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ABSTRACT

Mathematical morphology is a powerful tool for image analysis; however, classical morphological operators
suffer from lacks of robustness against noise, and also intrinsic image features are not accounted at all in
the process. We propose in this work a new and different way to overcome such limits, by introducing both
robustness and locally adaptability in morphological operators, which are now defined in a manner such that
intrinsic image features are accounted. Dealing with partial differential equations (PDEs) for generalized
Cauchy problems, we show that proposed PDEs are equivalent to impose robustness and adaptability of
corresponding sup-inf operators, to structuring functions. Accurate numerical schemes are also provided to
solve proposed PDEs, and experiments conducted for both synthetic and real images, show the efficiency and
robustness of our approach.
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INTRODUCTION

In many image processing and computer vision
tasks (e.g., data compression, feature detection, motion
analysis/detection, multiband frequency analysis, . . . ),
it is important to perform a multiscale image analysis,
i.e., analyze the image at multiple spatial scales
or resolutions. Owing to that fact, mathematical
morphology (Serra, 1982) appeared as a powerful tool
in multiscale analysis (Soille, 1999), mainly due to its
nonlinearity aspects, shape and geometry description
properties. Despite its interesting properties and
plentiful successful applications in various domains,
both former discrete and continuous morphological
operators suffer from a lack of robustness against
noise, and do not take into account the spatial
adaptability. The same global way in which all image
pixels are treated is in fact main reasons for that
limitations. This is avoided in Lerallut et al. (2007)
by using morphological filters with non fixed shape
kernels (or amoebas), and in Angulo (2011) by
considering bilateral structuring functions. Using a
PDE approach, in order to enhance coherence of flow-
like structures, an adaptive method was obtained in
Breuß et al. (2007) by multiplying the image gradient
term that appeared in classical morphological PDEs for
dilations/erosions, with a space-variant matrix.

Motivation and goal The main motivation of
this work is to propose alternatives for remedying
such weaknesses of robustness and adaptability. This is

done by considering Perona and Malik-like diffusivity
term (Perona and Malik, 1990). Let us first recall
some fundamentals of this nonlinear image diffusion
model. The pioneering idea introduced by Perona and
Malik (1990) to reduce blurring and edge shifting of
uniform linear diffusion, involved a locally adaptive
diffusion with respect to the gradient of the image at
each iteration. More precisely, this nonlinear diffusion
involves replacing the heat transfer diffusion equation
∂u/∂ t = ∆u, by the following model:{

∂u
∂ t

= div
(
g
(
‖∇u‖2

)
∇u
)
,

u(x,0) = f (x) .
(1)

In this model (Eq. 1), the diffusivity has to be such that
g
(
‖∇u‖2

)
→ 0 when ‖∇u‖2→∞, and g

(
‖∇u‖2

)
→ 1

when ‖∇u‖2→ 0. One of the diffusivities proposed by
Perona and Malik is the following:

g(s2) = 1/
(
1+(s2/λ

2)
)
, λ > 0 ,

where λ is a threshold parameter that separates
forward and backward diffusion. This model
accomplishes the aim of blurring small fluctuations
(noise) while enhancing edges (by preventing
excessive diffusion). To avoid theoretical as well
as numerical drawbacks on this model, Catté et al.
(1992) proposed a new version of Perona and Malik
theory, by replacing the diffusivity term g

(
‖∇u‖2

)
with its regularized version, i.e., g

(
‖∇uσ‖2

)
, where

∇uσ = ∇(Gσ ∗u), and Gσ is a Gaussian kernel
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with a standard deviation equal to σ . This latter
model is nowadays extremely popular in PDE-based
image processing, and many variants have then been
proposed.

Concretely, we wish in this work to meet two major
objectives. On a first hand, we aim at exploring how
a gradient-based local adaptability such as g

(
‖∇u‖2

)
,

can be introduced in both morphological PDEs and
sup-inf based operators. On a second hand, we would
like to propose associated numerical schemes for
solving efficiently proposed methods.

State-of-the art on discrete adaptive
morphology. Original formulation of discrete
dilation and erosion for gray-level images (Serra,
1982; Sternberg, 1986), as well as the other
morphological operators was translation invariant in
space and intensity. Later, mathematical morphology
was formulated in the framework of complete
lattices (Serra, 1988; Heijmans and Ronse, 1990),
which leads to a general case of dilation and adjoint
erosion compatible with spatially-variant operators.
Nevertheless, most of current implementations and
classical applications studied in the literature are based
on morphological operators, which are translation
invariant in space and intensity (Soille, 1999), i.e.,
a same structuring function (or structuring element) is
considered for each pixel of the image. A current active
field in mathematical morphology is the construction
of appropriate adaptive operators; i.e., structuring
functions become dependent on the position or on
the input image itself. In previous works, adaptive
operators are based on two main approaches. On a
first hand, a variability is considered on the support
space of pixels, meaning that spatially variable shape
of structuring functions are adapted according to:

– positions in the image, as in Beucher et al. (1987);
Cuisenaire (2006);

– local regularity including the morphological
amoebas (Lerallut et al., 2007), adaptive geodesic
neighborhoods (Grazzini and Soille, 2009),
bilateral structuring function (Angulo, 2013), non-
local structuring function (Velasco-Forero and
Angulo, 2013);

– local orientations, including typically anisotropic
gradient-driven operators (Verdú-Monedero et al.,
2011).

On another hand, a variability on T is considered:
variable size of structuring functions according to the
local intensity or contrast (Vachier and Meyer, 2007;
Maragos and Vachier, 2008).

For an overview on the state-the-art on adaptive
morphology, the interested reader is invited to the

paper Maragos and Vachier (2009) and the most
recent one (Ćurić et al., 2014). Another milestone
study (Roerdink, 2009) is very interesting for
understanding the theoretical limitations of input-
adaptive morphological operators.

State-of-the art on PDEs-based morphological
operators. In 1992, three independent milestones
papers appeared on nonlinear PDEs for modeling
continuous multiscale morphological operators:

– In Alvarez et al. (1992; 1993), authors obtained
PDEs for multiscale flat dilations and erosions, by
means of compact convex structuring sets as part
of their general work on developing PDE-based
models for multiscale image processing that satisfy
certain axiomatic principles.

– Authors in Brockett and Maragos (1992; 1994)
developed nonlinear PDEs that model multiscale
morphological dilation/erosion, opening/closing,
by using compact support structuring elements that
are either convex sets or concave functions and
may have non smooth boundaries. Appropriate
numerical schema were provided as well.

– PDEs for multiscale dilation and erosion were
obtained (van den Boomgaard and Smeulders,
1992; 1994) in by studying the propagation of 2D
boundaries sets and signal graphs, under multiscale
dilations and erosions. Their work applies to
convex structuring elements whose boundaries
contain no linear segments, are smooth, and
possess a unique normal at each point.

Paper contributions. We provide herein a new
approach to make classical multiscale dilation and
erosion operators, robust and spatially adaptive as
regards to intrinsic image features. To constraint both
continuous and sup-inf based models to meet our
target objectives, we choose to investigate PDEs for
generalized Cauchy problems. Parameters of such
models are then linked to image features in two
ways; the last one being extremely robust in a noisy
environment. Moreover, suitable numerical schemes
are provided for solving efficiently proposed PDE-
based models.

Manuscript organization. The paper is
organized as follows. We recall in the next section
some background on mathematical morphology. After
that, we present our proposed robust and adaptive
multiscale approach in another section. Afterwards,
numerical schemes for solving proposed models are
described, and obtained results are shown. The paper
ends with some discussions and outline of some
interesting perspectives.
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BACKGROUND ON
MATHEMATICAL MORPHOLOGY

Algebraic lattice theory. From a theoretical
viewpoint, mathematical morphology is nowadays
formulated in the algebraic framework complete
lattice theory (Serra, 1988; Heijmans, 1994). More
precisely, the notion of adjunction links two operators
(ε,δ ), in such a way that for any given dilation δ ,
there is a unique erosion ε such that (ε,δ ) is an
adjunction (Heijmans and Ronse, 1990). In this paper,
we adopt the alternative paradigm based on functional
analysis, which leads to the formulation of dilation and
erosion as the solution of PDEs.

Basic morphological operators. Since its
introduction, mathematical morphology (Matheron,
1975; Serra, 1982) appeared as a powerful tool in
image analysis (Soille, 1999). This is mainly due
to its nonlinearity, shape and geometry description
properties. Let E ⊆ Z2. For any function f : E→ R̄,
elementary dilation and erosion operators (obtained
by adjunction and duality) are respectively defined by:

( f ⊕b)(x) :=
∨

y∈E
[ f (y)+b(x− y)] , (2)

( f 	b)(x) :=
∧

y∈E
[ f (y)−b(y− x)] , (3)

where
∨

(resp.
∧

) represents the supremum
(resp. infimum). The further convention for scalar
addition in is considered: f (y)+b(x−y) =−∞ when
b(x− y) = −∞ or f (y) = −∞, and that f (y)− b(y−
x)=+∞ when b(y+x)=+∞ or f (y)=−∞. We notice
that dilation and erosion are related respectively to the
supremal and infimal convolution known in convex
analysis (Rockafellar, 1970). The structuring function
b :R2→ R̄ is typically a general concave function. A
simple case of flat dilation and erosion results when
b equals to 0 in a convex bounded set B ⊆ E called
structuring element and −∞ outside, i.e., b(x) = 0 if
x ∈ B and b(x) =−∞ if x ∈ Bc:

( f ⊕B)(x) =
∨
y∈B

[ f (x− y)] , (4)

( f 	B)(x) =
∧
y∈B

[ f (x+ y)] . (5)

Both dilation and erosion are invariant under
translations in E (spatial or “horizontal” direction) and
R̄ (intensity or “vertical” direction).

Definition 2.1 Let F be a family of real functions
mapped on E ⊆ R2. An operator S : F → F is
increasing or monotone if for all f , g ∈F s.t. f (x) ≥
g(x), ∀x ∈ E, then, (S f )(x)≥ (Sg)(x), ∀x ∈ E.

In addition to that, dilation and erosion are increasing
operators, and also satisfy the following properties:

– Duality: ( f ⊕b)(x) =−(− f 	b)(x), ∀x ∈ E.

– Adjunction: ( f ⊕b)(x)≤ g(x), ∀x∈E⇐⇒ f (x)≤
(g	b)(x), ∀x ∈ E.

Different morphological filters can be obtained
by composition of above operators (Matheron, 1975;
Serra, 1982; Catté et al., 1995; Cao, 1998). Using
any structuring function b, two interesting operators,
namely the opening and closing, can be obtained
respectively in the following way:

( f ◦b) := [( f 	b)⊕b] , (6)
( f •b) := [( f ⊕b)	b] . (7)

Opening and closing are also increasing operators with
two main properties:

– Ordering (anti-extensivity and extensivity): For
any structuring function, one has ( f ◦ b) ≤ f ≤
( f •b)

– Idempotence: For any structuring function, one has
[( f ◦ b) ◦ b] = ( f ◦ b). By duality, one also has:
[( f •b)•b] = ( f •b).

Semi-group property, multiscale morphological
filters and morphological PDEs. For t ≥ 0, one
can define then multiscale dilations (and erosions) by
replacing b by the family of multiscale structuring
functions (bt)t≥0 defined for t > 0 by:

bt(x) =

 tb(x/t) for t > 0
0 for t = 0, x = 0
−∞ otherwise,

which satisfies the semi-group property (bs⊕bt)(x) =
bs+t(x,y). The canonical multiscale structuring
function, which can be seen as the morphological
counterpart of the Gaussian kernel in linear filtering, is
the infinity support parabolic structuring function

bt(x) =−
‖x‖2

2t
. (8)

From the works by Van den Boomgaard (van den
Boomgaard and Dorst, 1997), it is also well known
that this structuring functions are the equivalent class
of functions which are dimensionally separable and
closed with respect to the dilation/erosion. This result
is usually proved in the slope transform domain (Dorst
and van den Boomgaard, 1994; Maragos, 1995).
Multiscale dilation and erosion filters are then
respectively given by:

( f ⊕bt)(x) :=
∨

y∈E
[ f (y)+bt(x− y)] , (9)

( f 	bt)(x) :=
∧

y∈E
[ f (y)−bt(y− x)] . (10)
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Let us mention that in the case of flat structuring
functions, this is equivalent to consider sets Bt = tB
(i.e., homothetic compact convex planar sets B of size
t) as multiscale structuring elements.

Note that multiscale openings and closings can be
defined in a same way by considering a family (bt)t≥0
of multiscale structuring functions, respectively by:

( f ◦bt) := [( f 	bt)⊕bt ] , (11)
( f •bt) := [( f ⊕bt)	bt ] . (12)

Alternatives to perform multiscale continuous flat
dilations and erosions (dual operators) by using
partial differential equations (PDEs) were proposed in
(Alvarez et al., 1993; Sapiro et al., 1993; Brockett and
Maragos, 1994): {

∂u
∂ t

=±‖∇u‖ ,
u(x,0) = f (x) ,

(13)

with (+) (resp. (−)) sign in Eq. 13 stands for the
multiscale dilation (resp. erosion). Useful cases of unit
structuring sets B are obtained by unit balls B |p={

x ∈Rn : ‖x‖p ≤ 1
}

of metrics induced by the Lp
norms. There are three special cases of norms p = 1,2
and p = ∞ which correspond to particular PDEs: for
B |1 (i.e., rhombus), one has ∂ut = ±‖∇u‖∞; for B |2
(i.e., disk), one has ∂ut = ±‖∇u‖2; and for B |∞ (i.e.,
square), one has ∂ut =±‖∇u‖1. Similarly, the PDE for
multiscale parabolic dilations and erosions is given by:{

∂u
∂ t

=±1
2
‖∇u‖2 ,

u(x,0) = f (x) .
(14)

It is well known that both dilation/erosion PDEs,
Eqs. 13 and 14 are special cases of Hamilton-Jacobi
equations, which are of great interests in physics.
In fact, let us consider the general Hamilton-Jacobi
family of problems:{

∂u(x, t)
∂ t

=±H (x,∇u(x, t)) = 0, in Rn× (0,+∞)

u(· ,0) = f in Rn.
(15)

Such equations usually do not admit classic (i.e.,
everywhere differentiable) solutions, but they can be
studied in the framework of viscosity solutions theory
(Crandall et al., 1992). It is well known (Lions,
1982; Bardi and Evans, 1984) that if the Hamiltonian
H(x, p) = H(p) is convex, then, the solution of the
Cauchy problem are respectively given for the (+) and

(−) signs in Eq. 15 by:

u(x, t) = inf
y∈Rn

[
f (y)+ tH∗

(
x− y

t

)]
, (16)

u(x, t) = sup
y∈Rn

[
f (y)− tH∗

(
x− y

t

)]
, (17)

where H∗ is the Legendre-Fenchel transform of
function H.

Finally, let us quote works in (Alvarez et al., 1993)
in which authors proposed the following PDE for
multiscale continuous openings, given for any scale
s > 0 by:{

∂u
∂ t

=−sign+(s− t)‖∇u‖+ sign+(t− s)‖∇u‖
u(x,0) = f (x),

(18)
with t ∈ [0, 2s]; sign(·) stands for the signum function
and r+ := max(r,0). Indeed, for t ∈ [0, s], PDE in
Eq. 18 acts as a multiscale erosion, while for t ∈ ]s, 2s]
it is in fact a multiscale dilation. Multiscale closings
can be obtained by switching (+) and (−) signs in the
two terms of PDE in Eq. 18.

PROPOSED ROBUST AND
SPATIALLY ADAPTIVE SCALE-
SPACES

It is clear that neither the discrete, Eqs. 2 and 3,
nor the continuous, Eq. 13, formulations are robust
in a noisy environment. In fact, in the presence of
noise, taking the supremum in Eq. 2 or the infimum
in Eq. 3 will definitely lead to wrong values, while
hyperbolic PDEs as the one in Eq. 13 will blow up.
Main reason for that is the fact that all image pixels
are treated in a same global way. As previously said,
many works were proposed for avoiding this issue
(Breuß et al., 2007; Lerallut et al., 2007; Angulo,
2011). Let us point out the fact that the proposed
approach in (Breuß et al., 2007) is truly adaptive, but
is not robust at all, and sophisticated strategies were
used to implement the orientation information in the
model. In a recent study (Diop and Angulo, 2012b),
we overcome those drawbacks by proposing different
robust and spatially adaptive PDEs. The first proposed
model was a Gaussian regularization of Eq. 13, as
follow: {

∂u
∂ t

=±‖∇uσ‖ in RN× (0,T ) ,

u(x,0) = I(x) in RN×{t = 0} ,
(19)
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where uσ = u∗Gσ is the convolution with a Gaussian
Gσ of variance σ . This first model solves the
robustness against noise; however, it has a major side
effect, that is, it creates some blur, and the latter
increases as one goes further through scales. This
could also be expected; because, iterating the Gaussian
convolution is asymptotically equivalent to solve the
Heat equation, which is an isotropic diffusion. Indeed,
in a geometrical view, level lines are smoothed both in
the normal and tangent directions. We also proposed a
second PDE model that behaved in better way than the
previous one, as follow (Diop and Angulo, 2012b):{

∂u
∂ t

=±g(‖∇uσ‖)‖∇u‖ in RN× (0,T ) ,

u(x,0) = I(x) in RN×{t = 0} ,
(20)

where g is an edge detector function. In addition to
noise robustness, such a model is also locally adaptive
to intrinsic image features, e.g., edges. We looked at
cases where g is either a decreasing or an increasing
function, defined by:

g(x)=


1+α‖x‖2p, p > 0 for g increasing,
1+α exp(‖x‖2p), p > 0 for g increasing,

1
1+α‖x‖2 for g decreasing,

(21)
where ‖·‖ stands for the Euclidean norm in R2. The
monotonicity effects of g will be illustrated later in the
numerical results section.

We present in next sections a different and new
approach in making robust and adaptive morphological
multiscale image analysis methods. In fact, contrary to
(Diop and Angulo, 2012b) where the morphological
analysis was mainly focused on the processed image,
we propose here to work on structuring functions.

Generalized Cauchy problems for continuous
multiscale models. In order to force both the
robustness and adaptability, we propose here1 a
different morphological multiscale approach, by
making structuring functions depending on intrinsic
image features such as edges. To achieve this, we
propose to use the generalized Cauchy problems:{

∂u
∂ t

=±‖Du‖p in RN× (0,T ) ,

u(x,0) = I(x) in RN×{t = 0} ,
(22)

with p > 1. The following remark is the starting point
of our motivation.

Remark 3.1 PDE in problem Eq. 22 corresponds to
multiscale dilations/erosions with:

– flat structuring function, for p = 1,

– parabolic structuring function, for p = 2.

Remark 3.1 states also that different kinds of
structuring functions can be obtained depending on
the value of p. It is then interesting to see how this
parameter p behaves when p→ 1, p∈]1, 2[ and p→∞,
and also how it is linked to the structuring functions in
the case of sup-inf formulations. This is in fact done by
looking at the viscosity solution of Eq. 22, for example
with the + sign, which is given by the following Lax-
Oleinik formula (Lions et al., 1987):

u(x, t) = sup
y∈RN

{
I(y)− cp

‖x− y‖p/(p−1)

t1/(p−1)

}
, (23)

where
cp =

p−1
pp/(p−1) . (24)

Let us illustrate some dilations carried out by using
Eq. 23. In fact, we consider an image with ten pixels
chosen at random and perform dilations at different
scales t and for different p also; results are shown in
Fig. 1.

(a)

(b) (c) (d)

Fig. 1. (a) Original image with 10 pixels chosen at
random. Multiscale dilations performed using model
of Eq. 23 with: (b) t = 15 and p = 1.01, (c) t = 20 and
p = 1.5, and (d) t = 10 and p = 2.

For a better comprehension of the effects of p on
the structuring function, let us have a closer look for
at the family of concave functions (kt,p)t>0 defined for
t > 0 and p > 1 by

kt,p(x) :=−cp
‖x‖p/(p−1)

t1/(p−1) . (25)

1The idea was first presented in S4G conference (Diop and Angulo, 2012a).
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First of all, notice that for a fixed t > 0, when p→ 1,
then kt,p → 0; when p→ ∞, then for all x, kt,p(x)→
‖x‖. What is particularly interesting is to see the
behavior of the family of functions x 7→ kt,p(x) in the
unit neighborhood of x. This is illustrated in Fig. 2
where different plottings of kt,p(x) are obtained for
t = 1 and x ∈ [−1, 1].
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Fig. 2. Plottings of structuring functions kt,p(x) for a
fixed t = 1 and different values of p.

Indeed, basically saying, two facts are shown:

– Firstly, as expected, one is dealing with flat
structuring functions as p→ 1, on the one hand. On
the other hand, as p increases up to 2, supports of
of structuring functions kt,p(x) diminish and their
shapes tend to a parabola, see Fig. 2a.

– Secondly, for p > 2, as p increases and p → ∞,
shapes of kt,p(x) evolve from a parabola to the limit
case, i.e., |x|, see Fig. 2b.

Accounting these two facts and also Remark 3.1,
the fundamental idea of our approach is to make
p depending on most relevant image features, i.e.,
gradients, which is in fact a nice way to locally adapt
structuring functions to intrinsic image features. Thus,
we propose two ways in doing that.

Adaptability approach based on image features.
The basic principle consists in making p = p(u) as a
function depending on image gradients, i.e., p= f (∇u)
and 1 < p < ∞, in a way such that p is close to 1
(around the neighborhood of the considered pixel) in
homogeneous image regions, and p belongs to [2, ∞[
in inhomogeneous image areas, e.g., contours, noise,
texture, · · · . Typical p = f (∇u) is given in Fig. 3.

Fig. 3. Typical p = f (∇u) functions for a PDE model
based on image features.

To this aim, we propose to set

p(u) = 1+g(‖∇uσ‖) , (26)

in the models of Eqs. 22 and 23, where g is a
decreasing function and given as in Eq. 21. Multiscale
image analysis results obtained with this approach are
shown and discussed previously.

Adaptive coupled model with image features
and edge threshold. As shown in the previous
section, potentially good results are obtained with
the preceding approach. In this section, we wish to
significantly increase the robustness against noise. For
doing so, we propose to enhance effects of the edge-
based parameter p = p(u) = f (∇u) by the means of an
edge threshold α which determines whether or not one
is on image contours.

Let h be a function that detects the image contours.
The proposed method is formulated as follows:
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– In homogeneous image regions, i.e., h(‖∇u‖)< α ,
we set

p(u) = p1 = 1+g1(‖∇uσ‖) (27)

in the models of Eqs. 22 and 23.

– In high frequency image areas, i.e., h(‖∇I‖) ≥ α ,
we set

p(u) = p2 = c+g2(‖∇uσ‖) (28)

in the models Eqs. 22 and 23, with c≥ 2.

For instance, g1 and g2 are decreasing edge-based
functions taken as in Eq. 21, and g2 is decreasing
more rapidly than g1. Fig. 4 illustrates what we just
discussed about the edge value α and typical p(u) =
f (∇u) function used in this work.

Fig. 4. Typical p(u) = f (∇u) functions for coupled
with image features and threshold edge value α .

NUMERICAL RESULTS

Discretization Let us set up the following
discretization grid:

xi = i4x, y j = j4y, tn = n4t,
i, j = 0,±1,±2, · · · , and n = 0,1,2, · · · (29)

An approximate solution u on the above grid is denoted
by u(xi,y j), and satisfies:

un(xi,y j)≈ u(i4x, j4y,n4t) . (30)

Discretization. Proposed PDEs in Eqs. 19
and 20 are solved using an explicit scheme:

un+1(xi,y j) = un(xi,y j)±4t·F(un(xi,y j))(Dun)±(xi,y j) ,

(31)
where F(un(xi,y j)) ≡ 1 and un = un for Eq. 13, un =

un ? Gσ for Eq. 19, and in the case of dealing with
Eq. 20, F(un(xi,y j)) corresponds to the discretization
of the edge function g(‖∇uσ‖). Hence, the (+)
(resp. (−)) sign in the term (Dun)± of Eq. 31 stands for
multiscale dilations (resp. erosions). It is known that
discretization of the hyperbolic term could be obtained
by using classical schemas introduced in (Osher and
Sethian, 1988; Rouy and Tourin, 1992). New schemes
are also proposed in this work. Before going through
that, let us first consider the following forward and
backward derivatives:

D+
x un(xi,y j) =

un(xi +1,y j)− (un(xi,y j)

4x
,

D−x un(xi,y j) =
un(xi,y j)− (un(xi−1,y j)

4x
,

D+
y un(xi,y j) =

un(xi,y j +1)− (un(xi,y j)

4y
,

D−y un(xi,y j) =
un(xi,y j)− (un(xi,y j−1)

4y
.

Thus, our proposed schemes are the followings:

(Dun)+ =
(
max(max(0,D+

x un)2,max(0,−D−x un)2)+

max(max(0,D+
y un)2,max(0,−D+

y un)2)1/2
,

(32)

(Dun)− =
(
max(min(0,D+

x un)2,min(0,−D−x un)2)+

max(min(0,D+
y un)2,min(0,−D+

y un)2)1/2
.

(33)
Note that the discretization of ∇uσ in g(‖∇uσ‖)

is not the same as in the hyperbolic term. Indeed, we
notice that best schemes were obtained by adding all
spatial derivatives all together, i.e.,

‖∇un
σ‖2 =(D+

x un
σ )

2+(D−x un
σ )

2+(D+
y un

σ )
2+(D−y un

σ )
2.

(34)

(a) (b)

Fig. 5. (a) Noisy Cat image. (b) Owl image.
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Results In this section, we show multiscale
image analysis results obtained with the PDE of
Eq. 22 and using either the approach based only on
image features or coupled with an edge threshold. The
proposed generalized Cauchy-based PDE is solved
with suitable numerical schemes like in Eqs. 32 and 33.
Other considerations are also accounted; for instance,
in the discretization of g, which intervenes in the edge-
dependent parameter p = f (∇u) in both the feature-
based and coupled models.

Obtained results show the efficiency of our locally
adaptive approaches for multiscale image analysis.
In fact, we first apply such methods on the noisy
binary Cat image, given in Fig. 5(a), and obtained by
adding a Gaussian noise with an SNR = 33.29 dB.

Results of the proposed multiscale dilations and
erosions are respectively shown in Figs. 6 and 7.
Results are compared to ones carried out by applying
the classical PDE-based approach, corresponding to
model of Eq. 13. It is not new that pixels are treated
in a same global way, which involves results in a
melting between the noise and image features, as
one is going through scales; first columns from the
left in Figs. 6 and 7. This fact has been already
discussed and illustrated in previous sections. On the
contrary, one can see the improved behavior of both
proposed approaches in the sense of adaptability and
robustness against noise, and in an even better manner
by using the edge threshold-based technique coupled
with image features, see third columns from the left in
Figs. 6 and 7).

(a) (b) (c)

(d) (e) (f)

(h) (i) (j)

Fig. 6. Multiscale dilations of the noisy binary Cat
image given in Fig. 5(a). From top to bottom −
First line, 5 iterations using (a) classical approach,
Eq. 13, (b) generalized Cauchy method, Eq. 22, where
p depends only on image features, (c) generalized
Cauchy method, Eq. 22, based on coupled edge
threshold-based method. Second line, 15 iterations
using (d) classical approach, Eq. 13, (e) generalized
Cauchy method, Eq. 22, where p depends only on
image features, (f) generalized Cauchy method, Eq. 22,
based on coupled edge threshold-based method. Third
line, 50 iterations using (h) classical approach,
Eq. 13, (i) generalized Cauchy method, Eq. 22, where
p depends only on image features, (j) generalized
Cauchy method, Eq. 22, based on coupled edge
threshold-based method.

(a) (b) (c)

(d) (e) (f)

(h) (i) (j)

Fig. 7. Multiscale erosions of the noisy binary Cat
image given in Fig. 5(a). From top to bottom −
First line, 5 iterations using (a) classical approach,
Eq. 13, (b) generalized Cauchy method, Eq. 22, where
p depends only on image features, (c) generalized
Cauchy method, Eq. 22, based on coupled edge
threshold-based method. Second line, 15 iterations
using (d) classical approach, Eq. 13, (e) generalized
Cauchy method, Eq. 22, where p depends only on
image features, (f) generalized Cauchy method, Eq. 22,
based on coupled edge threshold-based method. Third
line, 50 iterations using (h) classical approach,
Eq. 13, (i) generalized Cauchy method, Eq. 22, where
p depends only on image features, (j) generalized
Cauchy method, Eq. 22, based on coupled edge
threshold-based method.
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Let us point out another interesting fact regarding
the coupled method. In fact, as depicted in Fig. 7(i),
one could notice the robustness against noise through
scales, and also how the cat whiskers are preserved.
By noise robustness, we mean that the noise does not
affect at all the performed erosions through scales.
To put more emphasis on that fact, we show more
erosions in coarser scales in Fig. 8. In fact, due
to the robustness against noise, thin image features
are preserved through scales, which results in a
skeletonization of the cat. Thin cat features have high
gradients and are then kept similarly to the noise.

Note. Skeletal abstraction is a difficult problem
that has been greatly studied over years; and
obviously it is out of the paper scope. Briefly saying,
existing methods for extracting skeletons concern
broad research areas comprising topological thinning
algorithms (Arcelli and Baja, 1985; Lee and Kashyap,
1994; Borgefors et al., 1999; Bertrand and Couprie,
2009) where Blum grassfire transform (Blum, 1973)
were used, curve evolution, variational and wavefront
propagation methods (Leymarie and Levine, 1992;
Geiger et al., 2003; Tek and Kimia, 2003), Voronoi
diagram (Schmitt, 1989; Ogniewicz, 1993; Sheehy
et al., 1996), and methods using Euclidean distance
function computed for example with the Eikonal
equation or Hamilton-Jacobi systems (Siddiqi et al.,
2002; Torsello and Hancock, 2003; 2004). For more
information on that subject, interested readers can have
a look on those references.

(a) (b) (c)

Fig. 8. Multiscale erosions of the noisy binary Cat
image performed with the adaptive PDE of model
Eq. 22 based on the coupled edge threshold-based
method: (a) 100 iterations, (b) 200 iterations and (c)
2000 iterations.

Proposed methods are also applied on the noisy
grayscale image displayed in Fig. 5(b). Multiscale
dilations and erosions are respectively depicted in
Figs. 9 and 10. Other morphological operators are
also applied to this image; namely, openings and
closings, where the corresponding results are given
in Fig. 11. All these examples confirm the improved
behavior in terms of noise robustness and locally
adaptability of our proposed approaches; especially,
the edge threshold-based method presented in the
previous section, which correspond to examples in
Figs. 11(c) and 11(f).

(a) (b) (b)

(d) (e) (f)

(h) (i) (j)

Fig. 9. Multiscale dilations of the noisy Owl image
given in Fig. 5(b). From top to bottom − First line,
5 iterations using (a) classical approach, Eq. 13,
(b) generalized Cauchy method, Eq. 22, where p
depends only on image features, (c) generalized
Cauchy method, Eq. 22, based on coupled edge
threshold-based method. Second line, 15 iterations
using (d) classical approach, Eq. 13, (e) generalized
Cauchy method, Eq. 22, where p depends only on
image features, (f) generalized Cauchy method, Eq. 22,
based on coupled edge threshold-based method. Third
line, 50 iterations using (h) classical approach,
Eq. 13, (i) generalized Cauchy method, Eq. 22, where
p depends only on image features, (j) generalized
Cauchy method, Eq. 22, based on coupled edge
threshold-based method.
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(a) (b) (b)

(d) (e) (f)

(h) (i) (j)

Fig. 10. Multiscale erosions of the noisy Owl image
given in Fig. 5(b). From top to bottom − First line,
5 iterations using (a) classical approach, Eq. 13,
(b) generalized Cauchy method, Eq. 22, where p
depends only on image features, (c) generalized
Cauchy method, Eq. 22, based on coupled edge
threshold-based method. Second line, 15 iterations
using (d) classical approach, Eq. 13, (e) generalized
Cauchy method, Eq. 22, where p depends only on
image features, (f) generalized Cauchy method, Eq. 22,
based on coupled edge threshold-based method. Third
line, 50 iterations using (h) classical approach,
Eq. 13, (i) generalized Cauchy method, Eq. 22, where
p depends only on image features, (j) generalized
Cauchy method, Eq. 22, based on coupled edge
threshold-based method.

(a) (b) (b)

(d) (e) (f)

Fig. 11. Multiscale morphological operations
performed on noisy Owl image given in Fig. 5(b).
From top to bottom − First line, multiscale openings
at scale 15 using: (a) classical PDE, Eq. 13,
(b) generalized Cauchy method, Eq. 22, where p
depends only on image features, (c) generalized
Cauchy method, Eq. 22, based on coupled edge
threshold-based method. Second line, multiscale
closings at scale 15 using: (d) classical PDE, Eq. 13,
(e) generalized Cauchy method, Eq. 22, where p
depends only on image features, (f) generalized
Cauchy method, Eq. 22, based on coupled edge
threshold-based method.

CONCLUSION

We have provided here some contributions
concerning major issues on former morphological
operators; for instance, lacks of robustness against
noise and adaptability to image features. Our proposed
approach is different from what we proposed in (Diop
and Angulo, 2012b), in the sense that constraints of
robustness and adaptability were not applied anymore
on the image itself, but on structuring functions.
Also, in this work, we have investigated PDEs for
generalized Cauchy problems for modeling robust and
adaptive morphological scale-spaces. In addition, the
parameter p of the PDE model and the associated sup-
inf operators given by Lax-Oleinik formula, have been
linked to intrinsic edge image features in two different

ways. As shown by the obtained results, the approach
for choosing p thanks to an edge detector threshold
has appeared, as expected, to be extremely robust in
a noisy environment. Finally, numerical schemes have
also been proposed as well for the resolution of all
proposed PDEs. The efficiency of our approaches has
been illustrated on binary and gray-level images.

As for future work, we plan to extend this study
to color, and more generally, to multichannel images.
This is not a straightforward extension of what we
have proposed herein, because a channel-wise based
approach will undoubtedly result to color artifacts, in
the sense that new (artificial) colors that do not primary
exist will appear in carried out result. We plan to
investigate the channel-wise method, as well as a more
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challenging vectorial approach as discussed in Bresson
and Chan (2008); Strekalovskiy et al. (2012), even if
contexts were different. Finally, it would be interesting
to use in edge functions, a time-delay regularization
(Belahmidi and Chambolle, 2005) for avoiding the
Gaussian regularization with fixed variances, on the
one hand, and for locally adaptability too, on the
another hand.
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Catté F, Lions PL, Morel JM, Coll T (1992). Image selective
smoothing and edge detection by nonlinear diffusion.
SIAM J Numer Anal 29:182–93.

Crandall MG, Ishii H, Lions PL (1992). User’s guide to
viscosity solutions of second order partial differential
equations. Bull Amer Math Soc 27:1–67.

Cuisenaire O (2006). Locally adaptable mathematical
morphology using distance transformations. Pattern
Recogn 39:405–16.
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