
Image Anal Stereol 2013;32:77-87 doi:10.5566/ias.v32.p77-87
Original Research Paper

CHARACTERIZATION OF THE FORMATION OF FILTER PAPER USING

THE BARTLETT SPECTRUM OF THE FIBER STRUCTURE
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ABSTRACT

The formation index of filter paper is one of the most important characteristics used in industrial quality
control. Its estimation is often based on subjective comparison chart rating or, more objective, on the power
spectrum of the paper structure observed on a transmission light table. It is shown that paper formation
can be modeled by means of Gaussian random fields with a well-defined class of correlation functions, and
a formation index which is derived from the density of the Bartlett spectrum estimated from image data:
the mean of the Bessel transform of the correlation function taken for wave lengths between 2 and 5mm.
Furthermore, it is shown that a considerable variation of the local grammage can be observed also in cases
where the the fibers are uniformly and independently scattered in the paper sheet.
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INTRODUCTION

Filter papers are used in a wide variety of
fields, ranging from air to oil filters (Durst et al.,
2007). They consist of fibers, which are more or
less randomly distributed. Except the specific paper
weight (i.e., the weight per unit area, also called
the nominal grammage), the weight distribution is a
very important characteristic of paper. It influences
many properties of filter papers such as flow rate,
particle collection, efficiency, wet strength, porosity
and dust holding capability. Thus, characterization
of the weight distribution is important for industrial
quality control as well as for the development of new
filter materials and technologies of manufacture.

It is easy to get an impression of the weight
distribution when holding a sheet of paper up
against light and observing the distribution of the
optical density, known as the paper formation, chart
cloudiness or flocculation. Assuming a constant
absorption coefficient for the solid constituents of the
paper structure, the local intensity of the transmitted
light can be related to the local weight density by
Lambert-Beer’s law. As a consequence, there is a close
relationship between weight distribution and formation
and, in fact, often one does not distinguish between
both. See Van den Akker (1949), McDonald et al.

(1986) and Lien and Liu (2006) for the computation
of the grammage from the absorption of visible
light. The use of soft X-radiation is suggested in

Farrington (1988), and the influence of the choice
of radiation on transmittance is investigated for
nonwoven fabrics in Boeckerman (1992) and for paper
in Norman and Wahren (1976) and Bergeron et al.

(1988).

Usually, the formation is experimentally
determined based on two-dimensional (2D) images
of the paper structure. A transmission light table is
used in order to ensure a homogeneous illumination
and the images are acquired by a CCD-camera having
a linear transfer function, such that the pixel values
can be assumed to be approximately proportional to
the corresponding local intensities. In the simplest
case, a paper structure inspection can be based on
subjective comparison chart rating, supported by an
industrial standard consisting on well-formulated rules
for image acquisition and rating. Nevertheless, the
valid industrial norm on paper, board, pulps and
related terms gives only a rough description of the
terms ‘formation’ (manner in which the fibers are
distributed, disposed and intermixed to constitute
the paper) and ‘lock-through’ (structural appearance
of a sheet of paper observed in diffuse transmitted
light), ISO 4046(E/F), 2012. Inspection systems based
on image analysis include computation of a (more
or less objective) value for a ‘formation index’ (or
a ‘formation number’) from the image data. One
should keep in mind that such a formation index
estimated from image data is (widely) independent of
the nominal grammage as well as on the variance of the
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local paper weight. But what is exactly meant by the
‘formation index’, and is it sufficient to characterize
paper formation by only one number?

There is a huge number of publications on the
characterization of paper formation (Kallmes, 1984;
Cresson, 1988; Cherkassky, 1999; Drouin et al.,
2001), see also Waterhouse et al. (1991) and
Praast and Göttsching (1991) for a very good
survey on literature from the late 1980th and
Chinga-Carrasco (2009) for newer developments. An
intuitive characteristic for the formation is the mean
paper flock size, going back to Robertson (1956),
but until now there is no convincing method for
segmenting flocks in gray-tone images. More useful
methods are based on measuring the variance of the
pixel values or, more general, the co-occurrence matrix
of the image data (Yuhara et al., 1986; Cresson, 1988;
Cresson and Luner, 1990a;b). The approach presented
in Pourdeyhimi and Kohel (2002) is motivated by
a Poisson statistics for the centers of paper flocks
(objects). On the one hand, these centers cannot safely
be detected and, on the other hand, the computation of
the ‘uniformity intex’ of the paper formation is based
on the variation of the area fraction in a binarized
image but even not on the flock centers.

In the carefully written monograph of
Deng and Dodson (1994) a formation number n =
varr/var0 is defined as ratio of variances varr and var0
of integrated local grammage, where the integration is
over a square of edge length 1mm. In this approach,
varr is the variance for the real structure and var0 is
the variance for a reference model (a Boolean segment
process). This approach goes back to earlier works,
e.g. Norman and Wahren (1974) and is frequently
cited also in current literature, e.g., Sampson (2009).
A similar approach is used in Farnood et al. (1995),
where the fluctuation of the local grammage is
modeled as a Poisson shot noise process (or a dilution
model) of sperical flocks. I’Anson and Sampson
(2003) discussed the relationship between Farnood’s
flocculation characteristic and the spectral density of
paper formation.

Since woven textiles have a (more or less)
periodic pattern, it seems to be obvious to apply
Fourier methods for quality inspection, see e.g.,
Wang et al. (2011) and references therein, where
slight deviations from the periodicity are detected
based on the correlation function of the pattern
or, analogously, its counterpart in the inverse
space – the so-called power spectrum. The use of
Fourier transform for an identification of periodic
patterns in paper and board traces back to I’Anson
(1995). In Sara (1978), Norman (1986), Cresson
(1988), Provatas et al. (1996), Cherkassky (1998) and

Lien and Liu (2006), the correlation function and the
power spectrum are also suggested as characteristics
for cloudiness of (non-periodic but macroscopically
homogeneous) nonwovens and paper formation,
respectively (Section 2.2 in Alava and Niskanen,
2006). Sometimes the range of interaction , i.e.,
integral of the correlation function (also known as the
integral range), is used as a formation index. Instead of
a Fourier transform, Scharcanski (2006) uses a wavelet
transform to extract a spectral density from the sheet
formation.

Fig. 1. An image showing the formation of a filter

paper (left) and a realization of a macroscopically

homogeneous and isotropic GRF (right) with k(x) =

e−λ‖x‖ and λ = 0.6 mm−1; the edge length of the

images 102.4mm.

Mathematical modeling of paper structure on
a mesoscale can lead to a deeper understanding,
e.g., of the phenomenon of formation (Cresson,
1988; Cherkassky, 1998; Antoine, 2000;
Gregersen and Niskanen, 2000; Provatas et al., 2000;
Sampson, 2009), where the model parameters – so
far they can easily be estimated from image data –
serve as formation characteristics. Further approaches
are based on modeling random structures by Markow

Random Fields (MRF) and decomposing the image
of the structure into “different scales”, evaluating the
degree of homogeneity on each scale and computing
an overall degree of homogeneity. Scholz and Claus
(1999) applied this approach originally on the structure
of nonwovens (fleeces and felts), but in principle this
works also for the evaluation of paper structures, where
the degree of homogeneity can be seen as a formation
index. Notice that the “different scales” mentioned
above are also known as the Laplacian pyramid of
image data (Burt and Adelson, 1983).

In the present article we use Gaussian Random

Fields (GRFs) for modeling paper formation and,
following the suggestion made in Xu (1996) and
Lien and Liu (2006), a Fourier approach is applied
for computing characteristics of paper formation.
More precisely, we show that the formation of
the investigated filter papers can be characterized
by the density of the Bartlett spectrum, i.e., a
spectral representation of the correlation function,
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which can be estimated by the method of Koch et al.

(2003). Using a parametric approach for the Bartlett
spectrum, we introduce one of its parameters as a
characteristic for paper formation. Nevertheless, to be
independent of the fitting of a theoretical function
to the experimental data, the formation index is
determined directly from estimates of the spectral
density.

Finally, it is shown by an example that the
spectral density of the paper structure can contain
high fractions of long waves even if no flocculation
occurs, i.e., the fibers are uniformly and independently
scattered in the paper sheet.

MODELING PAPER FORMATION

BY GAUSSIAN RANDOM FIELDS

Visual inspection of Fig. 1 shows that the
formation of filter paper is surely one of the most
convincing applications for GRFs. The difference
among the real structure on the left-hand side and the
realization on the right-hand side, which is obtained
from the adapted GRF, can be recognized only by
experts. This is very important since, if formation can
really be modelled by GRFs, then the Bartlett spectrum
of a GRF uniquely specifies formation.

Fig. 2. Realizations of macroscopically homogeneous

and isotropic GFRs for constant µ and σ2 and

exponential correlation function k(x) = e−λ‖x‖ with

parameters λ = 0.1mm−1, . . . , λ = 0.4 mm−1,

lexicographic order. The edge length of the images is

102.4mm.

As it is well known, a random field Φ(x) is
a 2-dimensional, real-valued random function. The
function Φ(x) is called macroscopically homogeneous
(or stationary in the strict sense), if Φ(x) is invariant
with respect to translations, i.e., its finite-dimensional
distributions are translation invariant. Furthermore,
Φ(x) is said to be isotropic, if it is invariant with
respect to rotations around the origin. Finally, a
random field Φ(x) is a Gaussian Random Field

(GRF) if all its finite-dimensional distributions are
multivariate normal distributions (see, e.g., Adler,
1981; Abrahamsen, 1985 and Adler and Taylor, 2007
for introductions to GRFs).

A macroscopically homogeneous GRF Φ(x) is
uniquely specified by its mean µ =EΦ(x), its variance
σ2 = EΦ2(x)−µ2, and the covariance function

cov(x) = E
(

(Φ(y)−µ)(Φ(y+ x)−µ)
)

, x ∈ R
2 ,

which is independent of y ∈ R
2 and positiv definite.

The normalized function k(x) = cov(x)/σ2 is known
as the (auto-) correlation function. The expectation µ
is the first order characteristic of Φ(x) while σ2 and
k are second order characteristics. All higher order
characteristics depend only on µ , σ and k. This is a
direct consequence of the Gaussianity (Abrahamsen,
1985), which means that our attention can be payed
exclusively on the first and second order characteristics
and their estimation.

Four realizations of GRFs Φλ (x) with an

exponential correlation function k(x) = e−λ‖x‖, x ∈
R
2, are shown in Fig. 2. It turns out that the

distributional properties of Φλ (x) distinguish by the

positive scaling parameter, i.e., it holds Φλ (x)
d
=

Φ1(λx), and realizations of Φλ (x) can be obtained
from realizations of Φ1(x) by scaling.

If a GRF is well adapted to the image data
of a paper structure, then the interpretation of its
characteristics µ , σ2 and k is as follows: The mean µ is
the brightness, σ corresponds to the image dynamics,
and k is the correlation function of the pixel values.
Under some technical conditions (using of a CCD
camera allowing photometric measurements, high
gray-tone resolution, constant gain, etc.), assuming
Lambert-Beer’s law for light absorption and knowing
the initial light intensity, the nominal paper grammage
and the weight variance can roughly be estimated
from µ and σ2, respectively. As a consequence,
the correlation function k characterizes the paper
formation uniquely. Fig. 3 shows realizations of two
GRFs with the same µ and k but different σ . One
feels subjectively that the formation is the same in both
images.
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Fig. 3. Realizations of two macroscopically

homogeneous and isotropic GRFs with constant

µ and k(x) = e−λ‖x‖ with λ = 0.5mm−1; left: small

σ , right: larg σ . The edge length of the images is

102.4mm.

Finally, we remark that in the isotropic case the
correlation function k depends on only the radial
coordinate r = ‖x‖ of x, i.e., there is a function
k1 such that k(x) = k1(‖x‖) = k1(r). Clearly, the
exponential correlation function mentioned above is
such a function.

THE SPECTRAL

REPRESENTATION OF THE

CORRELATION FUNCTION

First of all, we recall Bochner’s theorem which
states that the covariance function cov = σ2k of a
macroscopically homogeneous random field Φ(x) can
be represented by a non-negative, bounded measure
ΓΦ – the so-called spectral measure or the Bartlett
spectrum of Φ(x). A proof is given e.g., in Katznelson
(2004), p. 170. This important theoretical result is
also useful in applications, since efficient Monte Carlo
techniques of generating realizations of GRFs as well
as fast algorithms for estimating their second order
characteristics are based on spectral representations. In
this article we restrict ourselves to the particular cases
in which the Bartlett spectrum ΓΦ has a density γΦ,
which is also known as the spectral density of Φ(x). If
k̂ denotes the Fourier transform of k, then γΦ = σ2k̂. In
the usual setting, k and k̂ are related to each other by

k̂(ξ ) =
1

2π

∫

R2
k(x)e−ixξ dx , ξ ∈ R

2 , (1)

and vice versa

k(x) =
1

2π

∫

R2
k̂(ξ )eixξ dξ , x ∈ R

2 . (2)

For short, we use the symbolsF and F̄ for the Fourier
transform and its co-transform, which allows to rewrite
k̂ = F k and k = F̄ k̂.

In isotropic case k̂ depends only on the
corresponding radial coordinate ρ = ‖ξ‖, and k̂1(ρ) =
k̂(ξ ) is the Fourier-Bessel transform of k1(r),

k̂1(ρ) =
1

2π

∞
∫

0

r k1(r)J0(rρ)dr , ρ ≥ 0 , (3)

where J0 is the Bessel function of the first kind
of order 0. It is well known that the Fourier-Bessel
transform of the exponential correlation function is

k̂1(ρ) =

√

2

π

λ

(λ 2+ρ2)3/2
, ρ ≥ 0 . (4)

Graphs of this function are shown in Figs. 7 to 9 (red
curves).

To be more flexible in modeling and characterizing
paper formation, we introduce a generalized version of
the exponential correlation function which depends on
an additional positive parameter: the modified Bessel
correlation function which is defined as

k1(r) =
(λ r)ν

2ν−1 Γ(ν)
Kν(λ r) , r ≥ 0 , (5)

where Γ denotes Euler’s Γ-function and Kν is the
modified Bessel function of second kind of order ν .
It is also here k1(r) → 1 as r ↓ 0, and for ν = 1/2
the exponential correlation function is obtained. The
spectral density of the modified Bessel correlation
function is

k̂1(ρ) =
1

2ν−1 Γ(ν)

λ 2ν

(λ 2+ρ2)ν+1
, ρ ≥ 0 , (6)

(Yaglom, 1986, p. 368).

A GEOMETRIC INTERPRETATION

Bochner’s theorem states that a spectral
representation exists for every continuous, positive
definite function, i.e., also for functions which are
not necessarily covariance functions of GRFs. To
give an example, we consider a macroscopically
homogeneous and isotropic 2D Boolean model Ξ
with identically distributed and pairwise independent
random segments (Stoyan et al., 1995). In fact,
Boolean segment processes may serve as models for
fiber systems of paper, where the fibers are ‘scattered
independently and uniformly’ in the paper sheet. For
example, Deng and Dodson (1994) and Provatas et al.
(2000) used a Boolean segment processes for modeling
fiber deposition.
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Fig. 4. A realization of an isotropic Boolean model

with segments of uniformly distributed directions and

exponentially distributed lengths, 1/α = 2 mm, NA =
10 mm−2; image size 20× 14.1mm2.

In the following we assume that the length of
the segments is exponentially distributed with the
parameter α , see Fig. 4 for a realization. Then the
Boolean model Ξ is uniquely characterized by the
parameter α of the exponential distribution and the
specific line length LA, i.e., the mean of the total
segment length per unit area. Notice that 1/α is the
mean fiber length, and NA = αLA is the mean number
of fibers per unit area. Then

g(r) = 1+
α

NAπr
e−αr, r > 0 ,

is the so-called pair correlation function of Ξ, defined
as the density of the reduced second moment measure
which is associated with random length measure
L of Ξ. An explanation and a general formula of
the reduced second moment measure K of Boolean
segment processes is given in Stoyan et al. (1995),
p. 186.

In order to obtain a GRF from the Boolean segment
process, Ξ is smoothed with a kernel function. Let
κ : R2 7→ R be a non-negative and bounded kernel
function with

∫

R2 κ(x)dx = 1. By κ∗(x) = κ(−x) we
denote the reflection of κ , and κ ∗ f is the convolution
of the a functions with the kernel κ . Furthermore, let
u : R 7→ R

2 be an arclength parametrization of a finite
immersed curve ϕ in R

2, that is ϕ = {u(s) : 0 ≤ s ≤
ℓ}, where u is twice continuously differentiable and
ℓ is the curve length. Similar to the convolution of
functions we consider the convolution of a function
with a measure (in our case the length measure
associated with ϕ), where the convolution ϕ ∗ κ may
be defined as

(

ϕ ∗κ
)

(x) =

ℓ
∫

0

κ
(

x−u(s)
)

ds , x ∈ R
2 ,

(Katznelson, 2004). Then Ψ(x) =
(

Ξ ∗ κ
)

(x) is
a macroscopically homogeneous random field with
EΨ(x) = LA, but Ψ(x) is of course not a GRF. (The
random field Ψ(x) forms a Poisson shot noise process
with respect to a random response function, Matérn,
1986, p. 31.)

If we choose κ such that it decreases sufficiently
fast as ‖x‖ → ∞, then from the central limit theorem
(CLT) it follows that

Φ(x) = lim
NA→∞

1

NA

(

Ξ∗κ −LA
)

(x) , x ∈ R
2 , (7)

forms a GRF with µ = 0 (Lane, 1984). The covariance
function of Φ(x) is cov(x) = α2

(

(κ ∗ κ∗) ∗ h
)

(x),
where h(x) = g(‖x‖)−1.

Let now {κε}ε>0 be a family of non-negative
kernel functions of bounded support, κε(x) = 0 for

‖x‖ ≤ 1
ε . Then it follows that cov(x)→ σ2h(x) as ε ↓ 0

for all x ∈ R
2.

In the line with the above, we are setting h1(r) =
g(r) − 1 and call h1 the correlation function of
the Boolean model Ξ. It holds that h1(r) → ∞
as r ↓ 0, i.e., h1(r) is not a correlation function
of a GRF. Nonetheless, the covariance measure
corresponding to h1(r) is positive definite (Section
6.4 in Ohser and Schladitz, 2009) and, therefore, from
Bochner’s theorem it follows that there exists a Bartlett
spectrum of Ξ. Moreover, the Bartlett spectrum has a
density, i.e., the Bessel transform

ĥ1(ρ) =
1

πNA

α
√

α2+ρ2
, ρ ≥ 0

of h1 exists, which is, up to a constant factor, the same
as k̂1 given in Eq. 6 for ν = −1

2 . This is surprising,
since the curve shape of h1 basically differs from that
of k1 given in Eg. 5, where the parameter α plays the
same role as the patameter λ of the Bessel correlation
function.

In other words, the GRF Φ(x) constructed by Eq. 7
inherits the second order properties of the Boolean
model Ξ. This shows that there is a close relationship
between ‘independent and uniform scattering’ of fibers
in the plane (observable on a microscale) and paper
formation (observable on a mesoscale), where the
fiber mean length 1/α corresponds to the formation
index. However, ‘independent and uniform scattering’
of fibers means that there is no tendency to form
fiber clusters (flocks) induced e.g., by adhesion.
Nevertheless, a significant formation is observable
even if the fibers are ‘independently and uniformly
scattered’, see Fig. 5 for an example.
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Fig. 5. A realization of a GRF based on an isotropic

Boolean model with segments of exponentially

distributed lengths, 1/α = 2 mm, where the smoothing

kernel κ is the probability density of the isotropic 2D

Gauss distribution with σ = 0.02mm. The width of the

image is 102.4mm.

Finally we remark, that the geometric model for
the fiber structure introduced above is neither the
only possible nor the most simplest one. In particular,
in Deng and Dodson (1994) one can find suggestions
for more realistic distributions of the fiber length.
However, the above model useful to derive a closed
relationship between the fiber structure and the paper
formation without any assumptions on flocculation.

MONTE CARLO SIMULATION

We follow the spectral approach developed
by Shinozuka and Jan (1972) and others where
realizations of a GRF are generated in the following
two steps:

1. Let u be a random number uniformly distributed
on the interval [0,1], and let v be a random vector
distributed with respect to the probability measure
ΓΦ/2π on R2. If u and v are independent, then

Ψx =
√
2cos(2πu+ vx) , x ∈ R

2 ,

forms a macroscopically homogeneous and
isotropic random field with mean µ = 0, variance
σ2 = 1 and correlation function k.

2. Let now Ψ
(1)
x , . . . ,Ψ

(m)
x are mutually independent

and identically distributed random fields with µ =
0, σ2 = 1 and k. Define

φ
(m)
x =

1√
m

m

∑
i=1

Ψ
(i)
x , x ∈ R

2 .

Then the CLT it yields that

Φ(x) = σ lim
m→∞

φ
(m)
x +µ , x ∈ R

2 ,

is a macroscopically homogeneous and isotropic
GRF with µ , σ2 and k.

Further details and an overview of alternative
approaches are given in Lantuéjoul (2002).

But how large must m be such that φ
(m)
x can be

accepted as a realization of Φ(x)? The usual way
for a suitable choice of m is based on the Berry-
Esseen inequality (Korolev and Shevtsova, 2010). For
the realizations of the GRFs shown in Figs. 1 to 3
the number m was empirically chosen as m = 4096,
which surely is large enough as k̂(ρ) vanishes rapidly
at infinity, see also the remark in Lantuéjoul (2002),
p. 192.

ESTIMATION OF k̂

In this section we assume that the Bartlett spectrum
ΓΦ of the observed random field Φ(x) has a density. We
start from an observation of the normalized random
field f (x) = (Φ(x) − µ)/σ having the expectation
0 and the variance 1. In applications the field f is
observed through a compact window W ⊂ R

2 with
the indicator function 1W defined as 1W (x) = 1 if
x ∈W and 1W (x) = 0 otherwise. This means that the
masked function fW (x) = f (x) · 1W (x) is considered.
One should keep in the mind that the image data
can be seen as a realization of fW , where W is the
(rectangular) image frame. Furthermore, we introduce
a window function cW of W defined as the auto-
correlation function of the function 1W , cW = 1W ∗1∗W ,
called the set covariance in Stoyan et al. (1995).

The function cW is bounded and of bounded
support, and thus its Fourier transform ĉW exists. From
the Wiener-Khintchine theorem it follows that F (cW ·
k) = 2π E| f̂W |2. The power spectrum E| f̂W |2 of fW is
integrable, and hence the inverse Fourier transform F̄
can be applied, which yields

cW · k = 2π F̄
(

E| f̂W |2
)

.

Assume now that the origin belongs toW . Then cW is
positive for all x belonging to the interior ofW , and it
follows that

2π F̄
(

| fW |2
)

(x)

cW (x)
(8)

is an unbiased estimator of k(x) for all x in the interior
ofW .

In the isotropic case the rotation average of an
estimation of k can be performed (rotation around
the origin), which gives an estimation of the radial
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function k1. This leads to an estimation of the density
k̂1 of the Bartlett-Spectrum using the 1-dimensional
Fourier-Bessel transform as defined by Eq. 3.

An overview of the whole estimation procedure is
given in Fig. 6. Clearly, kcW can also be computed by
auto-correlation (red marked path in Fig. 6).

❄

❄

✲

✲

✛

❄

F

Fourier transform

F̄

inverse Fourier
transform

Fourier-Bessel
transform

f ·1W
1W

k · cW
cW

k1

2π f̂ ∗ 1̂W
1̂W

2π E| f̂W |2
|1̂W |2

k̂1

∗∗

/cW
rotation mean

E, | · |2

Fig. 6. Scheme of the computation of the density

function k̂1(ρ). The symbol ∗∗ stands for auto-

correlation of functions (convolution with the reflected

function).

It is well known that the correlation function k can
be computed using the Fast Fourier Transform (FFT)
with a complexity in O(n logn), where n is the number
of pixels of a image of Φ(x). Notice that also the
window function can efficiently be computed via the
inverse space using cW = F̄ |F1W |2. In the rectangular
case, cW is explicitly known (Ohser and Mücklich,
2000, p. 356). Furthermore, discrete version of the
Bessel transform (necessary for computing k̂1 from
k1) can be based on numerical integration, e.g., by
Romberg’s rule.

Unfortunately, the assumption of periodicity in the
discrete Fourier transform (dFT) causes an overlapping
effect (edge effect). This effect can be eliminated by
expanding the function fW to the window 2W , where
fW is padded with zeros, that is f2W (x) = fW (x) if
x ∈W , and f2W (x) = 0 if x ∈ 2W \W . This increases
the pixel number to 4n, still the complexity of the
FFT applied to f2W belongs to O(n logn), which is
a considerable gain compared to the usual estimation
of kcW based on auto-correlation, Fig. 6 (red path),
which is of complexity O(n2). Notice that data
windowing using a 2D analogue of the Welch, Hann

(Hamming) or Bartlett window (Press et al., 2007)
avoids any window expansion, but the unbiasedness of
the estimator given by Eq. 8 gets lost.

The dFT (and its inverse) is usually based on a
modified setting of the continuous Fourier transform.
The main difference to be aware of, is that in Eqs. 1
and 2 the angular frequency ω = 2πξ substitutes the
frequency ξ . This has an impact on the scaling of the
estimated spectral density.

Finally, we remark that sampling of f on a
homogeneous point lattice induces a sampling of f̂ on
the inverse lattice, where the relationship between the
original lattice and its inverse is as follows: Let U be
a matrix of which the column vectors are forming a
basis of the original lattice. Then the column vectors
of the matrix (U ′)−1 form a basis of the inverse lattice
(Ohser and Schladitz, 2009, p. 66). In terms of a dFT
applied to a 2D image with n1 ·n2 pixels of size a1 ·a2,
the transformed image also consists of n1 ·n2 pixels but
of size â1 · â2, where â1 = 1/(n1a1) and â2 = 1/(n2a2).

EXPERIMENTAL RESULTS

The applicability of the method presented above
is now demonstrated for three filter papers produced
by wet laid cellulose fibers. The material No. 1 has a
nominal grammage of 200 g/m2 and a mean thickness
of about 0.9mm, the material No. 2 is of 90 g/m2

and about 0.25mm thick, and the material No. 3 is
of 170 g/m2 and about 0.7mm thick. The mean fiber
length in these materials was much longer than 2mm.
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Fig. 7. Images showing the formations of the filter

papers Nr 1a (top) and Nr 1b (bottom), respectively,

as well as the densities of their Bartlett spectra.
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In order to estimate the spectral density and to
determine a formation index, various filter papers
are scanned in the light transmission mode using a
conventional CCD camera, see Figs. 7 to 9 (left) for
examples. The 8-bit gray-tone images are of 1580×
1200 pixels with a lateral resolution of 0.177mm
per pixel and, thus, the effective image size amounts
279.66×212.40mm2. The wet laying process induces
a slight sheet inhomogeneity appearing as a long wave
shading in the corresponding images. This shading
was corrected based on a reference image which was
obtained by smoothing the image data using a large
Gaussian filter with the parameter σ = 17.4mm, and
where the reference image was subtracted from the
original one.
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Fig. 8. The filter papers Nr 2a (top) and Nr 2b

(bottom).

The function k̂1 is estimated from the image data
using the method described in the previous section.
The graphs of the estimates are shown in Figs. 7 to
9 (right), where k̂1 is given in mm2. Note that the
relative small values of the empirical k̂1 for wave
lengths 1/ρ less than 10mm might be a consequence
of the applied shading correction. Generally, it is
a hard problem to remove an unknown long wave
shading under simultaneous keeping the spectrum of
long waves in the real structure. Furthermore, because
of data windowing, the fractions of long waves are
estimated with a larger error than those of short waves.
Nonetheless, analysis of realizations of GRFs with
comparable spectral densities shows that for wave
lengths less than 10mm the function k̂1 is estimated
from the image data with sufficiently small errors.
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Fig. 9. The filter papers Nr 3a (top) and Nr 3b

(bottom).

Obviously, there is a white noise observable as an
additive constant c of k̂1,

c= lim
ρ→∞

k̂(ρ)≈ 0.33mm2

(the blue lines in Figs. 7 to 9, right). The reason for
this is not clear. Probably, a considerable fraction of
this noise comes from image acquisition.

Moreover, for fixed ν the theoretical function given
by Eq. 6 was fitted to the experimental data for ρ ≤
10mm, where the parameter λ was estimated based on
a least squares method (Figs. 7 to 9). The estimates of
λ are widely independent of ν (Tab. 1), and in the most
cases the fit for µ = 1 is better than for µ = 1

2 .

Table 1. The formation index β and the numerical

values λ for the adapted function given by Eq. 6.

material specimen β λ [mm−1]

nr. nr. [mm2] ν = 0.5 ν = 1
1 1a 2.6 0.550 0.557
1 1b 2.3 0.564 0.568

2 2a 1.9 0.689 0.694
2 2b 2.1 0.632 0.637

3 3a 2.2 0.615 0.619
3 3b 2.1 0.635 0.638

Finally, a formation index β is the determined as
the mean of the density k̂1 for wave lengths between 2
and 5mm, which are relevant for industrial application.

84



Image Anal Stereol 2013;32:77-87

DISCUSSION

Throughout this article it is assumed that the paper
structure is isotropic, but most papers produced on
papermaking machines such as those based on the
principles of the Fourdrinier Machine show a clear
anisotropic formation, see also Schaffnit and Dodson
(1993), Scharcanski and Dodson (1996, 2000) and
Sampson (2009), where the anisotropy of formation
is discussed in detail. Here we only remark
that anisotropic paper formation corresponds to an
anisotropic spectral density k̂(ξ ), and from an estimate

of k̂ one can derive two quantities β1 and β2 describing
the paper formation. Let (ρ,ϕ) denote the polar
coordinates of ξ with ρ ≥ 0 and 0 ≤ ϕ < π . Then
the formation index β1 can be computed from k̂(ρ,ϕ1),
where ϕ1 is the processing direction of paper making,
and β2 is obtained from k̂(ρ,ϕ2) for the direction ϕ2

perpendicular to ϕ1. Usually, β1 ≥ β2, and β1 = β2 in
the isotropic case.

For fixed ϕ1 and ϕ2, the functions k̂⊥1 (ρ) =

k̂(ρ,ϕ1) and k̂⊥2 (ρ) = k̂(ρ,ϕ2) can be seen as planar

sections profiles of the spectral density k̂(x). From the
projection slice theorem (Kuba and Hermann, 2008)
it immediately follows that k̂⊥1 (ρ) and k̂⊥2 (ρ) can
be obtained as a cosine transform of the orthogonal
projections k⊥1 (r) resp. k⊥2 (r) of the estimated
correlation function k(x) onto the corresponding
section planes, i.e., the rotation mean in the scheme
of Fig. 6 is replaced with the orthogonal projections
onto the two section planes, and the Fourier-Bessel
transform is now a simple cosine transform.

As pointed out in this article, there is a
‘basic formation’ related to an ‘independent and
uniform scattering’ of the paper fibers, and even this
‘basic formation’ can probably not be effected by
technological measures. This means that the possibility
to reduce paper formation by an improved paper
making technology is limited. For a paper with a
given formation, the question is as follows: What
is the difference between the given and the ‘basic’
formation? Unfortunately, the ‘basic formation’ can
be estimated only roughly from the distribution of the
fiber lengths and until now there is no safe method
to find out whether the formation of a paper can
be reduced or not. Notice that just Deng and Dodson
stated in their monograph “that the power spectrum
can give information on the flock sizes, by isolating
the variance components between two scales for
inspection zones” (Deng and Dodson, 1994, p. 107).

The computation of the formation index from
images of transmitted light via frequency space is
very efficient. However, the results from different

laboratories are comparable only under the condition
that the spectral density of the intensity of the
transmitted light is (nearly) the same as the spectral
density of the local paper grammage. Thus, when
implementing a laboratory system for industrial
quality control one should take care of the wavelength
of the applied light, the homogeneity of illumination,
the image acquisition, a possible inhomogeneity of the
paper, and the edge effects involved in the computation
of the spectral density. It is very helpful to make tests
as the following one: the increase of the paper weight
should not influence the formation and, therefore, the
paper formation of a single paper sheet must be the
same as that of a double sheet (both sheets of the
same formation and one sheet on top of the other).
Furthermore, the estimation of the spectral density
should be robust with respect to variations of the lateral
resolution, i.e., varying the pixel size (in the range from
0.05 to 0.2mm) should lead to only small changes in
the estimated spectral density. Finally, the size of the
paper sheet (i.e., the size of the window W ) should
be large enough such that the statistical errors of the
estimates are limited. From our experience we can
say that an A4-sheet is sufficient. More precisely, let
Φ(x) be a Gaussian random field with an exponential
correlation function, λ & 0.5mm−1, observed through
a rectangular window W of the size 210× 297mm2,
then simulation studies show that the relative statistical
error of estimation of k̂1(ρ) is less than 5% for all
wave lengths 1/ρ ≤ 5mm.
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