Ways of Improving of Active Contour Methods in Colonoscopy Image Segmentation

Raneem Ismail, Szilvia Nagy

Abstract

As colonoscopy is the standard screening approach for colorectal polyps, and the first step of the correct classification and the efficient automatic diagnostics is the accurate detection and segmentation of the existing polyps, it is worth researching systematically, how colonoscopy databases are responding to two of the most influential variational segmentation methods, the geodesic and Chan–Vese active contour methods. Due to the quality variation of the colonoscopy databases, pre-processing steps are made. Then, 14 various filtered images are evaluated as different inputs for the active contour methods using the Sørensen–Dice Similarity Coefficient as a performance measurement metric. The effects of the initial mask shape and its size together with the number of iterations, contraction bias and smoothness factor are studied. In general, the Chan–Vese method showed more efficiency to match the actual contour of the polyp than the geodesic one with an initial mask possibly located within the polyp area. Preprocessing such as reflection removal, background subtraction and mean or median filtering can improve the Sørensen–Dice coefficient by up to 0.5.


Keywords
active contour segmentation methods; Chan–Vese method, colonoscopy image; geodesic method; Sørensen–Dice Similarity Coefficient

Full Text:

PDF


DOI: 10.5566/ias.2604

Copyright (c) 2022 Image Analysis & Stereology

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Image Analysis & Stereology
EISSN 1854-5165 (Electronic version)
ISSN 1580-3139 (Printed version)