Morphology of Graphite Agglomerates Obtained by Spherical Agglomeration via Propagation-Based X-Ray Microtomography


  • Julia Schreier University of Applied Sciences Trier
  • Ulrich Bröckel University of Applied Sciences Trier



Morphology, Phase-contrast, Spherical agglomeration , Two-dimensional characterisation , X-ray microtomography


The aim of this work was to develop a novel method for studying the 3D morphology of agglomerates obtained by spherical agglomeration. It has been found, that the combination of shock-freezing the samples in a mixture of ethanol and dry ice followed by an X-ray microtomography measurement leads to useful results. Hereby, the image quality for low absorbing material like the used graphite was enhanced by propagation-based X-ray microtomography, which results in phase contrast images. We also discuss our 3D image post-processing routine, which is used to determine the morphology parameters sphericity, fractal dimension and packing density. Furthermore, a two-dimensional kernel density estimation is used to calculate the joint probability density of agglomerate size and the morphology parameter. In future, this method will be used to determine the morphological behaviour of agglomerates during the different phases of spherical agglomeration.


Bemer GG (1979). Agglomeration in Suspension: A Study of Mechanisms and Kinetics. Delft University of Technology the Netherlands.

Blandin AF, Mangin D, Rivoire A, Klein JP, Bossoutrot JM (2003). Agglomeration in suspension of salicylic acid fine particles: influence of some process parameters on kinetics and agglomerate final size. Powder Technol 130:316–23.

Bos AS (1983). Agglomeration in Suspension. Delft University of Technology the Netherlands.

Bouligand G (1925). Dimension, 'etendue, densit 'e. Comptes Rendus Acad Sci 180:245–8.

Bowman AW, Azzalini A (1997). Applied Smoothing Techniques for Data Analysis. New York:OUP Oxford.

Buades A, Coll B, Morel JM (2011). Non-Local Means Denoising. Image Process Line 1:208–12.

Buzug TM (2008). Computed tomography from photon statistics to modern cone-beam CT. Berlin Heidelberg:Springer.

Cattermole AE (1904). Classification of the metallic constituents of ores. US Patent 763259.

Dawei W, Kewu W, Jicun Q (1986). Hydrophobic agglomeration and spherical agglomeration of wolframite fines. Int J Miner Process 17:261–71.

Dioguardi F, Mele D, Dellino P, Dürig T (2017). The terminal velocity of volcanic particles with shape obtained from 3D X-ray microtomography. J Volcanol Geoth Res 329:41–53.

Dosta M, Bröckel U, Gilson L, Kozhar S, Auernhammer GK, Heinrich S (2018). Application of micro computed tomography for adjustment of model parameters for discrete element method. Chem Eng Res Des 135:121–8.

Drzymala J, Markuszewski R, Wheelock TD (1991). Oil Agglomeration of Sulfurizes Pyrite. Miner Eng 4:161–72.

Feldkamp LA, Davis LC, Kress JW (1984). Practical cone-beam algorithm. J Opt Soc Am A 1:612–9.

Gilson L, Bröckel U (2015). Einsatz von Bilderkennung zur Auswertung tomographischer Aufnahmen für die Erfassung von Partikelformen. Chem-Ing-Tech 87:986–90.

Guo S, Yu C, Feng S, Wei J, Tong L, Li K, Gao Y, Zhao P, Li T, Chen M, Han D, Gong J (2022). Enabling the drug combination of celecoxib through a spherical co-agglomeration strategy with controllable and stable drug content and good powder properties. Int J Pharm 626:122180.

Gupta SC, Larson WE (1979). A Model for Predicting Packing Density of Soils Using Particle-Size Distribution. Soil Sci Soc Am J 43:758–64.

House CI, Veal CJ (1989). Selective recovery of chalcopyrite by spherical agglomeration. Miner Eng 2:171–84.

Ismail NHF, Mohd Zaini TR, Jaafar M, Che Pin N (2016). H-minima transform for segmentation of structured surface. MATEC Web Conf 74:00025.

Kardos A, Tóth J, Trif L, Gyenis J, Feczkó T (2016). Preparation of spherical agglomerates from potash alum. Rsc Adv 6:5466–73.

Kawashima Y, Capes CE (1974). An experimental study of the kinetics of spherical agglomeration in a stirred vessel. Powder Technol 10:85–92.

Kawashima Y, Capes CE (1976). Further studies of the kinetics of spherical agglomeration in a stirred vessel. Powder Technol 13:279–88.

Kawashima Y, Takagi H, Takenaka H (1981). Wet spherical agglomeration of binary mixtures II: Mechanism and kinetics of agglomeration and the crushing strength of agglomerates. Chem Pharm Bull 29:1403–9.

Kelsall GH, Pitt JL (1987). Spherical agglomeration of fine wolframite ((Fe,Mn)WO4) mineral particles. Chem Eng Sci 42:679–88.

Leißner T, Diener A, Löwer E, Ditscherlein R, Krüger K, Kwade A, Peuker UA (2019). 3D ex-situ and in-situ X-ray CT process studies in particle technology – A perspective. Adv Powder Technol 31:78–86.

Meyer F (1994). Topographic distance and watershed lines. Signal Process 38:113–25.

Miller JD, Lin CL (2004). Three-dimensional analysis of particulates in mineral processing systems by cone beam X-ray microtomography. Miner Metall Proc 21:113–24.

Moisy F (2022). boxcount. Retrieved May 9, 2022, from

Müller M, Löffler F (1996). Development of Agglomerate Size and Structure during spherical agglomeration in suspension. Part Part Syst Char 13:322–6.

Otsu N (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE T Syst Man Cyb 9:62–6.

Pacilè S, Tromba G. (2018). Introduction to X-Ray Micro-tomography. In: Giuliani A, Cedola A, eds. Advanced High-Resolution Tomography in Regenerative Medicine, Fundamental Biomedical Technologies. Ch. 2. Cham:Springer International Publishing, 19–39.

Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW (2002). Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc 206:33–40.

Paglieroni DW (1992). Distance transforms: Properties and machine vision applications. CVGIP-Graph Model Im 54:56–64.

Parzen E (1962). On Estimation of a Probability Density Function and Mode. Ann Math Stat 33:1065–76.

Pashminehazar R, Ahmed SJ, Kharaghani A, Tsotsas E (2018). Spatial morphology of maltodextrin agglomerates from X-ray microtomographic data: Real structure evaluation vs. spherical primary particle model. Powder Technol 331:204–17.

Pashminehazar R, Kharaghani A, Tsotsas E (2016). Three dimensional characterization of morphology and internal structure of soft material agglomerates produced in spray fluidized bed by X-ray tomography. Powder Technol 300:46–60.

Petela R, Ignasiak B, Pawlak W (1995). Selective agglomeration of coal: analysis of laboratory batch test results. Fuel 74:1200–10.

Peter D (1985). Kernel estimation of a distribution function. Commun Stat-Theor M 14:605–20.

Rosenfeld A, Pfaltz JL (1966). Sequential Operations in Digital Picture Processing. J ACM 13:471–94.

Schach E, Buchmann M, Tolosana-Delgado R, Leißner T, Kern M, Van den Boogaart G, Rudolph M, Peuker UA (2019). Multidimensional characterization of separation processes – Part 1: Introducing kernel methods and entropy in the context of mineral processing using SEM-based image analysis. Miner Eng 137:78–86.

Schmitt, M., Prêteux, F. (1986). Un nouvel algorithme en morphologie mathématique: les rh maxima et rh minima. Proc 2ieme Sem Int Image Electron 469–75.

Schreier J, Bröckel U (2021). Multidimensional separation due to selective spherical agglomeration—Evidence of shape separation via X-ray microtomography. Particuology 58:316–23.

Schreier J, Furat O, Cankaya M, Schmidt V, Bröckel U (2020). Automated Evaluation of Contact Angles in a Three-Phase-System of Selective Spherical Agglomeration. Image Anal Stereol 39:179–88.

Silverman BW (1986). Density Estimation for Statistics and Data Analysis. Boca Raton:CRC Press.

Sirianni AF, Capes CE, Puddington JE (1969). Recent experience with the spherical agglomeration process. Can J Chem Eng 47:166–70.

Soille PJ, Ansoult MM (1990). Automated basin delineation from digital elevation models using mathematical morphology. Signal Process 20:171–82.

Tennenbaum J, Kay A, Binford T, Falk G, Feldman J, Grape G, Pau R, Pingle K (1969). The sobel edge detector, Proceedings of the First International Joint Conference on Artifical Intelligence, 1969 May 7-9; Washington DC, United States.

Thati J, Rasmuson AC (2012). Particle engineering of benzoic acid by spherical agglomeration. Eur J Pharm Sci 45:657–67.

The MathWorks Inc (2022). Measure properties of 3-D volumetric image regions - MATLAB regionprops3. Retrieved January 31, 2022, from

Wadell H (1935). Volume, Shape, and Roundness of Quartz Particles. J Geol 43: 250–80.

Wahl EF, Baker CGJ (1971). The kinetics of titanium dioxide agglomeration in an agitated liquid suspension. Can J Chem Eng 49:742–6.




How to Cite

Schreier, J., & Bröckel, U. (2024). Morphology of Graphite Agglomerates Obtained by Spherical Agglomeration via Propagation-Based X-Ray Microtomography. Image Analysis and Stereology, 43(1), 85–95.



Original Research Paper

Most read articles by the same author(s)