Geometrical Properties of Skeletal Structures of Radiolarian Genus Didymocyrtis

Authors

DOI:

https://doi.org/10.5566/ias.2089

Keywords:

phylogenic evolution, skeletal structures of radiolarians, three-dimensional data

Abstract

This paper discusses the geometrical properties of a radiolarian skeletal structure, namely, that of genus Didymocyrtis. We characterized the evolution of skeletal structures and analyzed the structures using geometry. We defined two ratios in order to quantify the geometrical properties of Didymocyrtis and verified that the two ratios changed with their phylogenic evolution. We also used the 3D skeletal data of a specimen of species D. tetrathalamus, which were obtained through micro X-ray CT. The cortical shell obtained in the 3D data was projected onto a spherical surface, and we determined the centers of the pores. Our analysis revealed that the number of pores is approximately 200 and their distribution is not regular. We also determined that the column-like parts of the skeleton, which connect the inner and upper parts of the specimen, do not lie on a plane and their intervals are not equal.

Author Biographies

Takashi Yoshino, Toyo University

Professor of Department of Mechanical Engineering

Atsushi Matsuoka, Niigata University

Professor of Department of Geology, Faculty of Science

Naoko Kishimoto, Setsunan University

Associate Professor of Department of Mechanical Engineering

References

¥bibitem[Anderson ¥etal (1986)]{Anderson:1986} Anderson OR, Hemleben C, Spindler M, Lindsey JL (1986). A comparative analysis of the morphogenesis and morphometric diversity of mature skeletons of living ¥textit{Didymocyrtis tetrathalamus tetrathalamus} and ¥textit{Hexalonche amphisiphon}. Mar Micropaleontol 11:203--215.

¥bibitem[Goll(1972)]{Goll:1972}Goll RM (1972). Leg 9 Synthesis, Radiolaria. Init Repts DSDP 9:947--1058.

¥bibitem[Ishida ¥etal(2015)]{IshidaMethod:2015}Ishida N, Kishimoto N, Matsuoka A, Kimoto K, Kurihara T, Yoshino T (2015). Three-dimensional imaging of the Jurassic radiolarian ¥textit{Protunuma ? ochiensis} Matsuoka: an experimental study using high-resolution X-ray micro-computed tomography. Volumina Jurassica 13:77--82.

¥bibitem[Kellogg(1980)]{Kellogg:1980}Kellogg DE (1980). Character Displacement and Phyletic Change in the Evolution of the Radiolarian Subfamily Artiscinae. Micropaleontology 26:196--210.

¥bibitem[Matsuoka(2017)]{MatsuokaOkinawa:2017}Matsuoka A (2017). Catalogue of living polycystine radiolarians in surface waters in the East China Sea around Sesoko Island, Okinawa Prefecture, Japan. Science reports of Niigata University. (Geology) 32: 57--90.

¥bibitem[Matsuoka ¥etal(2012)]{MatsuokaPantane:2012}Matsuoka A, Yoshino T, Kishimoto N, Ishida N, Kurihara T, Kimoto K, Matsuura S (2012). Exact number of pore frames and their configuration in the Mesozoic radiolarian ¥textit{Pantanellium}, An application of X-ray micro-CT and layered manufacturing technology to micropaleontology. Mar Micropaleonto 88-89:36--40.

¥bibitem[Riedel and Sanfilippo(1971)]{RiedelSanfilippo:1971}Riedel WR, Sanfilippo A (1971). Cenozoic Radiolaria from the Western Tropical Pacific, Leg 7. Init Repts DSDP 7:1529--1672.

¥bibitem[Sadouny ¥etal(1968)]{Geodesic:1968} Sadouny R, Arakawa A, Mintz Y (1968). Integration of the Nondivergent Barotropic Vorticity Equation with an Icosahedral-hexagonal Grid for the Sphere. Mon Weather Rev 96:351--6.

¥bibitem[Sanfilippo and Riedel(1980)]{SanfilippoRiedel:1980}Sanfilippo A, Riedel WR (1980). A Revised Generic and Suprageneric Classification of the Artiscins (Radiolaria). J Paleontol 54:1008--11.

¥bibitem[Stauffer and Aharony(2014)]{Stauffer:2014} Stauffer D, Aharony A (2014). Introduction to percolation theory: revised second edition. Philadelphia: CRC Press, 163--78.

¥bibitem[Sugiyama and Anderson(1998)]{Sugiyama:1998} Sugiyama K, Anderson OR (1998). Cytoplasmic organization and symbiotic associations of ¥textit{Didymocyrtis tetrathalamus} (Haeckel) (Spumellaria, Radiolaria). Micropaleontology 44:277--89.

¥bibitem[Suzuki and Aita(2012)]{SuzukiAita:2012}Suzuki N, Aita Y (2012). The evolutionary linages of radiolarians. In: Tanimura Y, Tuji A, eds. Microfossils: Their Microscopic World Explored. A Book Series from the National Museum of Nature and Science. 13. Kanagawa: Tokai University Press, 200--5 (in Japanese).

¥bibitem[Wagner ¥etal(2015)]{Wagner:2015}Wagner RC, John R. Jungck JR, Van Loo D (2015). Sub-Micrometer X-ray Tomography of Radiolarians: Computer Modeling and Skeletonization. Microscopy Today 23:18--21.

¥bibitem[Xiao ¥etal(2018)]{Xiao:2018}Xiao Y, Suzuki N, He W (2018). Low-latitudinal standard Permian radiolarian biostratigraphy for multiple purposes with Unitary Association, Graphic Correlation, and Bayesian inference methods. Earth-Sci Rev 179:168--206.

¥bibitem[Yoshino ¥etal(2015)]{YosihnoPantane:2015}Yoshino T, Kishimoto N, Matsuoka A, Ishida N, Kurihara T, Kimoto K (2015). Polyhedron geometry of skeletons of Mesozoic radiolarian ¥textit{Pantanellium}. Revue de Micropal¥'eontologie 58:51--56.

¥bibitem[Yoshino ¥etal(2014)]{Yosihno3DAnalysis:2014}Yoshino T, Kishimoto N, Matsuoka A, Ishida N, Kurihara T, Kimoto K (2014). Pores in Spherical Radiolarian Skeletons Directly Determined from Three-Dimensional Data. Forma 29:21--27.

Downloads

Published

2019-12-13

How to Cite

Yoshino, T., Matsuoka, A., & Kishimoto, N. (2019). Geometrical Properties of Skeletal Structures of Radiolarian Genus Didymocyrtis. Image Analysis and Stereology, 38(3), 237–244. https://doi.org/10.5566/ias.2089

Issue

Section

Original Research Paper