Increase in Subcellular GSK-3 Clusters in Insulin- and Adrenaline-treated Differentiated Rat Skeletal Muscle Fibres


  • Katja Fink Faculty of Medicine, University of Ljubljana
  • Mateja Lobe Prebil Faculty of Medicine, University of Ljubljana
  • Nina Vardjan Faculty of Medicine, University of Ljubljana
  • Jorgen Jensen Department of Physical Performance, Norwegian School of Sport Sciences, Postboks 4014 Ullevål stadion, 0806 Oslo, Norway
  • Robert Zorec Faculty of Medicine, University of Ljubljana
  • Marko Kreft Biotechnical Faculty, University of Ljubljana



adrenaline, GSK-3 (glycogen synthase kinase 3), insulin, skeletal muscle fibre


Glycogen synthase kinase 3 (GSK-3) plays an important role in metabolic regulation in skeletal muscles, and both insulin and adrenaline stimulate GSK-3 phosphorylation. The aim of the present study was to study the effect of insulin and adrenaline on GSK-3 localisation in skeletal muscles. We characterized subcellular localization of (GSK-3) signal protein in fully differentiated muscle fibre by immunofluorescence and confocal microscopy. We stimulated muscle fibres with insulin and/or adrenaline. Images were analysed by segmentation of single central optical section of the muscle. We found GSK-3 to be localised in clusters. The number of GSK-3 clusters and their average size were increased after stimulation with insulin and/or adrenaline. Average GSK-3 particle size is linearly related to their quantity. We conclude that subcellular GSK-3 in isolated skeletal muscle fibres is localized in clusters and clustering increased after stimulation with insulin and/or adrenaline.


Bekoff A, Betz W (1977). Properties of isolated adult rat muscle fibres maintained in tissue culture. J Physiol 271:537-47.

Björnholm M, Zierath JR (2005). Insulin signal transduction in human skeletal muscle: Identifying the defects in type ii diabetes. Biochem Soc Trans 33:354-7.

Bouskila M, Hirshman MF, Jensen J, Goodyear LJ, Sakamoto K (2008). Insulin promotes glycogen synthesis in the absence of gsk3 phosphorylation in skeletal muscle. Am J Physiol Endocrinol Metab 294:E28-35.

Brazil DP, Park J, Hemmings BA (2002). Pkb binding proteins. Getting in on the akt. Cell 111:293-303.

Brennesvik E, Ktori C, Ruzzin J, Jebens E, Shepherd P, Jensen J (2005). Adrenaline potentiates insulin-stimulated pkb activation via camp and epac: Implications for cross talk between insulin and adrenaline. Cell Signal 17:1551-9.

Chiang SH, Hwang J, Legendre M, Zhang M, Kimura A, Saltiel AR (2003). Tcgap, a multidomain rho gtpase-activating protein involved in insulin-stimulated glucose transport. EMBO J 22:2679-91.

Chowdhury HH, Jevsek M, Kreft M, Mars T, Zorec R, Grubic Z (2005). Insulin-induced exocytosis in single, in vitro innervated human muscle fibres: A new approach. Pflugers Arch 450:131-5.

Ciaraldi TP, Nikoulina SE, Bandukwala RA, Carter L, Henry RR (2007). Role of glycogen synthase kinase-3 alpha in insulin action in cultured human skeletal muscle cells. Endocrinology 148:4393-9.

Cohen P, Frame S (2001). The renaissance of gsk3. Nat Rev Mol Cell Biol 2:769-76.

Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase b. Nature 378:785-9.

DeFronzo RA, Tripathy D (2009). Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32 Suppl 2:S157-63.

Hingst JR, Bruhn L, Hansen MB, Rosschou MF, Birk JB, Fentz J, Foretz M, Viollet B, Sakamoto K, Faergeman NJ, Havelund JF, Parker BL et al., (2018). Exercise-induced molecular mechanisms promoting glycogen supercompensation in human skeletal muscle. Mol Metab 16:24-34.

Jensen J, Ruzzin J, Jebens E, Brennesvik EO, Knardahl S (2005). Improved insulin-stimulated glucose uptake and glycogen synthase activation in rat skeletal muscles after adrenaline infusion: Role of glycogen content and pkb phosphorylation. Acta Physiol Scand 184:121-30.

Jensen J, Brennesvik EO, Lai YC, Shepherd PR (2007). Gsk-3beta regulation in skeletal muscles by adrenaline and insulin: Evidence that pka and pkb regulate different pools of gsk-3. Cell Signal 19:204-10.

Jensen J, Grønning-Wang LM, Jebens E, Whitehead JP, Zorec R, Shepherd PR (2008). Adrenaline potentiates insulin-stimulated pkb activation in the rat fast-twitch epitrochlearis muscle without affecting irs-1-associated pi 3-kinase activity. Pflugers Arch 456:969-78.

Jensen J, Lai YC (2009). Regulation of muscle glycogen synthase phosphorylation and kinetic properties by insulin, exercise, adrenaline and role in insulin resistance. Arch Physiol Biochem 115:13-21.

Jensen J, Ruge T, Lai YC, Svensson MK, Eriksson JW (2011). Effects of adrenaline on whole-body glucose metabolism and insulin-mediated regulation of glycogen synthase and pkb phosphorylation in human skeletal muscle. Metabolism 60:215-26.

Kolnes AJ, Birk JB, Eilertsen E, Stuenaes JT, Wojtaszewski JF, Jensen J (2015). Epinephrine-stimulated glycogen breakdown activates glycogen synthase and increases insulin-stimulated glucose uptake in epitrochlearis muscles. Am J Physiol Endocrinol Metab 308:E231-40.

Košmelj K, Cedilnik A, Veranič P, Zupančič G, Rupnik M, Kocmur Bobanović L, Zorec R (2001). Intergran-ule fusion in rat pars intermedia cells. Image Anal Stereol 20:79-85.

Kreft M, Prebil M, Chowdhury HH, Grilc S, Jensen J, Zorec R (2010). Analysis of confocal images using variable-width line profiles. Protoplasma 246:73-80.

Lawrence JC, Roach PJ (1997). New insights into the role and mechanism of glycogen synthase activation by insulin. Diabetes 46:541-7.

Mancinelli R, Carpino G, Petrungaro S, Mammola CL, Tomaipitinca L, Filippini A, Facchiano A, Ziparo E, Giampietri C (2017). Multifaceted roles of gsk-3 in cancer and autophagy-related diseases. Oxid Med Cell Longev 2017:4629495.

McManus EJ, Sakamoto K, Armit LJ, Ronaldson L, Shpiro N, Marquez R, Alessi DR (2005). Role that phosphorylation of gsk3 plays in insulin and wnt signalling defined by knockin analysis. EMBO J 20;24:1571-83.

Medina M, Castro A (2008). Glycogen synthase kinase-3 (gsk-3) inhibitors reach the clinic. Curr Opin Drug Discov Devel 11:533-43.

Meijer L, Flajolet M, Greengard P (2004). Pharmacologi-cal inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci 25:471-80.

Meyer C, Woerle HJ, Dostou JM, Welle SL, Gerich JE. (2004). Abnormal renal, hepatic, and muscle glucose metabolism following glucose ingestion in type 2 diabetes. Am J Physiol Endocrinol Metab 287:E1049-56.

Neary J, Kang Y (2006). P2 purinergic receptors signal to glycogen synthase kinase-3beta in astrocytes. J Neurosci Res 84:515-24.

Nielsen J, Ørtenblad N (2013). Physiological aspects of the subcellular localization of glycogen in skeletal muscle. Appl Physiol Nutr Metab 38:91-9.

Nielsen JN, Richter EA. (2003). Regulation of glycogen synthase in skeletal muscle during exercise. Acta Physiol Scand 178:309-19.

Patel P, Woodgett JR (2017). Glycogen synthase kinase 3: A kinase for all pathways? Curr Top Dev Biol 123:277-302.

Pessin JE, Saltiel AR (2000). Signaling pathways in insulin action: Molecular targets of insulin resistance. J Clin Invest 106:165-9.

Sano H, Kane S, Sano E, Mîinea CP, Asara JM, Lane WS, Garner CW, Lienhard GE (2003). Insulin-stimulated phosphorylation of a rab gtpase-activating protein regulates glut4 translocation. J Biol Chem 278:14599-602.

Shepherd PR, Withers DJ, Siddle K (1998). Phosphoinositide 3-kinase: The key switch mecha-nism in insulin signalling. Biochem J 333 ( Pt 3):471-90.

Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG (1990). Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13c nuclear magnetic resonance spectroscopy. N Engl J Med 322:223-8.

Tanji C, Yamamoto H, Yorioka N, Kohno N, Kikuchi K, Kikuchi A (2002). A-kinase anchoring protein akap220 binds to glycogen synthase kinase-3beta (gsk-3beta ) and mediates protein kinase a-dependent inhibition of gsk-3beta. J Biol Chem 277:36955-61.

Vardjan N, Stenovec M, Jorgacevski J, Kreft M, Zorec R (2007). Subnanometer fusion pores in spontaneous exocytosis of peptidergic vesicles. J Neurosci 27:4737-46.

White MF (1998). The irs-signaling system: A network of docking proteins that mediate insulin and cytokine action. Recent Prog Horm Res 53:119-38.

Zhou FQ, Snider WD (2005). Cell biology. Gsk-3beta and microtubule assembly in axons. Science 308:211-4.

Zorec R, Scuka M, Kordas M (1992). Effects of irreversible and reversible cholinesterase inhibitors on single acetylcholine-activated channels. J Membr Biol 125:41-8.




How to Cite

Fink, K., Lobe Prebil, M., Vardjan, N., Jensen, J., Zorec, R., & Kreft, M. (2020). Increase in Subcellular GSK-3 Clusters in Insulin- and Adrenaline-treated Differentiated Rat Skeletal Muscle Fibres. Image Analysis and Stereology, 39(1), 25–32.



Original Research Paper

Most read articles by the same author(s)