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ABSTRACT

Curvature and torsion of three-dimensional curves are important quantities in fields like material science or
biomedical engineering. Torsion has an exact definition in the continuous domain. However, in the discrete
case most of the existing torsion evaluation methods lead to inaccurate values, especially for low resolution
data. In this contribution we use the discrete points of space curves to determine the Fourier series coefficients
which allow for representing the underlying continuous curve with Cesàro’s mean. This representation of the
curve suits for the estimation of curvature and torsion values with their classical continuous definition. In
comparison with the literature, one major advantage of this approach is that no a priori knowledge about the
shape of the cyclic curve parts approximating the discrete curves is required. Synthetic data, i.e., curves with
known curvature and torsion, are used to quantify the inherent algorithm accuracy for torsion and curvature
estimation. The algorithm is also tested on tomographic data of fiber structures and open foams, where discrete
curves are extracted from the pore spaces.
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INTRODUCTION

The curvature of a space curve measures the rate
of change of the tangent when moving along the
curve, while the torsion (also referred to as the second
curvature) is defined as the rate of change of the
curve’s osculating plane. Both quantities have clear
differential geometric meanings; the curvature is a
second-derivative quantity and the torsion forms a
third-derivative quantity.

First of all, we recall that in materials sciences
it is well known for a long time that the torsion of
dislocation lines in a crystal is closely related to the
density of inflections that are optically discernible in
transmission electron microscopy (Rhines, 1977). This
fundamental perception traces back to Fullman (1953).
Since this time there was published a continuously
growing number of articles on the investigation of
the impact of torsion of dislocations on macroscopic
tensile strength (Zhao et al., 2012) and, vice versa,
of the torsion tensor of the crystal on dislocation
motion. Furthermore, the torsion of paths through
the pore space is an important quantity of porous
media with respect to filter efficiency and deposition
rates of two-phase flow. As an example we consider
porous beryllium used in the helium cooled pebble
bed (HCPB) blankets investigated in the framework
of the European Fusion Technology Programme. The
long-term tritium and helium accumulation in HCPB

blankets is crucial for the reliable and safe operation
of fusion reactors. It depends on the percolation, the
curvature as well as the torsion of the pore space
(Moeslang et al., 2009; Pieritz et al., 2011; Ohser
et al., 2012). As pointed out in Bae et al. (2013),
low torsion can have a considerable impact on carrier
mobility and, thus, on cell charging and discharging
of batteries with porous electrodes. Finally, we remark
that mechanical properties like strength and stiffness
of fiber reinforced materials depend on the torsion of
the fibers’ center lines.

A further topic is the investigation of the space-
time trajectories of particles moving in magnetic
or gravitational fields. The geometric properties of
particle trajectories in turbulent two-phase flows
are investigated in Scagliarini (2011). It is shown
in this article that Lagrangian tracers can have
significant curvature and torsion (depending on small-
scale turbulence features and the velocity magnitude).
Similar trajectory studies are of interest in biology. For
example, the velocity, curvature and torsion of three-
dimensional (3D) trajectories of organisms is studied
in Crenshaw et al. (2000). Indeed, as has been pointed
out, the torsion of trajectories of freely swimming
organisms is an important characteristic for biological
activity.

Applications in medicine mainly concentrate
on the geometric characterization of arteries. The
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relationship between the torsion of the internal carotid
artery in human infants and the brain temperature
is studied in Meng et al. (2008). A large absolute
torsion correlates with the occurrence of vascular
pathologies. Similar investigations of the torsion based
on tomographic data are made for the coronary artery
(Pao et al., 1992; Puentes et al., 1998; Medina et al.,
2004; Zhenga and Qib, 2011; Strandmark et al.,
2013) and for the superficial femoral arteries (Wood
et al., 2006). The methodology in medical applications
differs from that in other fields of application. The aim
in medicine is to characterize an individual object (e.g.,
an artery by its torsion), while in materials science
and two-phase flow (macroscopically homogeneous)
systems of objects (e.g., the trajectories of particles)
are investigated.

There are various approaches of estimating local
torsion from 3D images, which differ in their strategies
of handling the discretization effects. The approach
suggested in Kehtarnavaz and de Figueiredo (1988) is
based on smoothing splines fitted to discrete curves,
where the torsion is estimated from the splines. A
similar concept is used in Medina et al. (2004) and
Lewinger et al. (2005), where models of continuous
curves are fitted to discrete ones by least-squares
methods, and the continuous curve representations are
again used for torsion assessment. In Pao et al. (1992)
and Crenshaw et al. (2000), cubic splines are fitted to
the positions of anatomic landmarks and organisms,
respectively. Mokhtarian (1997) follows a multiscale
description of curve shape and applies anisotropic
Gaussian smoothing to attenuate discretization effects
on torsion estimations. It is obvious to speed up
smoothing by Fourier techniques, which leads to fast
torsion estimation (Medina et al., 2004). This approach
is very skillful since the derivatives of the space curve
necessary for the calculation of the torsion can also be
computed via the inverse space (simultaneously with
the smoothing). The core of the algorithmic approach
suggested by Nguyen and Debled-Rennesson (2008;
2009) is a decomposition of discrete curves into so-
called ’blurred’ segments, which is fundamentally the
same as smoothing. In Blankenburg et al. (2015)
discrete versions of differential geometric formulas
for the curvature and torsion are applied to the
characterization of particle motion in porous media
during a filtration process.

A path through the percolating pore space of a 3D
image of a porous medium or the skeleton of a fiber can
be seen as a discrete curve consisting of pixels that are
connected with respect to a chosen adjacency system
(also known as the pixel neighborhood). Possible
choices are the 6-, the 14.1-, the 14.2-, or the 26-
adjacency (Ohser et al., 2009; Ohser and Schladitz,

2009). The curve length can be estimated from local
pixel configurations using the technique described
in Ohser et al. (2012). This technique is based on
a discretization of the Crofton intersection formula
for the integral of the mean curvature (Schneider,
1993), cf. also Coeurjolly et al. (2001); Coeurjolly
and Svensson (2003) where an alternative approach is
presented. The backbone of a corresponding algorithm
is simply the determination of the numbers of 2×
2× 2-pixel configurations of a binary image and the
computation of a weighted sum of these numbers. The
simplicity of this method is due to the fact that the
integral of the mean curvature is an additive functional.
However, the curvature integral and the torsion integral
of space curves are not additive and, therefore, it
cannot be expected that they can be estimated from
local knowledge, only.

One should keep in mind that in image analysis
the term “tortuosity” (sometimes called “geometric
tortuosity”) is widely used for the ratio of the
(Euclidean) distance between the end points of
a curve and the curve length, where the curve
length is equivalent to the geodesic distance. This
can be confusing, because the terms “torsion” and
“tortuosity” are often used synonymously. However,
the tortuosity (in the above setting) fundamentally
differs from torsion. In Patasius et al. (2007) the
tortuosity is applied to the characterization of blood
vessels. This paper also gives a survey on various
variants of the definition of tortuosity known from
the literature. In particular, the tortuosity depends
on how the geodesic distance is measured (Grisan
et al., 2003). This problem is addressed in detail
in Chen-Wiegart et al. (2014), where the backbone
of application are porous LiCoO2 cathode electrodes
of lithium ion batteries. A similar approach is used
in Gommes et al. (2009) for the characterization of
porous ethylene vinyl acetate. In Peyrega and Jeulin
(2013) the tortuosity is estimated from µCT images
of Thermisorel structure (a fiber material applied for
acoustic absorption), where special attention is paid to
the reconstruction of geodesic paths. We also refer to
the paper Gaiselmann et al. (2013) where the tortuosity
of the fibers of a non-woven material was computed.

In the present paper we give a fast algorithm for the
computation of the torsion from discrete curves in 3D
images, where the discretization is obtained from the
sampling of a continuous parametric function on the
corresponding 3D lattice. Our approach is based on the
fitting of a partial sum of a Fourier series to the discrete
curve and the torsion estimation of the curve from the
partial sum. The idea behind is that one can separate
low frequencies belonging to the parametric function
and higher frequencies resulting from discretization.
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Unfortunately, the periodicity implicitly induced by
the Fourier series approach usually leads to a
discontinuity in the parametric function that can
significantly influence the magnitudes of the high
frequencies. On the other hand, discretization modifies
low frequencies as well, even for a small pixel size.
To overcome these problems, we make use of Fejér’s
theorem (Zygmund, 1988) and estimate the torsion
from Cesàro’s mean instead from a partial sum.

As an application we consider the torsion of
possible cell paths through the pore spaces of a
partially open foam or a fiber system. These porous
media have a specifically activated inner surface which
makes them useful in cell chromatography. The torsion
of such cell paths is highly important for the efficiency
of chromatographic filters. It influences the deposition
rates of cells at the inner surface.

The paper is organized as follows: First, we give
a short introduction to some differential geometric
foundations. In the next section we introduce the
Jordan discretization, which is closely related to
a sampling of the curve on the 3D lattice. Then
the Fourier series approach is described, where the
consequences of the periodicity assumption as well
as the influence of discretization on accuracy of
estimation is studied in detail. Finally, this algorithm
is tested using synthetic data as well as tomographic
images of porous media.

CURVATURE AND TORSION OF
SPACE CURVES

A space curve C may be given by

C = { f (t) : t0 ≤ t ≤ t1} ,

where f (t) is a rectifiable parametric function, f :
R 7→ R3. Assuming that the derivatives ḟ and f̈ are
continuous, the length L (C) of the curve C and the
(local) curvature κ exist,

L (C) =
∫

C
dx =

t1∫
t0

‖ ḟ‖dt , κ =
‖ ḟ × f̈‖
‖ ḟ‖3

,

(Spivak, 1979), where
∫

C dx means the integration on
C with respect to the length measure, and × denotes
the cross product. In the following the norm ‖ ḟ‖ of
the first derivative will be called the length density.
Furthermore, if κ > 0 and

...
f is continuous, then the

local torsion τ is well defined,

τ =
( ḟ × f̈ ) ·

...
f

‖ ḟ × f̈‖2
,

(Spivak, 1979). Notice that unlike the curvature the
torsion is a signed quantity. The length L (C), the
integral of curvature K (C) =

∫
C κ dx and the integral

of torsion T (C) =
∫

C τ dx are basic characteristics of
C.

The unit of κ and τ is m−1, and thus, their integrals
K resp. T are unscaled, i. e.

K (aC) = K (C) , T (aC) = T (C) ,

for all a> 0. Furthermore, K and T are invariant with
respect to translations and rotations of C. Finally, we
remark that the reflection of C at a plane changes the
sign of T (C).

Notice that if the curve C does not have multiple
points, then its length is the geodesic distance between
the two end points f (t0) and f (t1). The Euclidean
distance is ‖ f (t1)− f (t0)‖, and the tortuosity of C is
usually defined as the ratio

L (C)−‖ f (t1)− f (t0)‖
L (C)

,

which takes values between 0 and 1. This ratio can be
1 (maximum tortuosity) even if the torsion τ is zero
almost everywhere on C.

Throughout this paper we consider a class of space
curves given by

f (t) = r

 cos t
sin t
g(t)

 , t ∈ [0,2π) , r > 0 , (1)

where r is a scaling factor and the function g : R 7→ R
is continuous and threefold differentiable on [0,2π).

Example 1. The probably most popular example of a
space curve belonging to the class defined by Eq. 1
is the helix. Using g(t) = ct one gets a helix with
the pitch 2πrc and the length L (C) = 2πr

√
1+ c2.

One can easily verify that curvature and torsion are
independent of t,

κ =
1

r(1+ c2)
, τ =

c
r(1+ c2)

.

Both, the integral of curvature K (C) = 2π/
√

1+ c2

and the integral of torsion T (C) = 2πc/
√

1+ c2 are
independent of r.

Example 2. Fig. 1 shows the curve C for g(t) = csin2 t.
The periodicity of g implies that C is cyclic. The
parametric function f is infinitely differentiable and
one obtains

‖ ḟ (t)‖= r√
2

√
2+ c2(1− cos4t) .
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Hence, the curve length is

L (C) = 2r
(

E(−c2)+
√

1+ c2 E
( c2

1+ c2

))
,

where E is the complete elliptic integral of the 2nd
kind. Here, we use the setting

E(x) =

π
2∫

0

√
1− xsin2

ϑ dϑ , x≤ 1.

The local curvature can be expressed as

κ(t) =
2
r

√
2+ c2(5+3cos4t)(
2+ c2(1− cos4t)

)3 ,

and the integral of curvature is given by the integral

K (C) =
√

2
2π∫
0

√
2+ c2(5+3cos4t)
2+ c2(1− cos4t)

dt ,

which can be computed numerically, only. Finally, the
local torsion can be calculated as

τ(t) =− 6csin2t
r
(
2+ c2(5+3cos4t)

) ,
and its integration yields

π/2∫
0

τ(t)‖ ḟ (t)dt = arctanc−2arctan2c . (2)

which converges to −π

2 as c → ∞. Obviously, the
integral of torsion vanishes, T (C) = 0.

Fig. 1. The curve C of the parametric function f (t) with
g(t) = csin2(t), r = 1 and c = 2. The red part is for
0≤ t ≤ π

2 .

DISCRETE CURVES

In the context of image analysis we consider a
discretization of the curve C induced by sampling on
lattice points. Let Z3 be the homogeneous 3D lattice of
the lattice spacing 1 (which is identical with the pixel
size), where Z is the set of integers and [0,1)3 is the
half-open unit cell. The sampling C2 of C on the lattice
Z3 is the set of all pixels x ∈ Z3 with the property that
C hits the shifted cell [0,1)3 + x,

C2 =
{

x ∈ Z3 : C∩
(
[0,1)3 + x

)
6= /0
}
.

The union ⋃
x∈C2

(
[0,1)3 + x

)
of the lattice cells hitting C is well known as the outer
Jordan discretization of C. Under certain assumptions
for the shape of C, the sampling C2 is a discrete
curve with respect to the 6-adjacency of the pixels.
More precisely, we suppose that C may have a shape
such that C2 is a skeleton line with respect to the 6-
adjacency; i.e., C2 is the skeleton of itself. A necessary
condition for that is that the curvature of C must be
bounded.

Fig. 2. Outer Jordan discretizations with m+ 3 pixels
of a curve piece.

Fig. 3. A sequence of outer Jordan discretizations with
growing pixel number.

84



Image Anal Stereol 2016;35:81-91

Examples of outer Jordan discretizations of curve
pieces are shown in Figs. 2 and 3. Using the right-
hand rule one can check whether the integral of torsion
T is negative, zero or positive. Such a decision is
based on the assumption that the curve pieces behind
the discretizations are sufficiently smooth with almost
everywhere existing local curvature κ . For example,
one can fit the curve given in Example 2 for 0 ≤ t ≤
π/2 (red marked part in Fig. 1) to the outer Jordan
discretization shown in Fig. 2 (left). A possible choice
of the parameters is r = 1 and c=m. Then from Eq. 2 it
immediately follows that T ≈−π/2 for a sufficiently
large pixel number m. Analogously, one could fit
pieces of sufficiently smooth continuous curves to
other discrete curves. Nonetheless, fitting continuous
curves to discrete ones could be a challenging problem.
This is demonstrated in Fig. 3, where the sign of
T estimated from the right-hand rule switches when
successively appending pixels.

We remark that improving the lateral resolution,
i.e., reducing the pixel size, is equivalent to increasing
the scaling factor r. More precisely, the sampling of f
on a lattice pZ3 with the pixel size p > 0 is the same
as the sampling of 1

p f on Z3.

FOURIER APPROXIMATION

In this section we present a Fourier approach for
estimating curvature and torsion from discrete curves
C2. The problem is to fit a Fourier series to C2.
First we assume that the parametric function f : R 7→
R3 is periodic with the period length a, i.e., the
corresponding curve C is cyclic. If f is Lebesgue
integrable on (0,a), its Fourier coefficients

c` =
1
a

a∫
0

f (t)e−
2πi`t

a dt , ` ∈ Z ,

exist, where c` = (c`,1,c`,2,c`,3) ∈ C3 and C is the
space of complex numbers. Furthermore,

sm(t) =
m

∑
`=−m

c` e
2πi`t

a , m = 0,1, . . .

is the m-th partial sum of the Fourier series. We remark
that the derivatives ṡm, s̈m,

...
s m and the functions ‖ṡm‖2,

ṡm× s̈m, ‖ṡm× s̈m‖2 and (ṡm× s̈m) ·
...
s m are partial sums

of Fourier series, too. This motivates us to fit a partial
sum to a sampling of a space curve and to estimate the
curvature and torsion of the curve from the partial sum.

Example 3. In order to discuss the problems that can
arise in our Fourier series approach, we consider the

helix introduced in Example 1. Its nonzero Fourier
coefficients are c−1,1 = c1,1 = 1/2, c2,−1 = −i/2,
c2,1 = i/2, c0,3 = π and ck,3 = −i/k for k 6= 0. The
Fourier series is convergent, i.e., sm(t)→ f (t) as m→
∞. The Parseval identity yields

1
2π

2π∫
0

‖ f (t)‖2 dt =
∞

∑
k=−∞

‖ck‖2 = r2
(

1+
4π

3
c2
)
.

However, the periodicity assumption implies a
discontinuity of f (t) at t = 0 and, therefore, the
first derivative of the Fourier series is divergent. In
particular, we get

lim
m→∞

1
2π

2π∫
0

‖ṡm(t)‖2 dt = lim
m→∞

m

∑
k=−m

‖ikck‖2 = ∞.

As a consequence, the length of the space curve given
by the Fourier series of the helix with c 6= 0 does not
exist. Analogously, the L2-norms of the higher-order
derivatives of sm are divergent, and thus, the integral
of curvature K and the integral of torsion T of sm
diverge, too.

From the previous example we have seen, that
the higher-order derivatives of sm do not necessarily
converge to the higher-order derivatives of f even if
sm(t)→ f (t) as m→ ∞. Thus, instead of the partial
sum sm we consider the corresponding Cesàro mean
σm, which is simply the arithmetic mean of the first
partial sums,

σm(t) =
1

m+1

m

∑
`=0

s`(t) .

Fejér’s theorem states that if the left and right limits
f (t∓0) exist, then

lim
m→∞

σm(t) =
f (t +0)+ f (t−0)

2

for all t ∈ [0,a) (Zygmund, 1988). For this reason,
the Fejér summability of a Fourier series is even more
important than its convergence.

Let now C2 be a sampling of the curve C of
a parametric function f (t) which is assumed to be
periodic on [0,a). The sampling C2 may consist of n
pixels with the positions f0, . . . , fn−1. The m-th partial
sum sm(t) of a Fourier series can be fitted to the
sampling C2 using the approximation c` ≈ f̃`, where
( f̃0, . . . , f̃n−1) denotes the discrete Fourier transform of
the vector ( f0, . . . , fn−1) with the setting

f̃` =
1
n

n−1

∑
k=0

fk e−
2πik`

n , `= 0, . . . ,n−1.
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With regard to an explicit presentation of the
corresponding Cesàro mean, the partial sums s2m(t) of
the discrete curve C2 are now given by

s2m(t) = f̃0 +
m

∑
`=1

f̃` e
2πi`t

a +
n−1

∑
`=n−m

f̃` e−
2πi`t

a

for m ≤ n/2 (Fourier approximation). Notice that
the pixel positions fk are points on continuous and
infinitely differentiable parametric function s2n/2(t),
i.e., pieces of the curve of s2n/2(t) are interpolating
between the fk (Fourier interpolation). Now Cesàro’s
mean σ2

m (t) of the s2` (t), ` = 0, . . . ,m, can be written
as

σ
2
m (t) = f̃0 +

m

∑
`=1

m+1− `

m+1
f̃` e

2πi`t
a

+
n−1

∑
`=n−m

`+m−n+1
m+1

f̃` e−
2πi`t

a

From Fejér’s theorem it follows that in the case of a
continuous parametric function f the σ2

m (t) converges
uniformly to f (t) on [0,a) for increasing lateral
resolution (i. e. for decreasing pixel size) and as m→
∞. The function σ2

m can be seen as a reconstruction
of f from C2. Furthermore, Cesàro’s mean involves a
smoothing that suppresses discretization noise, where
the power of smoothing can be controlled by the choice
of the parameter m. As a consequence, estimates of the
local curvature and torsion from σ2

m (t) usually have
much smaller errors than those from the partial sums
s2m(t), see Figs. 4 and 5 for examples. Moreover, even
if the curvature of s2m(t) does not converge to the true
curvature κ(t), the curvature of σ2

m (t) can pointwisely
converge to κ(t) for increasing lateral resolution and
as m→ ∞. This holds, e.g.,, for the curve introduced
in Example 2. Analogously, one can find examples of
discrete curves with a divergent torsion of s2m(t) but
with a convergent torsion of σ2

m (t).

An extreme example is the periodically extended
helix having a strong discontinuity at t = 0. The
results of curvature and torsion estimation are shown in
Fig. 4. The frequencies resulting from the discontinuity
are modulated with those caused by the sampling
of the curve on the lattice. Clearly, the errors are
dramatically large, but one can also see that in general
the errors of the local curvature and torsion estimated
form Cesàro’s mean are much smaller than those from
the corresponding partial sum. It turns out that for
large r the relative deviations from the true curvature
and torsion are widely independent of r. This means
that the estimation errors mainly result from the
discontinuity of f at t = 0.
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Fig. 4. Estimates of the local curvature κ(t) (left)
and the local torsion τ(t) (right) from the partial sum
s24 (t) (red) and the Cesàro’s mean σ2

4 (t) (green) of a
sampling of the helix with the parameters r = 256 and
c = 0.5. The blue lines depict the theoretical values.
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Fig. 5. Estimates of the local curvature κ(t) (left) and
the local torsion τ(t) (right) under reflection condition.
The estimates are based on the partial sum s28 (t) (red)
and Cesàro’s mean σ2

8 (t) (green) of a sampling of the
helix with the parameters r = 256 and c = 0.5. The
blue lines depict the theoretical values.

Reflection of f at t = 0 removes the
discontinuity. An appropriate reflection condition
can be involved into the estimation procedure
when replacing the sampling ( f0, . . . , fn−1) with
( f0, . . . , fn−1, fn−1, . . . , f0) where now the pixel
number is 2n. The smoothing parameter m has to be
adapted to the increased pixel number; instead of m we
use 2m. The effect of involving the reflection condition
is shown in Fig. 5. The reduction of the estimation
errors is considerable. The maximum curvature and
torsion errors drop down from 0.015 and 0.016 (Fig. 4)
to 0.001 and 0.0015 (Fig. 5), respectively. The errors
are diminished by about one order of magnitude.
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DISCRETIZATION EFFECTS

In this section we study the influence of
discretization on torsion estimation. To avoid
discontinuity effects on estimation errors, we chose
cyclic curves C with everywhere continuous torsion.
Furthermore, we want to make our investigations
independent of the location of C with respect to the
lattice Z3. Thus, the discrete curves C2 are assumed to
be samplings of independent and isotropic uniformly
random (IUR) rotations of C (Coleman and Pritchett,
1990) and, moreover, a random offset is added which
is uniformly distributed on the lattice cell [0,1)3. As
a consequence, torsion estimates depend on f , the
scaling and the smoothing parameter m, only. The
mean deviation,

δm =

√√√√√ 1
2πn

2π∫
0

n

∑
i=1

(
τ2

m,i(t)− τ(t)
)2 dt ,

of torsion estimates τ2
m,i(t), i = 1, . . . ,n, from the true

torsion τ(t) quantifies the overall error.

Example 4. Let f be the model of a curve given in
Example 2. This model is flexible enough such that
various curve shapes can be simulated by modifying
the model parameters r and c. In particular, r and c
can be chosen such that the slope τ̇(t) of the torsion
strongly varies. Fig. 6 shows the results of a simulation
study with the parameters r = 32, c = 0.5 and m = 4.
The average as well as the pointwise confidence band
(CB) for the local torsion were computed, i.e., for the
outer Jordan discretizations of 256 IUR rotations of the
curve f2(t) we have estimated the local torsion based
on Cesàro’s mean, and from these estimates we have
pointwisely computed the average and the CB. Notice
that it is sufficient to plot the curves for 0 ≤ t < π ,
since the function τ is odd. The overall error is δ4 =
6.961 · 10−3. Related to the maximum true torsion of
37.5 ·10−3 this is an error of about 18 %. Some further
results are given in Table 1.

Clearly, the overall error decreases with an
increasing scaling factor r or, equivalently, with an
increasing lateral resolution. Moreover, for r > 4 the
overall error becomes larger with increasing c. The last
result is due to Cesàro’s averaging which leads to a
larger estimation bias in case of functions τ(t) with
stronger slopes. Another aspect is that the scattering of
pixels of C2 along f depends on the tangent direction
of f , cf. Figs. 2 and 3. The tangential change as well
as the scattering keep their long-range behavior for
large r. As a consequence, one cannot expect that the
contribution of discretization to the overall error will
completely vanish for increasing lateral resolution.
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Fig. 6. Errors of estimation of the local torsion τ(t)
from 1 024 samplings of IUR rotations of the curve
introduced in Example 2 with the parameters r = 32
and c = 0.5 (left) resp. c = 1.0 (right). The estimation
is based on Cesàro’s mean σ2

4 (t): theoretical torsion
(red), the average over all samplings (green), the 5%-
bound (blue) and the 95%-bound (magenta) of the
pointwise CB.

Table 1. Numerical values of the overall error δ4
of torsion estimation from 1 024 samplings of IUR
rotations of the curve introduced in Example 2.

r c = 0.5 c = 1.0 c = 1.5
4 0.291 455 0.255 231 0.219 882
8 0.062 333 0.068 155 0.068 929

16 0.015 936 0.023 894 0.027 741
32 0.006 961 0.010 358 0.012 785
64 0.003 983 0.004 916 0.006 186

APPLICATION

The isolation of cells from body fluids or
liquid culture media is a common procedure used
in clinical diagnosis, molecular biology and other
life sciences. Techniques like fluorescence assisted
cell sorting, magnetic bead assisted cell sorting
and micro-fluid separation are laboratory methods
applicable for small amounts of cells and sample
volumes, only. Centrifugation is the technique mostly
used for separation of cells from human blood
circulatory systems or for harvesting cells from
industrial incubators. Disadvantages of centrifugation
are the loss of patient body fluid in therapy (e.g., in
healthy and tumoral blood cells in case of leukemia)
and the high investment and maintenance costs in
industrial applications. It is well known that cells
can be immobilized out of a micro-fluidic stream
by surface-bound selective ligands. An appropriate
device for cell isolation from larger volumes would
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be a flow-through-cartridge filled by a porous medium,
where the target cells are specifically interacting with
the inner surface. Therefore, modern development
of technical cell separation is based on alternative
approaches such as separation of target cells using
specific interaction with the inner surface of a
percolating porous medium (Adams et al., 2008;
Dharmasiri et al., 2009). In this approach, cell paths
through the pore space having a high torsion serve as
micro centrifuges.

Most promising candidates for percolating porous
media are open foams (sponges) and fleeces (fiber
systems) widely used for particle filtering. Their
structures are well investigated concerning porosity,
specific surface area, tortuosity, percolation probability
etc. These quantities are related to filtration properties
such as flow rate, filtration efficiency and particle
holding capability. Materials design of porous media
for filtration processed is based on simulation of
two-phase (liquid-solid) flow through a pore space
including the interaction of solid particles with the
inner surface (Peker and Helvaci, 2008). This allows
for insights into the filtration process and involves
the estimation of flow rates, filtration efficiencies, etc.
depending on the permeability of the pore space.

Fig. 7 shows visualizations of µCT scans of the
samples. The first one is from a fleece of nylon
fibers with a mean width of about 20 µm, Fig. 7a.
Furthermore, as a reference specimen we investigate
a (partially) open polyurethane foam with a mean
number of about 70 pores per inch, Fig. 7b. The
images were taken at the beamline ID19 of the
European Synchrotron Radiation Facility in Grenoble.
To achieve optimal contrast between the solid matter
and the pore space, an inline phase contrast mode was
applied under coherent radiation and a phase retrieval
was involved into the tomographic reconstruction.
All visualizations show cubic subimages consisting
of 5123 pixels out of 20483-data sets. The lateral
resolution was 0.7 µm for the fiber fleece and 1.1 µm
for the open foam.

a) b)

Fig. 7. Visualizations of 5123 out of 20483 pixels of
µCT-scans: (a) of a fiber fleece and (b) of a partially
open foam.

For both cases, the direction of the fluid flow
is parallel to the z-axis (in Fig. 7 from top to
bottom). The open foam is nearly isotropic, while
the distribution of the fiber system is invariant with
respect to rotations around the z-axis, only. An open
problem is the characterization of torsion of possible
cells’ trajectories in the pore space which influences
the specific chromatographic interaction of target cells
with inner surfaces. In the case of a high local torsion,
a huge number of collision events of passing cells with
the charged inner surface of the porous medium as well
as a tight fit of interacting cells to the surface can be
expected.

To extract discrete curves from 3D volume data,
we are following the approach of Peyrega and Jeulin
(2013) who computed geodesic distances based on
a fast marching algorithm (Sethian, 1999), while
valuable hints on the implementation of propagation
algorithms are given in Baerentzen (2001). However,
in particle-fluid two-phase flow through pore spaces
the particles usually do not follow shortest paths.
Thus, in order to be closer to real particle trajectories
the above algorithm was modified in the following
way: Taking into consideration that, in average, flow
speed increases with increasing distance from the
inner surface, the rate of faster particles passing the
pore space is much higher than that of slower ones.
Therefore, the typical particle is passing on a trajectory
far from the inner surface. In order to simulate this
effect, the Euclidean distance transform is performed
on the pore space before extracting the curves. In the
context of fluid flow simulation, the Euclidean distance
is interpreted as speed and the particles paths are
represented by discrete curves with shortest geodesic
time (Soille, 1999).
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Fig. 8. Histograms h of torsion estimation (left) of the
fiber fleece and (right) of the partially open foam.

Generally, the distribution of the random porous
medium influences the torsion distribution of paths
through the pore space. Thus, it is not very surprising
that the torsion distribution of the fiber system differs
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from that of the partially open foam (Fig. 8). First,
we recognize that the variation of the torsion of the
curves through the fiber system is much stronger than
that for the foam. A reason for this is that the fiber
system has a much lower porosity than the foam. On
the other hand, one should take into consideration
that for a (theoretical) system of parallel fibers with
directions orthogonal to the flow direction, the torsion
would be zero everywhere even in cases of low
porosity. Thus, the variation of torsion depends on
the fiber direction distribution as well. Furthermore,
the torsion distribution is not symmetric (not invariant
with respect to reflection at the origin). In Fig. 8 (left)
one can observe a significant shift of the histogram
to negative torsion, while that of the foam is nearly
symmetric. This means that the fiber system is not
invariant with respect to reflection at the xy-plane.
Fluid flow from top to bottom is left rotating on
average. This effect is caused by the melt-blown
production process of the fiber system, where a lattice
of fiber spinnerets is rotated. Even if the fibers are
strongly swirled during their down-laying, the fleece
inherits the rotation direction of the fiber spinnerets’
lattice.

The consequences are twofold: 1. The torsion
distribution is a quantity which allows for the detection
of asymmetries of macroscopically homogeneous
structures. 2. The torsion distribution of paths through
the pore space of porous media can be influenced
significantly by their production processes.

DISCUSSION

The discretization of space curves described above
fundamentally differs from that usually investigated in
discrete differential geometry, where a discrete curve
of an arc length parameterized function f is defined
as the set of points f (ti) for equally spaced ti. As
pointed out e.g., in Carroll et al. (2014), this kind of
discretization directly leads to a discrete version of
Frenet’s equations. Carroll et al. presented an approach
of estimating curvature and torsion resulting from a
discrete Frenet equation system which is free of any
error term. However, the discretization of f on which
this approach is based differs from the outer Jordan
discretization and, unfortunately, until now there is no
way to extend the approach on Jordan discretization.

Clearly, Cesàro’s mean is a typical low-pass filter
applied in the frequency domain. Thus, one can
expect that the use of any other low pass filter,
such as binomial filters of higher order, would lead
to similar errors of torsion estimation, where strong
smoothing with large filter masks can be performed

effectively via frequency domain, only. An advantage
of Cesàro’s mean over other low-pass filters is a
more theoretical one that allows us to make use of
Fejer’s theorem which states that torsion estimation is
multigrid convergent.

Other smoothing techniques, like fitting
polynomials, the use of smoothing splines, and non-
parametric techniques such as locally weighted scatter
plot smoothing (LOWESS), etc., do not completely
remove the high frequencies induced by sampling the
curve on a lattice. However, even small amplitudes
of high frequencies, which are not removed by
smoothing, can have considerable impact on the third
derivative used in the torsion estimation. In particular,
third derivatives of smoothing cubic splines are not
continuous, and hence, their application in torsion
estimation cannot be recommended.

The way of extracting discrete curves based
on shortest geodesic time is surely an empirical
one, and the obtained curves are probably far from
real particle paths. More realistic results could be
obtained by two-phase fluid/solid-flow simulation or
a direct observation of particle motion by in-situ
experiments with µCT. The last method was applied
in Blankenburg et al. (submitted), where sequences
of 3D images were taken from a partially open foam
by µCT, while simultaneously a particle suspension is
pumped through the pore space. However, for realistic
simulation studies one needs detailed information
on the boundary condition at the inner surface of
the porous media, and in particular the particle-
surface interaction is not yet known. In the in-situ
experiments made by Blankenburg et al. (submitted),
a scanning rate of two images per second was reached
which allows a tracking of very slow particles, only.
Furthermore, the discrete particle paths extracted from
the image sequences differ significantly from those
investigated in this paper.
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