Improvement Procedure for Image Segmentation of Fruits and Vegetables Based on the Otsu Method




fruits and vegetable images, segmentation, Otsu, contrast, illumination improvement


Currently, there are significant challenges in the classification, recognition, and detection of fruits and vegetables. An important step in solving this problem is to obtain an accurate segmentation of the object of interest. However, the background and object separation in a grayscale image shows high errors for some thresholding techniques due to uneven or poorly conditioned lighting. An accepted strategy to reduce segmentation errors is to select the channel of an RGB image with high contrast. This paper presents the results of an experimental procedure based on enhancing binary segmentation by using the Otsu method. The procedure was carried out with images of real agricultural products, both with and without additional noise, to corroborate the robustness of the proposed strategy. The experimental tests were performed using our database of RGB images of agricultural products under uncontrolled illumination. The results show that the best segmentation is achieved by selecting the Blue channel of the RGB test images due to its higher contrast. Here, the quantitative results are measured by applying the Jaccard and Dice metrics based on the ground-truth images as optimal reference. Most of the results using both metrics show an improvement greater than 45.5% in the two experimental tests.


Alegre, E., Pajares, G., De la Escalera, A. (2016). Conceptos y métodos en visión por computador. España: Grupo de Visión del Comite ́ Español de Automática (CEA), 11–28.

Bataineh, B., Abdullah, S. N. H. S., Omar, K. (2017). Adaptive binarization method for degraded document images based on surface contrast variation. Pattern Analysis and Applications, 20, 639–652.

Belan, P. A., de Macedo, R. A. G., Alves, W. A. L., Santana, J. C. C., Araújo, S. A. (2020). Machine vision system for quality inspection of beans. The International Journal of Advanced Manufacturing Technology, 111, 3421–3435.

Bovik, A. C.(2009). The essential guide to image processing. Academic Press, 2009.

Bradley, D., Roth, G. (2007). Adaptive thresholding using the integral image. Journal of graphics tools, 12(2), 13–21.

Chávez, O. V., Flores–Troncoso, J., Minjares, J. U. M., Reyna, R. O., Sánchez, E. G., Reyna, R. O. (2022). Image segmentation of Capsicum annuum chili with lighting problems using the otsu method: Segmentac ̧a ̃o de imagens de chili Capsicum annuum com problemas de iluminac ̧a ̃o usando o me ́todo de otsu. STUDIES IN ENGINEERING AND EXACT SCIENCES, 3(4), 560–573.

Cheremkhin, P. A., Kurbatova, E. A. (2019). Comparative appraisal of global and local thresholding methods for binarisation of off- axis digital holograms. Optics and Lasers in Engineering, 115, 119–130.

Chung, N. C., Miasojedow, B., Startek, M., Gambin, A. (2019). Jaccard/Tanimoto similarity test and estimation methods for biological presence– absence data. BMC bioinformatics, 20(15), 1–11.

Fan, P., Lang, G., Guo, P., Liu, Z., Yang, F., Yan, B., Lei, X. (2021). Multi-feature patch-based segmentation technique in the gray-centered RGB color space for improved apple target recognition. Agriculture, 11(3), 273.

Gatos, B., Pratikakis, I., Perantonis, S. J. (2006). Adaptive degraded document image binarization. Pattern recognition, 39(3), 317–327.

Goh, T. Y., Basah, S. N., Yazid, H., Safar, M. J. A., Saad, F. S. A. (2018). Performance analysis of image thresholding: Otsu technique. Measurement, 114, 298–307.

Gonzalez, R. C., Woods, R. E. (2008). Digital image processing, prentice hall. Upper Saddle River, NJ.

Kosub, S. (2019). A note on the triangle inequality for the Jaccard distance. Pattern Recognition Letters, 120, 36-38.

Lei, B., Fan, J. (2019). Image thresholding segmentation method based on minimum square rough entropy. Applied Soft Computing, 84, 105687.

Liu, L., Yang, N., Lan, J., Li, J. (2015). Image segmentation based on gray stretch and threshold algorithm. Optik, 126(6), 626-629.

Lu, Y., Lu, R. (2017). Histogram-based automatic thresholding for bruise detection of apples by structured-illumination reflectance imaging. Biosystems Engineering, 160, 30–41.

Mukhiddinov, M., Muminov, A., Cho, J. (2022). Improved Classification Approach for Fruits and Vegetables Freshness Based on Deep Learning. Sensors, 22(21), 8192.

Ng, H. F. (2006). Automatic thresholding for defect detection. Pattern recognition letters, 27(14), 1644– 1649.

Niblack, W. (1985). An introduction to digital image processing. Prentice-Hall, Inc.

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62–66.

Resma, K. B., Nair, M. S. (2021). Multilevel thresholding for image segmentation using Krill Herd Optimization algorithm. Journal of king saud university-computer and information sciences, 33(5), 528–541.

Russ, J. C. (2006). The Image Processing Handbook, 5th edition. (Image Processing Handbook). CRC, USA.

Sahoo, P. K., Soltani, S. A. K. C., Wong, A. K. (1988). A survey of thresholding techniques. Computer vision, graphics, and image processing, 41(2), 233–260.

Sauvola, J., Pietika ̈inen, M. (2000). Adaptive document image binarization. Pattern recognition, 33(2), 225– 236.

Sezgin, M., Sankur, B. L. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13(1), 146–168.

Sha, C., Hou, J., Cui, H. (2016). A robust 2D Otsu’s thresholding method in image segmentation. Journal of Visual Communication and Image Representation, 41, 339–351.

Singh, T. R., Roy, S., Singh, O. I., Sinam, T., Singh, K. (2012). A new local adaptive thresholding technique in binarization. arXiv preprint arXiv:1201.5227.

Song, S. B., Liu, J. F., Ni, H. Y., Cao, X. L., Pu, H., Huang, B. X. (2020). A new automatic thresholding algorithm for unimodal gray-level distribution images by using the gray gradient information. Journal of Petroleum Science and Engineering, 190, 107074.

Taha, A. A., Hanbury, A. (2015). Metrics for evaluating 3Dmedicalimagesegmentation:analysis,selection, and tool. BMC medical imaging, 15(1), 1–28.

Yang, W., Cai, L., Wu, F. (2020). Image segmentation based on gray level and local relative entropy two dimensional histogram. Plos one, 15(3), e0229651.

Yuan, X. C., Wu, L. S., Peng, Q. (2015). An improved Otsu method using the weighted object variance for defect detection. Applied surface science, 349, 472–484.

Zheng, X., Ye, H., Tang, Y. (2017). Image bi-level thresholding based on gray level-local variance histogram. Entropy, 19(5), 191.

Zou, K. H., Warfield, S. K., Bharatha, A., Tempany, C. M., Kaus, M. R., Haker, S. J., Wells W. M., Jolesz F. A., Kikinis, R. (2004). Statistical validation of image segmentation quality based on a spatial overlap index1 : scientific reports. Academic radiology, 11(2), 178−189.




How to Cite

Vite-Chávez, O., Flores-Troncoso, J., Olivera-Reyna, R., & Munoz-Minjares, J. U. (2023). Improvement Procedure for Image Segmentation of Fruits and Vegetables Based on the Otsu Method. Image Analysis and Stereology, 42(3), 185–196.



Original Research Paper