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University Kaiserslautern, Dept. Math., PB 3049, D-67653 Kaiserslautern; 4Fraunhofer ITWM Kaiserslautern,

Fraunhofer-Platz 1, D-67663 Kaiserslautern, Germany; 5Univ. Appl. Sci. Darmstadt, Dept. Math & Nat. Sci.,
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ABSTRACT

A new method is presented for estimating the specific fiber length from 3D images of macroscopically
homogeneous fiber systems. The method is based on a discrete version of the Crofton formula, where local
knowledge from 3× 3× 3-pixel configurations of the image data is exploited. It is shown that the relative
error resulting from the discretization of the outer integral of the Crofton formula amounts at most 1.2%. An
algorithmic implementation of the method is simple and the runtime as well as the amount of memory space
are low. The estimation is significantly improved by considering 3× 3× 3-pixel configurations instead of
2×2×2, as already studied in literature.

Keywords: Crofton formula, image analysis, integral of mean curvature, systematic error.

INTRODUCTION

Fibers in fiber-reinforced materials, fleeces, felts
and paper form systems of non-overlapping and
more or less curved fibers. The characterization of
these fiber systems is a topic of materials science
and technology, where quantities estimated from
image data are used in industrial quality control, as
parameters for geometric models of fiber systems, and
as input for simulating materials properties. Currently,
the development in fiber system characterization is
mainly driven by computed microtomography (µCT)
which has been established as an appropriate source
of three-dimensional (3D) image data of sufficiently
high lateral resolution and contrast between fibers
and the matrix constituents or air in pore spaces
(Weitkamp et al., 2011). Often, simple thresholding
(e.g., using a global threshold level or a hysteresis)
can be used to segment the image data, where the fiber
system is assigned to the foreground and the matrix is
background. Throughout the present article we assume
that the foreground pixels form a sampling of the fiber
system on a cubic primitive point lattice.

Besides the fiber direction distribution, the length
density of the fibers is probably the most important
characteristic of a macroscopically homogeneous (i.e.,
stationary) fiber system. An intuitive method of

estimating fiber lengths is based on skeletonization

of the fibers and counting the number of skeleton

pixels, where the counts are weighted with the lattice

distance a if two neighboring pixels are connected

along an edge of the cubic lattice cells, with
√
2a if

the pixels are connected via a face diagonal, and with√
3a if the pixels are connected via a space diagonal,

respectively. This intuitive estimator can be seen as a

3D analogue of the boundary length estimation based

on the Freeman encoding of a 2D object. It is not

surprising that, depending on the adjacency chosen for

the pixels of the 3D image, the systematic error of

the estimated fiber length can be considerably large,

in particular in the isotropic case.

One should keep in mind that the length of

a fiber (with small cross-section) is approximately

proportional to the integral of the mean curvature of the

fiber. Furthermore, the integral of the mean curvature

of a convex 3D body is (up to a constant factor)

one of the four intrinsic volumes. A further one is

(up to a constant factor) the surface area. Therefore,

the principle behind the estimation of fiber length is

conceptionally the same as for the surface area.

First, we refer to Lindblad and Nyström (2002),

who suggested to estimate the surface area of a body

as the sum of the areas of the surface patches obtained

* The topic of this paper was presented at the S4G Conference, June 25-28, 2012 in Prague, Czech Republic.
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by ordinary surface rendering (Ohser and Schladitz,

2009, sec. 3.6.2). In this approach, the areas of the

surface patches serve as weights for computing the

surface area from local knowledge. Analogously, the

integral of the mean curvature (and thus the fiber

length) can be estimated from a tessellation of the

foreground set into polytopes induced by rendering

data. The corresponding weights are computed via the

inclusion-exclusion principle and Hadwiger’s formula

for the mean width of polytopes (e.g., Hadwiger, 1957,

p. 215; Santaló, 1976, p. 226). However, this estimator

is not multigrid convergent, even not in the isotropic

case, i.e., for decreasing lattice distance the estimated

integral of the mean curvature does not converge to the

true value.

There are alternative approaches of estimating

curve length (or circumference of a 2D set) based

on an explicit approximation of the curve (or

the boundary of the set) but ensuring multigrid

convergence, see Klette and Rosenfeld (2004) for an

overview. In Klette et al. (1999) digital curves are

approximated by piecewise straight lines. However,

such approximations are computationally demanding

since they do not claim locality.

The surface area can be measured directly from

the image data without need to approximate the

surface (e.g., by a surface rendering). For each 2×
2 × 2-pixel configuration we count its occurrences

in the image and approximate the surface area by

a linear combination of these counts. There are

several proposals how to choose the coefficients,

called weights, of the linear combination. The weights

suggested by Lindblad (2005) minimize the estimation

variance of the surface area of a plane with random

normal direction uniformly distributed on the unit

sphere. This idea goes back to Mullikin and Verbeek

(1993), see also the discussion in Windreich et al.

(2003). A further approach is presented in Chapter

4 of Ohser and Mücklich (2000) and in Lang et al.

(2001) where the weights are computed using a

discrete version of one of Crofton’s intersection

formulas (Schladitz et al., 2006a; Ohser and Schladitz,

2009, Chapter 5). We remark that the method of

Ohser and Mücklich (2000) is designed for the general

case of cuboidal lattices, while the restriction on

the particular case of cubic primitive lattices allows

to exploy symmetry properties (Ohser and Schladitz,

2009), and to present the weights in a very

condensed form (depending on representatives of the

22 equivalence classes, as in Table 1).

A comprehensive treatment of the subject of

surface area estimation is given in Ziegel and Kiderlen

(2010). The weights suggested in this article minimize

the worst case asymptotic error for surface area

estimation where asymptotics is understood with

respect to decreasing lattice distances. This approach

is based on a general asymptotic result shown in

Kiderlen and Rataj (2006). It also allows a comparison

of the various methods of surface area estimation.

Unfortunately, Ziegel’s methods can not be extended

to the estimation of the integral of the mean

curvature, since the estimator based on optimal

weights completely ignores the image data (Kampf,

2012). In Svane (2012) the weights for estimating

the intrinsic volumes are designed in such a way

that their estimation is unbiased for Boolean models

or isotropic random closed sets fulfilling certain

smoothness assumptions.

Further approaches of estimating the

intrinsic volumes are based on solving

systems of linear equations deduced from

the extended Steiner formula or the principal

kinematic formula (Schmidt and Spodarev, 2005;

Klenk et al., 2006; Mrkvička and Rataj, 2008; 2009;

Meschenmoser and Spodarev, 2012). These methods

are studied in detail for the 2D case but work in

principle in arbitrary dimensions. However, so far

none of these algorithms has been proven to work

in practice for dimensions ≥ 3. The authors are

claiming multigrid convergence for the resulting

estimators of the intrinsic volumes. Comparisons for

2D Boolean models in Guderlei et al. (2007) and

Mrkvička and Rataj (2008) show, that the accuracy

is sometimes higher than that of the estimators given

in Section 4.2 of Ohser and Mücklich (2000).

We follow the approach of Ohser and Schladitz

(2009) based on a Crofton formula which boils

down the estimation of the integral of the mean

curvature to computing Euler numbers in virtual planar

sections. Discretisation of this formula combined with

an efficient calculation of the Euler numbers in the

planar sections yields a fast algorithm for determining

the integral of the mean curvature from tomographic

images, see, e.g., Vogel et al. (2010) for an application

in the field of characterizing soil structure. The

backbone of the Euler number calculation are thorough

investigations of digital connectivity and consistency

from Nagel et al. (2000); Ohser et al. (2002; 2003). In

the present article it will be shown that the method

of Ohser and Schladitz (2009) can be improved

considerably by finer discretization of the outer

integral in the Crofton formula.

The above approach has certain advantages over

others. First, the method can simply be extended to

arbitrary homogeneous lattices so that we are no longer

restricted to cubic primitive lattices (Ohser et al.,

2009; Ohser and Schladitz, 2009). This is an important

fact since many 3D image acquisition techniques
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produce images on non-cubic lattices. Furthermore,

our approach can be extended to cases of hollow fibers

(or partially hollow fibers, e.g., kinds of cellulose

fibers) where a high fraction of the cross-section is

not simply connected. In fact, the computation of the

Euler number in virtual planar sections can be replaced

by counting connected components or tangent points,

as suggested in Schladitz et al. (2006b). Finally, we

remark that the approach presented in this article has

the capability to involve the estimation of the fiber

direction distribution (Ohser and Schladitz, 2009, sec.

5.4).

The present article is organized as follows: First

we recall the principle of estimating of the integral of

the mean curvature from numbers of 2× 2× 2-pixel

configurations. Then we compute the systematic error

related to the discretization of the outer integral of

Crofton’s intersection formula. It will be shown that

the systematic error can be reduced considerably by

a finer discretization of the outer integral. Finally, we

compute the optimal weights for the quadrature rule of

the applied numerical integration.

FIBERS AND FIBER LENGTH

In our setting a fiber ψ in R
3 with a convex cross-

section of nonempty interior can be defined as follows:

Let f : R 7→ R
3 be an arclength parametrization of a

finite immersed curve φ ⊂R
3 with f (0) 6= f (ℓ), where

f is twice continuously differentiable and ℓ is the curve
length,

φ = { f (s) : 0≤ s≤ ℓ} .
The first derivative of f is the unit tangent vector of

the curve φ at the point f (s). More precisely, let S2+
denote the positive unit half-sphere of R

3, then the

non-orientated direction of the curve at the point f (s)
is defined as θ(s) = f ′(s) if f ′(s) ∈ S2+, and θ(s) =
− f ′(s) otherwise.

Let Br denote the 3D ball of radius r centered at

the origin, and let ⊕ be the Minkowski addition. The

curve φ may be shaped in such a way that the parallel

set φ ⊕Br of φ is morphologically regular, i.e., there

is an ε > 0 such that φ ⊕Br is morphologically closed

as well as morphologically open with respect to Bε . A

necessary condition for the morphological regularity

of φ ⊕Br is that φ is smooth enough, more precisely,

the curvature κ(s) = ‖ f ′′(s)‖ of φ must be smaller than

the inverse radius, κ(s)< 1/r for all s ∈ [0, ℓ].

Let K ⊆ Br be a compact, convex and

morphologically regular set. Then a fiber ψ is defined

as the set ψ = φ ⊕ K. As a consequence of the

morphological regularity of K, the mean curvature

H1 exists for each point on the surface ∂ψ of ψ and,
using the 2-dimensional Hausdorff measure H 2, the
integral of the mean curvature is defined as

M(ψ) =
∫

∂ψ

H1(s)dH
2(s) .

From Theorem 5.9 in Federer (1959) it follows that
M(ψ)→ πℓ(φ) as r ↓ 0. In other words,M(ψ)/π is an
appropriate estimate of the fiber length ℓ as r≪ ℓ.

We remark that in the special case K = Br, the
fibers are similar to the tubular neighborhood of
φ considered in Baddeley and Averback (1983). The
only difference is that the fibers end with half-balls,
while the tubular neighborhoods are cut off by the
planes through the endpoints of the curve.

In order to apply Crofton’s formula (Schneider,
1993, Theorem 4.5.5) we first show that every fiber can
be approximated by a polyconvex set. Let us consider a
piecewise straight approximation φm of the curve φ by
the segments

[
f
(
(k− 1)ℓ/m

)
, f (kℓ/m)

]
between the

curve points f
(
(k−1)ℓ/m

)
and f (kℓ/m),

φm =
m⋃

k=1

[
f
(
(k−1)ℓ/m

)
, f (kℓ/m)

]
, m≥ 1 ,

fulfilling ℓ(φm)→ ℓ(φ) as m→ ∞. The set ψm = φm⊕
K is polyconvex and it follows that M(ψm) → πℓ(φ)
as m→ ∞ and r ↓ 0.

Let now L 2 be the set of 2-dimensional linear
subspaces in R

3 (i.e., the set of planes hitting the
origin). By ⊥L, ν⊥L and µ we denote the orthogonal

space of a plane L ∈ L 2, the Lebesgue measure on
⊥L, and the rotation invariant probability measure on
the unit sphere S2 of R

3, respectively. Then, using
Crofton’s intersection formula, Schneider (1993), the
integral of the mean curvature M(X) of a polyconvex
set X can be written in the form

M(X) = 2π
∫

L 2

∫

⊥L

χ
(
X ∩ (L+ x)

)
ν⊥L(dx)

︸ ︷︷ ︸

µ(dL), (1)

p(X ,L)

where χ
(
X∩(L+x)

)
is the Euler number of the planar

section X ∩ (L+ x) of X and the inner integral p(X ,L)
can be seen as the length of the orthogonal projection
of X onto the straight line ⊥L.

ESTIMATION OF FIBER LENGTH

The sampling of the set X on a homogeneous
point lattice implies a discretization of the Crofton
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formula (Eq. 1), where the plane L is replaced with a 2-
dimensional section lattice, the translations L+ x over
the orthogonal space ⊥L are replaced with a translation
of the section lattice over the corresponding translation
lattice, and the integrals are numerically computed by
quadrature rules.

Let L3 = aZ3 be a homogeneous lattice in R3 with
the lattice distance a > 0, the unit cell C = [0,a]3

and the set {0,a}3 of vertices of C. We consider a
plane L ∈ L 2. Assume now that there is a translation
y ∈ {0,a}3 such that the intersection of the translated
plane hits at least three vertices ofC,

#
(
(L+ y)∩{0,a}3

)
≥ 3 .

Then L
2 = L ∩ L

3 forms a homogeneous 2-
dimensional section lattice of L

3. This means that
there are linearly independent vectors u,v ∈ R

3 with
u+ y,v+ y ∈ {0,a}3 generating the lattice L2,

L
2 = {iu+ jv : i, j ∈ Z} .

Without loss of generality we assume that the
normal direction θ = u × v/‖u × v‖ is on S2+ of

R
3. Furthermore, there exists a vector w ∈ R

3 with
|det(u,v,w)| = a3 generating a 1-dimensional section
lattice ⊥

L
2 = {kw : k ∈ Z} with the property that L3 is

the union of L2+ z over all translations z ∈ ⊥
L
2,

L
3 =

⋃

z∈⊥L2

(L2+ z) ,

(Ohser and Schladitz, 2009). The lattice ⊥
L
2 is called

the translation lattice of L
2. The above results are

summarized in the following lemma:

Lemma 1 Let be given a lattice L
3 = aZ3, a plane

L ∈ L 2 and a vector y ∈ {0,a}3 such that #
(
(L+ y)∩

{0,a}3
)
≥ 3. Then there are three linearly independent

vectors u,v,w ∈ {−a,0,a}3 with L
3 = {iu+ jv+ kw :

i, j,k ∈ Z} and L3∩L= {iu+ jv : i, j ∈ Z}.

As has been pointed out in Ohser and Schladitz
(2009), p. 157, there exist m = 13 section lattices L2

k ,
k = 1, . . . ,m, with pairwise different normal directions
θk of the corresponding section planes Lk = spanL2

k .

Let wk be the basis vector of translation lattice ⊥
L
2
k of

L
2
k . Then dk = |θkwk| is the orthogonal distance of the

neighboring section planes Lk and Lk+wk. Notice that
dk = |C|/|Ck|, where |C| is the volume of C and |Ck|
denotes the area of the unit cell Ck = [0,uk]⊕ [0,vk]
of L

2
k . Now, using a simple rectangular quadrature

rule, the inner integral p(X ,L) of the Crofton formula
(Eq. 1) can be approximated with

p(X ,Lk)≈ dk ∑
z∈⊥L2

k

χ
(
X ∩ (Lk+ z)

)
, (2)

where the dk serve as the weights of the quadrature rule

(Ohser and Schladitz, 2009, p. 154).

When using a 2-dimensional analog of the

rectangular quadrature rule, Eq. 1 yields

M(X)≈
m

∑
k=1

γkp(X ,Lk) , (3)

(Ohser and Schladitz, 2009, p. 156), and summarizing

Eq. 2 and Eq. 3, one obtains an approximation of the

integral of the mean curvature,

M(X)≈
m

∑
k=1

γkdk ∑
z∈⊥L2

k

χ
(
X ∩ (Lk+ z)

)
. (4)

The weights of the quadrature rule applied in Eq. 3 are

defined as follows: Consider the Voronoi tessellation

of the unit sphere S2 with respect to the point field

{θ1, . . . ,θm,−θ1, . . . ,−θm}. By γk we denote the area

of the Voronoi cell with respect to the direction θk, k=
1, . . . ,m. Numerical calculation yields γk = 0.575263
for the three directions parallel to the edges of the unit

cell C, γk = 0.464711 for the directions of the face

diagonals of C, and γk = 0.442280 for the directions

of the space diagonals ofC.

In order to give an estimator of the Euler number

χ
(
X ∩ (Lk+ z)

)
we consider a 6-adjacency system Fk

on the 2-dimensional section lattice L2
k . A 6-adjacency

system is generated by a tessellation of the unit cellCk

into two closed triangles Tk,1 and Tk,2 with Tk,1∪Tk,2 =
Ck. Formally, this can be done as follows: Let convζ
denote the convex hull of a subset ζ ⊆ F 0(Ck), where
F 0(Ck) denotes the set of vertices ofCk. Then the local

adjacency system F
0
k ⊂ {convζ : ζ ⊆ F 0(Ck)} with

respect to the tessellation mentioned above consists of

the unit cell Ck, the triangles Tk,1 and Tk,2, their edges,

their vertices, and the empty set. Finally, the adjacency

Fk is the union of F
0
k + x over all lattice translations,

Fk =
⋃

x∈L2
k

(F0
k + x) ,

(Ohser and Schladitz, 2009, p. 50).

Now we introduce a discretization X ⊓ Fk of

the planar section X ∩ spanLk with respect to the

adjacency system Fk,

X ⊓Fk =
⋃

{F ∈ Fk : F
0(F)⊆ X} .

It is important to see that the discretization X ⊓ Fk

can be obtained from the sampling X ∩L
2
k of X on

the section lattice L
2
k , that is X ⊓Fk and X ∩L

2
k carry

the same information on X . The additivity of the Euler
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number ensures that it can be computed locally. Using

the Euler-Poincaré formula we get

χ(X ⊓Fk) =
2

∑
j=0

(−1) j ∑
F∈F j(Fk)

1
(
F

0(F)⊆ X
)
, (5)

(Ohser and Schladitz, 2009, Eq. 3.5). Here F j(Fk)
denotes the set of the j-dimensional polytopes

belonging to Fk, and 1 is the indicator function.

The Euler number χ(X ⊓ Fk) can be seen as

an approximation of χ(X ∩ Lk), i.e., χ(X ⊓ Fk) →
χ(X ∩Lk) as a ↓ 0 (Ohser et al., 2002). Finally, when

replacing the expression χ(X∩Lk) in Eq. 4 with χ(X⊓
Fk) one gets

M(X)≈
m

∑
k=1

γkdk ∑
z∈⊥L2

k

χ
(
X ⊓ (Fk+ z)

)
. (6)

The right-hand side is a discretization of the Crofton

formula induced by the sampling of X on L3.

ALGORITHMIC IMPLEMENTATION

Our aim is now to present a factorization of the

estimator Eq. 6 in the form

M(X)≈ aqh ,

where the vector q depends on the kind of

discretization of the Crofton formula and h is the

vector of 2× 2× 2-pixel configurations in a binary

image with the foreground pixels X ∩L
3.

As in the previous section, we consider a 6-

adjacency system Fk on L
2
k generated from a

tessellation of the unit cell Ck of L
2
k into two triangles

Tk,1 and Tk,2. Then the system T = {T1,T2, . . .} of

all triangles belonging to Fk forms a face-to-face

tessellation of Lk, i.e., for i 6= j the intersection Ti∩Tj

is either an edge of Ti, a vertex of Ti or empty. Notice

that there are two possible tessellations ofCk. For each

index k we choose one of them arbitrarily.

0 1 · 16 2 · 16 −1 · 12 3 · 16 −3 · 12 +1

Fig. 1. A sketch of the computation for the local

contribution χ0(X ,T ) of X ⊓ F0(T ) to the Euler

number depending on the number of vertices of T

hitting X (full discs).

For each triangle T belonging to the tessellation
T we define F0(T ) =

⋃2
j=0F j(T ) and X ⊓F0(T ) =

⋃{F ∈ F0(T ) : F 0(F) ⊆ X}. Then the (local)
contribution χ0(X ,T ) of X ⊓ F0(T ) to the Euler
number can be expressed as

χ0(X ,T ) =
2

∑
j=0

(−1) j

(3− j)!
#F j(X ⊓F0(T )) (7)

=
1

6







1, if #(F 0(T )∩X) = 1,
−1, if #(F 0(T )∩X) = 2,
0, otherwise,

where the weights 1/(3− j)! in Eq. 7 are due to the
fact that each vertex of X ⊓F0(T ) hits 6 triangles of
T and each edge hits 2 triangles, see Fig. 1 for a
sketch. Notice that Eq. 7 is a special case of Eq. 3.10 in
Ohser and Schladitz (2009). Now, using the inclusion-
exclusion principle for additive functionals one can
prove the following lemma:

Lemma 2 Let T = {T1,T2, . . .} be the tessellation

of Lk generated from a 6-adjacency system Fk. Then

∑∞
i=1 χ0(K

′,Ti) = 1 for all compact and convex sets

K′ ⊂ Lk with the property that K′ ⊓ Fk is connected

and nonempty.

It follows that the Euler-Poincaré formula (Eq. 5)
can be rewritten as

χ(X ⊓Fk) = ∑
y∈L2

k

(
χ0(X − y,Tk,1)+χ0(X − y,Tk,2)

)
.

Furthermore, due to the local structure of this formula,
it is sufficient to consider pixel configurations. By
ξ0, . . . ,ξn−1 ⊆ {0,a}3 we denote the n = 255 local
configurations on L

3, where ξ c
l = {0,a}3 \ ξl is the

complementary configuration of ξl . The numbers hl of
occurrences of the ξl in the sampling X ∩L

3 are

hl = ∑
x∈L3

1(ξl + x⊆ X) ·1(ξ c
l + x⊆ Xc) ,

for ℓ= 0, . . . ,n−1. Let yk,i ∈R
3 be a translation of the

triangle Tk,i such that F 0(Tk,i + yk,i) ⊂ {0,a}3. With
the coefficients

pl(Tk,i) = χ0(ξl ,Tk,i+ yk,i) , i= 1,2 ,

and using the convention 0 ·∞ = 0, one obtains

∑
z∈⊥L2

k

χ
(
X ⊓ (Fk+ z)

)

= ∑
x∈L3

(
χ0(X − x,Tk,1)+χ0(X − x,Tk,2)

)

=
n−1

∑
l=0

(
pl(Tk,1)+ pl(Tk,2)

)
hl .
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Finally, we get

M̂(X) =
m

∑
k=1

γkdk
n−1

∑
l=0

(
pl(Tk,1)+ pl(Tk,2)

)
hl

= a
n−1

∑
l=0

qlhl , (8)

as an estimator of M(X) with the weights

ql =
1

a

m

∑
k=1

γkdk
(
pl(Tk,1)+ pl(Tk,2)

)
.

It is important to see that dk/a does not depend on a.
Eq. 8 shows that the integral of the mean curvature
M(X) of X can be estimated from the sampling X ∩L

3

as a scalar product qh of the vectors q = (ql) and
h = (hl) where q is independent of both the data and
the lattice distance a. Numerical values for the ql are
given in Table 1, where the pictograms (full disc for
foreground, empty disc for background) stand for the
representatives of the 22 equivalence classes of the
2× 2× 2-pixel configurations ξl . In this context, two
pixel configurations are said to be equivalent if there is
a rotation or a reflection such that one of them can be
transformed to the other.

Table 1. The weights ql for the estimation of

the integral of the mean curvature M of a set

X sampled on a homogeneous lattices L
3 = aZ3

(Ohser and Schladitz, 2009, p. 160).

conf. ql

0

0.589 849

0.727 768

0.616 231

0.686 796

0.446 035

0.425 548

0.334 497

0

0

0

conf. ql

0

0

0

– 0.334 497

– 0.425 548

– 0.446 035

– 0.686 796

– 0.616 231

– 0.727 768

– 0.589 849

0

The algorithmic core of estimating M(X) is the
computation of the vector h from the image data
by a marching-cube algorithm and, therefore, the
computation time is linear in the pixel number. The
computation time on an Intel Xeon 5 148 at 2.33GHz
is about 5.2 ·10−9 s per pixel.

ERRORS OF ESTIMATION

We consider asymptotic errors of estimating the
fiber length using the estimator Eq. 8 for vanishing

lattice distance, a → 0, and for a width of the fiber

cross sections much smaller than the fiber length. An

estimator ℓ̂(φ) of the length ℓ(φ) of the curve φ can be

deduced from Eq. 4,

ℓ̂(φ) =
1

π

m

∑
k=1

γkdk ∑
z∈⊥L2

k

χ
(
φ ∩ (Lk+ z)

)
.

First, we consider the particular case where φ is a

straight line of length ℓ(φ) = 1, direction θ ∈ S2+ and

having a random offset x0 uniformly distributed on the

unit cellC,

φ = {sθ : 0≤ s≤ 1}+ x0 .

Then it follows that

E ∑
z∈⊥L2

k

χ
(
φ ∩ (Lk+ z)

)
=

|θθk|
dk

,

where the expectation is taken with respect to the

distribution of the random offset x0. From Eq. 4 we get

the difference δ of the estimated and the true lengths

of φ ,

δ (θ) =
1

π

m

∑
k=1

γk|θθk|−1, θ ∈ S2+ .

This error is due to the approximation in Eq. 6, which

is asymptotically identical to the approximation in

Eq. 4, since χ(X ⊓ Fk) = χ(X ∩ Lk) for sufficiently

small a. Notice that
∫

S2+
|θθk|H 2(dθ) = π for all

θk ∈ S2+ which implies that
∫

S2+
δ (θ)H 2(dθ)= 0. This

means that in the isotropic case where θ is a random

direction uniformly distributed on S2+, the estimator

ℓ̂(φ) is unbiased for the fiber length ℓ(φ). Numerical

integration yields

var ℓ̂(φ) =
1

2π

∫

S2+

δ 2(θ)H 2(dθ) = 0.261875 ·10−3 ,

(as a ↓ 0) and thus the standard deviation of the

estimated length of φ is about 1.6%. Furthermore,

we have computed the minimum and maximum

differences

min
θ∈S2

δ (θ) =−7.34% , max
θ∈S2

δ (θ) = 2.28% .

The minimum is taken for directions parallel to

the edges of the unit cell C, which might be

disadvantageous for applications. For example, in

many fiber-reinforced materials such as carbon-fiber-

reinforced polymers (CRP) or glass-fiber-reinforced

polymers (GRP), the fibers are nearly parallel to the
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direction of the expected principal load, and for image

acquisition this direction is usually chosen as one of

the coordinate axes.

As a consequence of the above results, for each

curve φ of length ℓ(φ), the error of the estimator ℓ̂(φ)
is between −7.34% and 2.28%,

0.9266ℓ(φ)≤ ℓ̂(φ)≤ 1.0228ℓ(φ) .

The large error is a consequence of the rough

quadrature of the outer integral in Crofton’s

intersection formula (Eq. 1) induced by considering

2×2×2-pixel configurations ξl in binary images.

Let now Φβ be a random system of non-

overlapping curves, where the realizations are a. s.

locally finite unions of curves and β is a parameter

of its direction distribution. We assume that Φβ is

macroscopically homogeneous, i.e., the distribution of

Φβ is invariant with respect to translations. Then the

specific curve length ℓV of Φβ is defined as the mean

total length of curves in the unit cube, ℓV (Φβ ) =

Eℓ
(
Φβ ∩ [0,1]3

)
. We assume that ℓV (Φβ ) < ∞. The

specific curve length can be estimated using ℓ̂V =
ℓ(φβ ∩W )/|W |, whereW ⊂ R

3 is a closed and convex

window of volume |W |> 0.

✲

β

1

0

−1

−2

−3

−4

−5

−6

−7

✻

δ [%]

1 2 5 10 20 50 100 200

−7.33

— 2×2×2-pixel configs.
(13 directions)

−0.31

— 3×3×3-pixel configs.
(145 directions)

−2.09

— 3×3×3-pixel configs.
(49 directions)

Fig. 2. The relative systematic error δ of estimating

the specific curve length ℓV (Φβ ) of a macroscopically

homogeneous system Φβ of curves with the density fβ
of the direction distribution.

The direction distribution of Φβ is the distribution

of the curve direction θ(s) at the typical point s of Φβ .

Let

fβ (ϑ ,ϕ) =
1

2π

β sinϑ
(
1+(β 2−1)cos2 ϑ

)3/2
, β ≥ 0

be a class of probability density functions of

the direction distribution, where the direction θ =
(sinϑ cosϕ,sinϑ sinϕ,cosϑ) is given in spherical

polar coordinates, i.e., ϑ and ϕ are the altitude and

the longitude, respectively (Schladitz et al., 2006b;

Ohser et al., 2009, sec. 7.5.2). It is easy to see that

for β = 1 the fiber directions are uniformly distributed

on S2+ (isotropy), for β → 0 the curves tend to be

straight and parallel to the z-axis, and for β → ∞
the fiber directions are uniformly distributed on the

positive unit half-circle in the xy-plane. Notice that

β ' 0 for glass fiber systems in GRP, and β ≫ 1 for

cellulose fiber systems in paper. The systematic error

of estimating the specific curve length is Eℓ̂V (Φβ )−
ℓV (Φβ ) and the relative systematic error of ℓ̂V is δ :=

Eℓ̂V (Φβ )/ℓV (Φβ )−1. Fig. 2 (red curve) shows δ as a

function of the anisotropy parameter β .

IMPROVED ESTIMATION

In this section we will show that the estimation

of the fiber length can considerably be improved by

a finer discretization of the outer integral of Eq. 1. For

this purpose we consider the 3× 3× 3- instead of the

2× 2× 2-pixel configurations of 3D images, i.e., the

set {0,a}3 is now replaced with {0,a,2a}3.

Fig. 3. A sketch for the shift of the triangles Tk,i. One

of the vertices of the unit cell Ck does not belong to the

set {0,a,2a}3 (left). Hence, Ck is tessellated into two

triangles (bold). The upper triangle is shifted (right) in

order to compute the Euler number locally.

SELECTION OF 145 SUBSPACES

We consider linear subspaces Lk ∈ L 2 for which a

translation yk ∈ {0,a,2a}3 exists such that Lk+ yk hits

at least three affinely independent points of {0,a,2a}3.
It turns out that the number of subspaces Lk with
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pairwise different normal directions θk increases from
m= 13 to m= 145.

For all section lattices L2
k , the basis vectors uk and

vk of the section lattice L
2
k = L

3 ∩ Lk can be chosen

such that there is a tessellation of the unit cellCk of L
2
k

into triangles Tk,1 and Tk,2 and there are translations

yk,i ∈ R
3 with F 0(Tk,i + yk,i) ⊂ {0,a,2a}3, i = 1,2.

Let Fk be a 6-adjacency system of L2
k generated by

the tessellation of Ck into the triangles Tk,1 and Tk,2
(Fig. 3). Then the integral of the mean curvatureM(X)
of the set X can be estimated using the right-hand side
of Eq. 6 but with m= 145.

As a consequence of the discretization of the
outer integral with respect to the section planes
L1, . . . ,L145, the asymptotic error for the estimator ℓ̂(φ)
is reduced considerably. For a segment φ of length 1,
random direction θ uniformly distributed on S2+ and

random offset uniformly distributed on [0,a]3 we get

var ℓ̂(φ) = 0.021381 ·10−3, i.e., the standard deviation
is about 0.46%. Furthermore, for a curve φ with
random offset it follows,

0.9872ℓ(φ)≤ ℓ̂(φ)≤ 1.0119ℓ(φ) ,

and thus the error is now between−1.28% and 1.19%.
Finally, we remark that in the case of parallel straight
fibers, neither the minimal nor the maximum error
is taken for a fiber direction equal to that of one of
the coordinate axes. The relative systematic error δ
of estimating the specific curve length ℓV (Φβ ) of a
macroscopically homogeneous system Φβ of curves is
shown in Fig. 2 (blue). Notice that the error vanishes
for β → ∞.

It should be noted that most translations yk,i are not
uniquely determined. This means that the coefficients
ql depend on specific choices for the yk,i, but the

estimator M̂(X) is independent of the yk,i.

The step from the 2 × 2 × 2-pixel to the 3 ×
3× 3-pixel configurations involves a huge increase
of the configurations’ number from 28 to 227. This
has consequences for the algorithmic implementation.
It does not seem very reasonable to follow the
algorithmic approach based on Eq. 8 which needs to
allocate memory space for q and h. Alternatively, it is
suggested to compute the vector g= (gk) with

gk = ∑
x∈L3

2

∑
i=1

χ0(X − x,Tk,i+ yk,i) , (9)

for k = 1, . . . ,m. Using this, one obtains an estimate of
the integral of the mean curvature from

M̂(X) =
m

∑
k=1

γkdkgk . (10)

Obviously, the computation of the vector g from 3D

image data is more time consuming than that of h. This

is the price we have to pay. Nevertheless, the algorithm

based on Eq. 10 is linear in the pixel number, too. The

runtime of the algorithm on an Intel Xeon 5 148 at 2.33

GHz is about 0.125 ·10−6 s per pixel.

Notice that the measure M(X) is concentrated

on the surface of the set X . This means, that

only those pixels y ∈ L
3 with 0 < #

(
(X − y) ∩

{0,a,2a}3
)
< 27 contribute to M̂(X). When taking

this into consideration, the runtime of the algorithm is

linear in the number of surface pixels of the image.

This can lead to further speeding-up of the algorithmic

computing of M̂(X). For example, the typical volume

fraction of the fibers in CRP and GRP is 20%. If the

fiber diameter is larger than 10 pixels, then at most

20% of the pixels are surface pixels, i.e., the maximum

computation time is 0.025 ·10−6 s per pixel.

SELECTION OF 49 SUBSPACES

Finally, we remark that the scattering of the

directions θk on S2+ is not very uniform, even

when computing the outer integral of Eq. 1 based

on the discrete set {L1, . . . ,L145} of section planes

(i.e., induced by the 3× 3× 3-pixel configurations).

Therefore, the question is as follows: Is it possible

to select a subset of planes L′1, . . . ,L
′
m without a

substantial loss of accuracy of the estimator ℓ̂(φ)? For
example, we chose all planes L′k from {L1, . . . ,L145}
with the normal directions θ ′

k = ϕk − ϑk ∈ S2+ and

ϕk,ϑk ∈ {0,a,2a}3. There exist only m = 49 section

planes L′k with pairwise different θ ′
k. The θ ′

k are

scattered ‘more uniformly’ on S2+ than the θk.
Therefore, there is only a slight loss of accuracy of the

estimator ℓ̂(φ) obtained from a discretization of Eq. 1

with respect to L′1, . . . ,L
′
49,

0.9791ℓ(φ)≤ ℓ̂(φ)≤ 1.0135ℓ(φ) ,

i.e., the error ranges from −2.09% to 1.35%.

On the other hand, the runtime of an algorithm

computing M̂(X) is reduced considerably (by about

1/3). The relative systematic error δ of estimating

the specific curve length ℓV (Φβ ) of a macroscopically

homogeneous system Φβ of curves is shown in Fig. 2

(green).

OPTIMAL CHOICE OF THE γk

Until now, the weights γk for the quadrature rule

for computing the outer integral of the Crofton formula

(Eq. 1) are chosen more or less empirically as the
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Voronoi areas. But are these weights really the best

ones? As above, let φ be a segment of length 1, a

direction θ uniformly distributed on S2+ and with an

offset x0 uniformly distributed in C. Then optimal

weights γk can be defined as those values that minimize

the variance

var ℓ̂(φ) =

1

2π3

m

∑
j=1

m

∑
k=1

γ jγk

∫

S2+

|θθ j| |θθk|H 2(dθ)−1 , (11)

subject to the normalization constraint. In other words,

we are solving the system

var ℓ̂(φ) → min
m

∑
i=1

γi = 2π






. (12)

This can be done by applying the Lagrange multiplier

method. Define

Λ(γ,λ ) = var ℓ̂(φ)+λ
( m

∑
i=1

γi−2π
)

,

then solving Eq. 12 is equivalent to solving

∇γ,λ Λ(γ,λ ) = 0 ,

that is

∂

∂γ1
var ℓ̂(φ)+λ = 0

...
∂

∂γm
var ℓ̂(φ)+λ = 0

m

∑
i=1

γi = 2π







. (13)

It holds

∂

∂γℓ
var ℓ̂(φ) =

∂

∂γℓ

m

∑
j=1

m

∑
k=1

γ jγka jk = 2
m

∑
k=1

γkaℓk ,

where the coefficients

a jk =
1

2π3

∫

S2+

|θθ j| |θθk|H 2(dθ), j,k = 1, . . . ,m

are computed numerically. Using this, Eq. 13 is

forming the linear equation system







2a11 · · · 2a1m 1
...

. . .
...

...

2am1 · · · 2amm 1

1 · · · 1 0













γ1
...

γm
λ







=







0
...

0

2π







for the unknown vector (γ1, . . . ,γm,λ ).

Numerical values of the optimal γk for the
particular case m = 13 are γk = 0.584340 for the
directions of the edges of C, γk = 0.474428 for the
directions of the face diagonals, and γk = 0.420899
for the directions of the space diagonals. Clearly,
the corresponding minimum variance var ℓ̂(φ) =
0.260182 is smaller than that for the Voronoi areas.
Nonetheless, the results presented in Table 2 are
ambiguous: the estimation variances are reduced only
slightly, while the lower bounds of the estimates
decrease. Thus, we think that for 2 × 2 × 2-pixel
configurations the Voronoi areas are close to optimum.

Table 2. Numerical values of the variance var ℓ̂(φ) and
the relative deviations minδ (θ) and maxδ (θ) for the
optimal weights (bold face) as well as for the Voronoi

areas (normal font).

pixel m var ℓ̂(φ) minδ (θ) maxδ (θ)
configs. ·10−3 [%] [%]

2×2×2 13 0.260 182 – 7.74 2.24

0.261 871 – 7.34 2.28

3×3×3 145 0.006 189 – 1.76 0.39

0.021 381 – 1.28 1.19

3×3×3 49 0.015 572 – 3.26 0.73

0.037 577 – 2.09 1.35

For 3×3×3-pixel configurations one sees again a
decrease in all three numbers (in both cases m = 145
and m = 49), which is now much more pronounced.
This indicates that in these cases the Voronoi areas are
far from the optimum. The reason for the decrease in
the minimum in all three cases is not clear.

DISCUSSION

The approximation of χ(X ∩ Lk) with χ(X ⊓
Fk) used in the right-hand side of Eq. 6 depends
on the lateral resolution of the image. But under
which conditions for X is the approximation good
enough? The following sufficient condition is given
in Ohser et al. (2002): If the set X is morphologically
open as well as morphologically closed with respect
to all elements of the adjacency system Fk, then
χ(X ∩ Lk) = χ(X ⊓Fk), i = 1, . . . ,m. Of course, this
condition is very strong and never fulfilled in practical
applications. For systems Ψ of slightly curved
fibers, however, it is sufficient to suppose that the
fibers’ thickness and spacing are large enough. More
precisely, there must be a lower bound ρ > 0 such
that K is morphologically open with respect to Bρ , and
the minimum distance between neighboring fibers is
larger than ρ , with ρ =

√
3a if the discretization of the

53



OHSER J ET AL: Improved estimation of fiber length

Crofton formula (Eq. 1) is induced by the 2× 2× 2-

pixel configurations, and ρ = 2
√
3a for 3× 3× 3.

This means that the lateral resolution decreases for

increasing angular resolution (increasing m), and vice

versa. Obviously, it is necessary to find a balance

between high lateral and high angular resolution. In

cases of (approximately) isotropic fiber systemsΨ , the

systematic error ofM(Ψ) is independent of the number

m of the section planes Lk and, hence, it is sufficient

to estimate the fiber length based on the 2× 2× 2-

pixel configurations. In the contrary case, for strongly

anisotropic fiber systems it is necessary to scan the

3D image at a suitably high lateral resolution (small

a), which allows to explore local knowledge from the

3×3×3-pixel configurations.

We recall that the basis vectors uk and vk of the

section lattices Lk are not uniquely defined by the rule

formulated in Lemma 1. Their lengths ‖uk‖ and ‖vk‖
determine the lateral resolution of estimating the Euler

number χ(X ∩Lk). Thus, for further reducing the error
resulting from the approximation of χ(X ∩ Lk) with

χ(X ⊓Fk), the basis vectors uk and vk of the section

lattice Lk should be chosen such that the spectral norm

of the matrix (uk,vk) is minimal, where the minimum

is taken over all possible choices of the lattice basis.

Let R be the direction distribution function of a

macroscopically homogeneous system Φ of curves,

and letW ⊂ R
3 be a compact window with nonempty

interior. The quantity

pV (L) = lim
ρ→∞

Ep(Φ ∩ρW,L)

|ρW | , L ∈ L
2 ,

(known as the rose of intersections of Φ) is the cosine

transform of R, that is pV (L) = ℓV
∫

S2+
|uLθ |R(dθ),

where uL is the normal vector of the section plane

L. Vice versa, if R has a continuous differentiable

density, this density is the inverse cosine transform

of pV (L) (Mecke and Nagel, 1980). For a set of

subspaces L1, . . . ,Lm, the rose of intersections pV (L)
can be estimated by pV (L) ≈ dkgk/|W |, where in

Eq. 9 the set X is replaced with a realization of

Ψ ∩W of the fiber system Ψ observed through a

window W . Discrete versions of the inverse cosine

transform can be based on a series expansion of pV
using spherical harmonics (Ohser and Schladitz, 2009,

sec. 5.4.1). A numerically stable version of the inverse

cosine transform is presented in Louis et al. (2011),

which works well if m is large enough.
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Mrkvička T, Rataj J (2008). On the estimation of intrinsic

volume densities of stationary random closed sets.

Stochastic Proc Appl 118:213–31.
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