discuss the results.

PARTICLE FEATURES

In this section, we define a wide collection

of parameters describing particle shapes in 3D.

We proceed generalizing the features introduced in

(ASTM F1877 , 2003) and enrich them with other

morphological parameters that better apply to the

spatial context.

Basic measures for the size of 2D particles are

area, perimeter and Feret diameters. In addition,

ASTM F1877 (2003) proposes the equivalent circle

diameter and the length of the medial axis as measures

of the size of the particle. From the size measures,

shape factors are derived. One is for example the

roundness, i.e., the normalized ratio of area and

maximal diameter.

Our goal is to measure and characterize real

objects, that is compact simply connected bodies in R
3

with non-empty interior. What we observe, though, are

only their digital images. In other words, we estimate

the features of an object X , starting from the polyhedral

set X̃ resulting from digitization w. r. t. an adjacency

system in 3D (cf. Ohser and Schladnitz, 2009, Chapter

3). Therefore, the geometric parameters will be defined

in continuous Euclidean space (real world), but the

algorithms are implemented in discrete space (images).

An analysis of the error due to discretization is

provided in the following.

Throughout, by an image we understand a three-

dimensional orthogonal lattice in which each lattice

vertex is a pixel, or voxel. In this section, we assume

to deal with one particle at a time in a binary image,

that is each pixel is either black (background) or white

(foreground). The object X̃ is thus a finite collection of

pixels.

INTRINSIC VOLUMES AND

ISOPERIMETRIC SHAPE FACTORS

In first instance, we consider the intrinsic volumes

of compact sets (Ohser and Mücklich, 2000), a basic

set of object characteristics. These are: volume V ,

surface area S, integral of mean curvature M and

Euler number χ . The integral of mean curvature

has dimension one and, for convex particles, is

proportional to the mean width. The Euler number,

also known as the Euler-Poincaré characteristic,

conveys topological properties of a set. It equals 1

for convex bodies and can be extended additively to

the convex ring of unions of convex bodies. The 3D

Euler number is the sum of the number of connected

components minus the number of tunnels plus the

number of holes. An object with a hole, separates the

background in two connected components. In fact a

hole is a hollowness inside the object, such as the

inside of an empty eggshell with a certain thickness. A

tunnel, in contrast, refers to a passage as in a torus or

the handle of a cup, thus allowing the background to

be connected. If a “fill-holes” algorithm is applied to

the binary image, then the Euler number of an object

returns the number of tunnels.

From the intrinsic volumes, a set of shape factors

is deduced, (Stoyan et al., 1995):

Definition 1. Let V =V (X), S = S(X) and M =M(X)
be the intrinsic volumes of a compact body X with non-

empty interior, then

f1 = 6
√

π
V√
S3

, f2 = 48π2 V

M3
, f3 = 4π

S

M2

are the isoperimetric shape factors of X.

All shape factors are normalized to 1 for balls.

f1 takes values between 0 and 1, while f2 and f3
are smaller or equal to 1 only for convex objects.

Deviations from 1 describe deviations from the

spherical shape. In fact, the first shape factor f1
is also called sphericity (Parra-Denis et al., 2008).

Values for some reference cylinders are presented

in Table 1. Being derived by the isoperimetric

inequalities in the general setting of mixed Minkowski

volumes (Schneider, 1993), these three parameters are

a complete set. Moreover, other factors obtained by

combinations of the intrinsic volumes would carry

redundant information. Nevertheless, motivated by

special applications, in the literature one can find

such indices as, for instance, the compacity factor

(Parra-Denis et al., 2008), describing deviations from

the cubic shape:

IC = 63
V 2

S3
. (1)

Algorithms to estimate the intrinsic volumes on

discrete data are recalled in (Ohser and Schladnitz,

2009). Depending non the least on the image

resolution, these estimators embed in themselves

a significant approximation. Besides, being defined

as ratios yields an additional source of error.

Nevertheless, in Ohser et al. (2002) it is proved that

the estimates of the intrinsic volumes are unbiased for
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compact sets being morphologically regular w. r. t. all

line segments connecting vertices of the lattice unit

cell, see also Ohser and Schladnitz (2009, Theorem

3.1). In Montero and Bribiesca (2009), an overview on

numerical problems as well as possible solutions for

their approximation is outlined.

SIZE: LENGTH, WIDTH, AND

THICKNESS

The volume measures the mass of a particle, but

yields no information about its distribution in space.

What is needed, is the size of a particle consisting

of three measures of the extension of the particle in

three suitable orthogonal directions. The longest is the

length of the particle. The size can be measured using

Feret diameters or calipers (ASTM D4791 , 2010), that

is by measuring the distance between two parallel lines

enclosing the particle between them. Generalizing this

concept, one can consider Euclidean distances between

pairs of points of the particle. The longest of these

measures is the maximal Feret diameter (Fig. 1b). The

maximal Feret diameter of a cube is thus the length

of its spatial diagonal. However, this does not meet

the intuitive idea of the length and size of a particle,

for which the size of a cube should correspond to

the length of its edges. To obtain this, we define the

following:

Definition 2. Call C ⊂ R
3 a cuboid with arbitrary

orientation (w. a. o.) if there exist xi, yi, zi ∈ R for

i = 1,2 and a rotation θ ∈ SO(R3) such that C = θC0

with C0 = [x1,x2] × [y1,y2] × [z1,z2]. The minimum

volume bounding box (MVBB) of X as above, is a

cuboid w. a. o. C such that:

– X ⊆C,

– vol(C) ≤ vol(C′) for all cuboids w. a. o. C′ s. t.
X ⊆C′.

Then the size of X is given by the lengths of the edges of

C. Sorted in decreasing order, these are length l, width

w and thickness t.

In Fig. 1a, the size of a chip-like ellipsoid is

represented. The MVBB of an object is not unique. In

fact, for a sphere it is a cube with edge length equal

to the diameter and arbitrary orientation. Nevertheless,

the size depends only on the measure of the edges,

not on their directions. Uniqueness of the measures

length, width and thickness is expected to hold, though

a rigorous proof is subject of further research.

(a)

(b)

Fig. 1: Size features. (a) Size of an ellipsoid and its

minimum volume bounding box. (b) Maximal Feret

diameter (blue), elongation path (green) and circle

realizing the inner diameter (red).

An exact algorithm to compute the MVBB was

proposed in O’Rourke (1985), but it is of cubic

complexity in the number of points of the particle.

Since this computational cost is in general too high

for applications, we rather apply an algorithm which

only approximates the real minimum volume bounding

box, but in nearly linear time. We follow the work of

Barequet and Har-Peled (2001) with some changes to

further improve the efficiency. The algorithm is based

on two main ideas:

1. the MVBB of a particle is the same as the MVBB

of its convex hull;

2. it is cheap to compute the MVBB with an edge on

a fixed direction.

For 1, the convex hull is computed with an

implementation of the QuickHull algorithm

(de Berg et al., 2008), which is an exact computation.

In this way, the number of input points is significantly

reduced without any loss in precision. For example

the ellipsoid in Fig. 1a is formed by almost 5·105
points, while its convex hull has only 655 vertices.

In Barequet and Har-Peled (2001) it is proved that it

is enough to test a relative small set of directions.

Then, thanks to 2, the MVBB for each direction is

fast computed. The volume deviation to the exact
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MVBB depends on the number of test directions and

can be decreased arbitrarily by increasing the number

of directions.

The computation of the convex hull is also useful

to calculate another shape parameter, namely the

convexity factor. It is the ratio between the volume of

the particle and the volume of its convex hull. Equal

to 1 for convex particles and otherwise smaller, it tells

how far a particle is from being convex.

SIZE: ELONGATION AND INNER

DIAMETER

Length, width, and thickness do not describe

exhaustively the size of a particle, especially if

non-convex. We are interested in measuring, for

example, the length of an unwound fiber. Heuristically,

it is the curve length of the shortest path within

the particle connecting its end points. Formally (cf.

Lantuejoul and Maisonneuve, 1984):

Definition 3. The geodesic arc between two points x

and y in the body X is the shortest continuous path

within X; its length is the geodesic distance between x

and y. The length of the longest among these paths is

the geodesic length or elongation of X.

The elongation path is represented with other

features in Fig. 1b.

As for the MVBB, the points realizing the

elongation are not unique, e.g., for star shaped

objects, including sphere and cube. Its value is,

however, unique. Furthermore, this definition is robust:

if a particle is slightly deformed, the elongation

varies minimally. The estimation is based on a two-

step procedure. Given a starting point, the geodesic

distances to all other points in the particle are

computed. A point realizing the maximum is taken

as the new starting point. Again, the distances to

all other points are computed. The value of the

maximum so obtained is also the maximum length of

the geodesic paths among all possible pairs of points.

The computation of the geodesic distance is based on

the algorithm presented in Petres et al. (2005).

If the object has a hole or a tunnel, the two-

step procedure might fail to return the elongation.

In fact, depending on the starting point, only a local

maximum is found. Thus, in case the Euler number

of the object is not 1, multiple starting points have

to be tested. Moreover, it is possible to “close” holes

inside a particle by applying a fill-hole algorithm. By

comparing the elongation estimated on the original

particle and on the processed one, one can have a

measure of the extension of the hole. Furthermore, in

the application to technical cleanliness only the outer
shape is interesting, thus it is suitable to apply the fill-
hole algorithm to all particles in the preprocessing step.

To compare particles, it is helpful to define another
shape factor (Parra-Denis et al., 2008):

Definition 4. Let Lg be the elongation of X, then the

elongation index is

Ig =
πL3g

6V
. (2)

It equals 1 for spheres and gets larger, the
more elongated a particle is, where by elongated we
understand thin and long, no matter how arranged in
space.

It is interesting to have an estimate of the actual
thickness of a fiber as well as its length.

Definition 5. The diameter of the largest ball

completely contained in X is the inner diameter or

maximal local thickness of X.

Besides estimating the thickness of a particle, this
parameter can also be interpreted as a measure of
the largest core (see Fig. 1b). Thinking of cleanliness
applications, this suggests the minimal fineness a filter
should have to prevent a particle from passing through.
We estimate the inner diameter on the digital image of
X as the maximum of the Euclidean distance transform
(EDT) of the particle. In fact, this map assigns to
each foreground pixel the distance to the nearest
background pixel (see Ohser and Schladnitz, 2009 for
a formal definition and the available algorithms).

The geometric interpretation differs if the particle
has a hole. For example, the inner diameter of a hollow
eggshell is the maximal thickness of the shell, which
does not yield information on the core of the particle as
a whole. Again, the application of a fill-hole algorithm
allows to obviate this issue.

CORRELATION ANALYSIS

The parameters introduced cover a wide range
of features characterizing particle shape and size.
Although some are clearly defined independently from
the others, they might be correlated. Their correlation
is studied by visualizing the pairwise covariance
matrix of the features estimated on a sample of
486 dirt particles (Fig. 2). Volume and surface area
are linearly correlated, implying the correlation of
the isoperimetric shape factors f2 and f3. Also the
correlation of length and elongation is linear. This
suggests that each particle has a rather regular form:
no strongly twisted fiber or rounded or bended chip
occur in the sample. The other features do not present
significant correlation.
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Further analysis on the parameters’ redundancy

can be performed by means of principal component

analysis (cf. Parra-Denis et al., 2008). However, in our

application field, an accurate description of the particle

is needed to identify the risk their presence implies,

thus all parameters are interesting.

ESTIMATION ERROR

In this section, we analyze the error in estimating

the parameters on a discrete object observed on a

lattice. Cylinders are chosen as reference objects.

We consider three aspect ratios corresponding to the

different classes: 1:10 for fibers, 10:1 for chips and

1:1 for granules. For each class, volumes vary from

about 50 pixels to 20000. Here, the unit “pixel”
is used for the volume of unit cell of the lattice
the image is defined on. That is, pixel is just
(lattice spacing)3 assuming equal lateral resolution
in all three coordinate directions. In Table 1, the
estimated values of the features of one cylinder for
each class are displayed. We chose volumes around
2000 pixels as it is a typical size of large dirt
particles in real samples (cf. Table 2). The relative
errors in the table suggest how much the estimations
differ from the theoretical value. This depends on
the size, position and orientation of the cylinder.
Note that the discretization chosen for the cylinders
plays a big role in all the feature estimations, too.
To reduce this effect, diameters and heights of the

V
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Fig. 2: Correlation matrix of volume V , surface area S, isoperimetric shape factors f1, f2 and f3, MVBB length,

width, and thickness, elongation, and inner diameter. All measurements in pixels assuming lattice spacing = 1.
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cylinders are always chosen as integer numbers.

Moreover, to systematically analyze the estimation

algorithms, instead of considering one cylinder for

each size, we sample random rotations of the axis

and shifts in the lattice distance, that is, the particles

are in general position w. r. t. the lattice in the

sense of Ohser and Mücklich (2000). The means of

the estimations are compared with the well known

theoretical values of the features for each size. In Fig.

3, the relative errors are plotted.

Asymptotic convergence of the estimators of the

intrinsic volumes is guaranteed by the rotations and

translations within the lattice of the cylinders with

increasing resolution (cf. Ohser et al., 2002). The

relative error of theoretical and estimated surface

area is shown in Fig. 3a. It converges to zero as

expected. The relative error for the first isoperimetric

shape factor, Fig. 3b, shows the same trend, but with

larger values. This is due to the ratio of volume and

surface area, which yields an additional source of

approximation.

For what concerns the MVBB, only the error

regarding the length is represented (Fig. 3c), which

is also the largest compared to width and thickness.

For small objects, it is rather large (around 20% for

granules and chips), but decreases significantly as the

cylinder size increases. Length, width and thickness

are in most cases overestimated. This comes from the

definition of the MVBB, i.e., a box containing the

object completely. In the algorithm, we used a grid of

103 nodes, yielding 840 different test directions. By

increasing the fineness of the grid, the estimation can

be further improved.

Maximal Feret diameter and elongation are both

equal to the spatial diagonal of the cylinder. Despite

being estimated with very different methods, their

values differ by less than 2 pixels in the worst case. In

general, the elongation is larger and the corresponding

relative error (Fig. 3e), converges more slowly than the

one of the maximal Feret diameter (Fig. 3d).

The best estimation of the inner diameter is

obtained for fibers, see Fig. 3f. In fact, for these long

and thin cylinders, the inner diameter is the diameter

of the cylinder, which is much smaller than the height,

allowing an exact estimation for some values of the

cylinder radius. For granular and chip-like cylinders,

instead, the relative error is averagely larger, but still

converging to zero as the volume increases.

Table 1: Particle features with relative errors of a fibrous, a chip–like, and a granular cylinder with arbitrary

position and orientation. The features are estimated from the images. The theoretical values for radius and height

(r, h) are (3, 60), (15, 3), and (7, 14), respectively. Images and computation of characteristics with MAVIparticle

(Fraunhofer ITWM, 2012).

volume [px] 1 889 ± 11.35% 2 053 ± 3.18% 2 155 ± 0.001%

surface area [px] 1 209.69 ± 1.87% 1 582.06 ± 6.74% 895.81 ± 3.01%

shape factor f1 0.48 ± 0.08% 0.35 ± 7.50% 0.85 ± 4.71%

shape factor f2 0.10 ± 3.48% 0.26 ± 8.46% 0.71 ± 5.07%

shape factor f3 0.35 ± 2.36% 0.83 ± 8.91% 0.88 ± 4.92%

length [px] 60.82 ± 1.36% 30.64 ± 2.15% 15.42 ± 10.15%

width [px] 8.59 ± 43.17% 30.18 ± 0.58% 14.87 ± 6.18%

thickness [px] 5.81 ± 3.17% 4.12 ± 37.34% 14.12 ± 0.83%

max Feret diam [px] 60.88 ± 0.98% 30.87 ± 2.40% 20.87 ± 5.43%

elongation [px] 62.55 ± 4.25% 33.79 ± 12.07% 20.60 ± 4.04%

elongation index 74.55 ± 9.22% 9.84 ± 4.54% 2.13 ± 12.74%

inner diameter [px] 6.63 ± 10.55% 3.46 ± 15.47% 13.30 ± 4.99%
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(a) Surface area. (b) Isoperimetric shape factor f1.

(c)MVBB: length. (d) Maximal Feret diameter.

(e) Elongation. (f) Inner diameter.

Fig. 3: Relative error for the features estimation on three sets of cylinder with aspect ratios 1:1 (red), 10:1 (blue)

and 10:1 (green), from top to bottom respectively, randomly rotated and shifted w. r. t. the lattice. On the x-axis,

the volumes are represented.
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CLASSIFICATION

ASTM F1877 (2003) provides a qualitative

guideline to classify particles according to their shape.

This classification is performed by looking at the

photographs of the particles, hence human vision can

easily deduce from perspective and shading effects

how the particles are shaped in 3D. Here instead,

we aim at making the classification systematic by

exploiting the parameters previously defined.

In 2D, it is natural to identify two classes

of particles: fibers, long and thin, and granules,

large in both dimensions. These classes are also

the ones recognized in technical cleanliness. Adding

one dimension, a third class of objects can be

distinguished. In fact, a granule in 2D, can be “flat”,

i.e., have small thickness, or be about as thick as it is

large. We call the flat objects chips, while the others are

three-dimensional granules. Again fibers are all those

long and thin particles. These heuristical definitions

are based on the aspect ratios of the particles. Thus

we can easily formalize them for convex objects, by

referring to the measure of size stated in Def. 2:

Definition 6. Let X be a convex compact body with

length l, width w, and thickness t, then

– if l ∼ w∼ t → X is a granule,

– if l ∼ w 6= t or l 6= w 6= t → X is a chip,

– if l 6= w∼ t → X is a fiber.

This definition yields the classification first

introduced by Zingg (1935) to classify rocks. The

classification can be easily visualized via the Zingg-

diagram, Fig. 4a. In mineralogy, two measures differ

if the ratio of the smaller over the bigger one

is larger than 2/3. However, this threshold may

vary depending on the application field. Typically in

technical cleanliness, particles are considered fibrous

if their aspect ratio is 10 : 1.

When it comes to non–convex particles, however,

the measures of l, w, and t as computed on the MVBB

can not be interpreted as measures of the real size of

the particles, thus the Zingg–classification could fail.

Although no formal definition is given in the case of

non–convex particles, the three classes fiber, chip, and

granule, can still be used. For example in Fig. 4b, the

first particle is a chip, followed by three twisted fibers.

In fact, if unwound, these fibers have length ten times

larger than width and thickness. It seems reasonable to

use the measures of elongation and inner diameter to

achieve a classification for these particles analogous

(a)

(b)

Fig. 4: Classification based on the size. (a) Zingg-

diagram with thresholds at 2/3. (b) Particles for which
this classification fails. Bounding boxes to enhance

visualizations, do not correspond to the MVBB.

to the Zingg-diagram. Define the aspect ratio as inner
diameter over elongation, thus it is a number smaller
or equal 1. The values for the three cylinders used as
reference for fibers, chips, and granules, are 0.09, 0.20,
and 0.71, respectively. They are sufficiently different.
However, these are simple shapes in which the
elongation is the space diagonal and two dimensions
are identical. The limit of a criterion based on this
index is that it only considers two dimensions to
describe the three-dimensional size of particles, thus
it can not suffice to classify complex shapes.

In order to classify all types of particles, we
investigate the behavior of the shape features. The
interpretation of the isoperimetric shape factors
suggests that their values for long and thin objects
differ from their values for granular ones. In order to
investigate this, a sample of reference particles with
random size and random orientation is simulated. The
sample includes about 750 particles, namely ellipsoids,
cuboids, cylinders, rounded chips, arcs of tori and
arcs of helices. Examples of these particles are those
in Fig. 4b, but with different size, orientation, and
more or less rounded. Rounded chips are defined as
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Fig. 5: Isoperimetric shape factors, f1, f2 and f3, plotted against volume of the simulated particles. Each color

represents a class: green for fibers, blue for chips and red for granules.

cuboids curved around a cylinder, with various radii.

To classify these particles, we refer to the size of

the cuboid. Arc of tori and helices are defined as an

arc of a circumference or arc of a helix, respectively,

each cut at various random angles, dilated with a

sphere of random radius. The length is thus computed

as the curve length of the arc, while width and

thickness correspond to the radius. The aspect ratios

vary randomly according to the standards in technical

cleanliness:

– granules: w/l ∈ [0.7,1], t/w ∈ [0.7,1];

– chips: w/l ∈ [0.15,0.6], t/w ∈ [0.05,1];

– fibers: w/l ∈ [0.05,0.09], t/w ∈ [0.7,1].

While the classes are known from the analytical

description of the shapes, the features are estimated

from their digitized imaged. In Fig. 5, graphs for

the estimated isoperimetric shape factors are plotted

against the increasing volume of the particles, with

different colors for each class. For sufficiently large

volumes, the values of the shape factors significantly

differ for each class. Based on this sample, the

classification can be accomplished as follows:

1. f3 ≤ 0.5 and f2 ≤ 0.1 → fiber,

2. if not fiber and f1 ≤ 0.7 and f2 ≤ 0.4 → chip,

3. if not fiber and not chip → granule.

For each class, we consider two shape factors so that

the errors due to the estimations on digitized images

can be compensated. In fact, real particles are not as

smooth as the reference ones we simulated. However,

since we restrict to large particles that typically do

not have an inner structure, this type of error is not

expected to affect the classification, as discussed in the

previous section. Note that these thresholds are chosen

with respect to the application to technical cleanliness.

In other fields, the ratio length over width that defines

a fiber, for example, could change, hence also the

thresholds determining this classification should be

adapted. The elognation index also gives a measure

of the shape of the particles and is independent of the

isoperimetric shape factors. Although alone it is not

informative enough to be exploited for classification, it

can be used to validate the classification of non–convex

particles.

For what concerns small volumes, it is sensible to

rely on the classification based on the size. Indeed,

the space configuration of a small particle, in general,

can not be such to induce length, width, and thickness

of a wrong class. We suggest to set this threshold at

400 pixels. Nonetheless, for very small objects, the

discretization errors are too high and the classification

is not interesting. Thus, we will not classify particles

constituted by less than 64 pixels. This threshold is

chosen because a cube formed of 64 pixels has edges

only 4 pixels long, thence, averagely, there is not

enough freedom to arrange the pixels in a wide variety

of shapes.

With all the features we collected, it is also

possible to perform a cluster classification. For

example this method is applied in (Parra-Denis et al.,

2008) to classify the complex shapes of intermetallic

particles originating from the solidification process

of aluminum alloys. However, due to the application

in technical cleanliness, we aim at globally defining

the three classes of typical 3D shapes. Therefore, a

threshold classification is preferable.

171



VECCHIO I ET AL: 3D geometric characterization

Fig. 6: 3D reconstruction of a sample of dirt particles

(red) on the rolled filter membrane (blue). Binarization

from a µCT image realized by RJL Micro&Analytic

with a SkyScan device. Pixel size 9.88 µm. Image

size 10.86 × 10.86 × 2.96 mm. Visualization by

MAVIparticle (Fraunhofer ITWM, 2012).

APPLICATION TO TECHNICAL

CLEANLINESS

The cleanliness level of mechanical components

must be tested on the factory line. The dirt particles

are collected from their surfaces on a filter membrane.

This is then rolled and inserted in a plastic cylinder

to be imaged via micro computed tomography (µCT).

Often, instead of plastic, a steel cylinder is used as

a container. Its gray value in the µCT image can be

exploited to calibrate the material composition of the

particles in the sample.

The tomographic image is segmented via

thresholding. A volume rendering is displayed in Fig.

6. The rolled filter membrane is clearly visible, in

blue, while only a few dirt particles can be recognized,

rendered in red.

In order to have a representative sample, we

consider a large dataset consisting of 1061 particles.

The mean volume is 2.49·106 µm3 (259 pixels).

Applying the thresholds suggested in the previous

section, the particles are labeled as ‘small’, ‘medium’,

and ‘large’ depending on their volumes in pixels,

resulting in 469 small, 406 medium, and 186 large

particles. The small particles will not be further

analyzed. We classify medium and large particles

according to the minimum volume bounding box and

to the isoperimetric shape factors, respectively. Despite

the particles shapes are not as regular as the sample

particles above considered, the geometric parameters

are estimated reliably.

In Fig. 7a, the aspect ratios of the MVBB of the

medium particles are drawn in the Zingg-diagram.

The thresholds are imposed by technical cleanliness

requirements: thickness over width smaller than 2/3
means comparable dimensions and length over width

smaller than 1/10 defines fibers. With these thresholds,

there are 216 granular particles, 190 chips and no fibers

among the medium particles in the sample. For what

concerns the large particles, instead, we consider the
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(a) Zingg-diagram of the medium particles.
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(b) Isoperimetric shape factor f1 of large particles plotted

over the volume.

Fig. 7: Classification of dirt particles in the sample.

Each color represents a class: green for fibers, blue

for chips and red for granules.
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Table 2: Features of three large particles from the sample in Fig. 6. Images and computation of characteristics

with MAVIparticle (Fraunhofer ITWM, 2012).

pixel size = 9.88 µm fiber chip granule

mean gray value 264 48.47 410

volume [px] 823 2 968 1 023

volume [µm3] 793 726 2 862 429 986 612

Euler number 1 1 1

shape factor f1 0.48 0.56 0.86

shape factor f2 0.19 0.33 0.73

shape factor f3 0.44 0.69 0.89

length [µm] 341.18 393.81 149.05

width [µm] 86.44 160.56 132.93

thickness [µm] 49.14 74.44 91.45

elongation [µm] 340.86 398.56 166.38

elongation index 26.12 11.58 2.44

inner diameter [µm] 4.47 7.21 9.17

convexity factor 0.91 0.95 0.97

isoperimetric shape factors. In Fig. 7b, f1 is plotted
against the volume. The classification, which accounts

all three isoperimetric shape factors, is represented

by the colors. There are 9 fibers, 66 chips and 111

granules. The largest particles in the sample are fibers,
as typical in dirt particles samples.

Gathering all the data regarding medium and large
particles, the sample is composed of 55.2% granules,

43.3% chips, and only 1.5% fibers. Though fewer,

fibers constitute 13.7% of the total volume.

The sample can be further characterized by means
of the other features. All particles have Euler number

equal to 1, before and after applying a fill–hole
algorithm. This means that no particles have holes or

tunnels. Moreover, it is interesting to investigate the

degree of straightness of the large fibers in the sample:

length and elongation or thickness and maximal local
thickness can be compared to see if the fibers are

twisted. If the convexity factor is much smaller than

1, then the fiber is curved, the more it is, the larger the
elongation index will be.

In Table 2, three of the largest particles in
the sample, one for each class, are shown together
with their features. The classification is based on

the isoperimetric shape factors, since they are all

large particles. Moreover, the elongation index is also

typically different for each particle, being 10 times

larger for the fiber than for the granule. None of the

particles presents a concavity. The relative small value

of the convex factor of the fiber is due to surface

roughness. The mean gray values of the particles vary

strongly, indicating different material compositions.

CONCLUSION

Spanning from classical geometric methods via

mathematical morphology to stochastic geometry,

a variety of shape and size descriptors has been

collected. In particular, we proposed a collection

of features for 3D objects that naturally and

unambiguously generalize the parameters presented in

(ASTM F1877 , 2003) and complete them with spatial

characterizations.

In addition to characterization, we also suggested

how to use these parameters to classify arbitrary

objects. The first approach we proposed is directly

derived from the classes’ definition. The classification

is obtained by plotting the size of the MVBB of the

particles in the Zingg–diagram. Alternatively, particles
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can be classified based on the isoperimetric shape

factors. Furthermore, these two methodologies can

be merged to classify particles depending on their

volumes.

In the last section, the particle characterization

is applied in the field of technical cleanliness. The

features can be reliably and efficiently estimated from

tomographic images of the particles. A classification

for medium and large particles is achieved. As a result,

the residual dirt can be analyzed and the danger that it

can cause can be estimated.

Nevertheless, technical cleanliness is not the only

possible application field. Indeed, the parameters

proposed are well defined for any type of three

dimensional object and can therefore be used in other

application scenarios. Once the geometric features of

the objects are calculated, the thresholds yielding the

classification can be adapted as desired.
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