SAR IMAGE COMPRESSION USING ADAPTIVE DIFFERENTIAL EVOLUTION AND PATTERN SEARCH BASED K-MEANS VECTOR QUANTIZATION

Karri Chiranjeevi, Umaranjan Jena

Abstract

A novel Vector Quantization (VQ) technique for encoding the Bi-orthogonal wavelet decomposed image using hybrid Adaptive Differential Evolution (ADE) and a Pattern Search optimization algorithm (hADEPS) is proposed. ADE is a modified version of Differential Evolution (DE) in which mutation operation is made adaptive based on the ascending/descending objective function or fitness value and tested on twelve numerical benchmark functions and the results are compared and proved better than Genetic Algorithm (GA), ordinary DE and FA. ADE is a global optimizer which explore the global search space and PS is local optimizer which exploit a local search space, so ADE is hybridized with PS. In the proposed VQ, in a codebook of codewords, 62.5% of codewords are assigned and optimized for the approximation coefficients and the remaining 37.5% are equally assigned to horizontal, vertical and diagonal coefficients. The superiority of proposed hybrid Adaptive Differential Evolution and Pattern Search (hADE-PS) optimized vector quantization over DE is demonstrated. The proposed technique is compared with DE based VQ and ADE based quantization and with standard LBG algorithm. Results show higher Peak Signal-to-Noise Ratio (PSNR) and Structural Similiraty Index Measure (SSIM) indicating better reconstruction. 


Keywords
differential evolution (ADE); image compression; Linde-Buzo-Gray (LBG); Pattern Search (PS); vector quantization

Full Text:

PDF


DOI: 10.5566/ias.1611

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Image Analysis & Stereology
EISSN 1854-5165 (Electronic version)
ISSN 1580-3139 (Printed version)