A Bayesian Approach to Morphological Models Characterization


  • Bruno Figliuzzi Center for Mathematical Morphology - Mines ParisTech - PSL Research University
  • Antoine Montaux-Lambert L'Oréal R&I
  • François Willot Center for Mathematical Morphology - Mines ParisTech - PSL Research University
  • Grégoire Naudin L'Oréal R&I
  • Pierre Dupuis L'Oréal R&I
  • Bernard Querleux L'Oréal R&I
  • Etienne Huguet L'Oréal R&I




Bayesian models, Monte Carlo Markov Chains algorithms, Morphological models


Morphological models are commonly used to describe microstructures observed in heterogeneous materials. Usually, these models depend upon a set of parameters that must be chosen carefully to match experimental observations conducted on the microstructure. A common approach to perform the parameters determination is to try to minimize an objective function, usually taken to be the discrepancy between measurements computed on the simulations and on the experimental observations, respectively. In this article, we present a Bayesian approach for determining the parameters of morphological models, based upon the definition of a posterior distribution for the parameters. A Monte Carlo Markov Chains (MCMC) algorithm is then used to generate samples from the posterior distribution and to identify a set of optimal parameters. We show on several examples that the Bayesian approach allows us to properly identify the optimal parameters of distinct morphological models and to identify potential correlations between the parameters of the models.


Andrieu C, De Freitas N, Doucet A and Jordan M (2003). An introduction to MCMC for machine learning. Mach learn, 50(1):5-43.

Belhadj J, Romary T, Gesret A, Noble M and Figliuzzi B (2018). New parameterizations for Bayesian seismic tomography. Inverse Probl 34(6):065007

Bortolussi V, Figliuzzi B, Willot F, Faessel M, Jeandin M (2018). Morphological modeling of cold spray coatings. Image Anal Stereol 37(2):145-58

Chiu SN, Stoyan D, Kendall WS and Mecke J (2013). Stochastic geometry and its applications.

John Wiley & Sons

Figliuzzi B, Jeulin D, Faessel M, Willot F, Koishi M and Kowatari N (2016). Modelling the microstructure and the viscoelastic behaviour of carbon black filled rubber materials from 3D simulations. Tech Mechanik 32(1-2):22-46

Figliuzzi B (2019). Eikonal-based models of random tessellations. Image Anal Stereol 38(1):15-23.

Gasnier J-B, Willot F, Trumel H, Figliuzzi B, Jeulin D and Biessy M (2015). A Fourier-based numerical homogenization tool for an explosive material. Matériaux & Techniques 103(3):308

Jeulin D (1991). Mod{`e}les morphologiques de structures al{'e}atoires et de changement d'{'e}chelle. Doctoral dissertation, Caen

Jeulin D (2012). Morphology and effective properties of multi-scale random sets: A review. Comptes Rendus Mécanique 340(4-5):219-29

Jeulin D (2017). Morphological models. In: Encyclopedia of Continuum Mechanics. Springer, 1--12

Jeulin D (2021). Morphological Models of Random Structures. Springer International Publishing.

Koishi M, Kowatari N, Figliuzzi B, Faessel M, Willot F and Jeulin D (2017). Computational material design of filled rubbers using multi-objective design exploration. 10th ECCMR

Moreaud M, Jeulin D, Morard V and Revel R (2012). TEM image analysis and modelling: application to boehmite nanoparticles. J Microsc-Oxford 245(2):186-99

Moussaoui H, Laurencin J, Gavet Y, Delette G, Hubert M, Cloeten P and Debayle J (2018). Stochastic geometrical modeling of solid oxide cells electrodes validated on 3D reconstructions. Comp Mater Sci 143:262-76

Moussaoui H, Sharma R K, Debayle J, Gavet Y, Delette G and Laurencin J (2019). Microstructural correlations for specific surface area and triple phase boundary length for composite electrodes of solid oxide cells. J Power Sources 412:736-48.

Ohser J and Schladitz K (2009). 3D images of materials structures: processing and analysis. John Wiley & Sons

Robert C and Casella G (2004). Monte Carlo statistical methods. New York: Springer.

Torquato S (2013). Random heterogeneous materials: microstructure and macroscopic properties.

Springer Science & Business Media

Wang H, Pietrasanta A, Jeulin D, Willot F, Faessel M, Sorbier L and Moreaud M (2015). Modelling mesoporous alumina microstructure with 3D random models of platelets. J Microsc-Oxford 260(3):287-301




How to Cite

Figliuzzi, B., Montaux-Lambert, A., Willot, F., Naudin, G., Dupuis, P., Querleux, B., & Huguet, E. (2021). A Bayesian Approach to Morphological Models Characterization. Image Analysis and Stereology, 40(3), 171–180. https://doi.org/10.5566/ias.2641



Original Research Paper