Precision of the Invariator Estimator of the Surface Area of an Ellipsoid
DOI:
https://doi.org/10.5566/ias.3794Keywords:
Elliptic integrals, ellipsoidal section, flower formula, heat map, integral geometry, invariator, pivotal plane, pivotal point, stereology, support setAbstract
Consider a triaxial ellipsoid K of surface area S. Fix an arbitrary point P in the interior of K, that is P ∈ K°, and generate a sectioning plane L32[P] through P, whose normal direction u is uniform random on the unit hemisphere S2+. In the ellipse of section K ∩ L32[P], let M and m denote the lengths of the major and minor principal semiaxes, respectively, and let r denote the distance of P from the ellipse centre. Then Ŝ = 2π(M² + m² + r²) is an unbiased estimator of S. The purpose of this paper is to express Ŝ in terms of the eight parameters involved, namely the lengths of the three principal semiaxes of K, the three Cartesian coordinates of P, and the two spherical polar coordinates (φ, θ) of u. Then Var(Ŝ) is accessible via a double definite integral in (φ, θ), which can be evaluated quickly with available software for any K and any choice of point P ∈ K°.
References
Abramowitz M, Stegun IA (1965). Handbook of Mathematical Functions. New York: Dover.
Auneau J, Jensen EVB (2010). Expressing intrinsic volumes as rotational integrals. Adv Appl Math 45: 1–11.
Cruz-Orive LM (1976). Particle size-shape distributions: the general spheroid problem. I. Mathematical model. J Microsc 107: 235–253.
Cruz-Orive LM (1985). Estimating volumes from systematic hyperplane sections. J Appl Prob 22: 518–30.
Cruz-Orive LM (2005). A new stereological principle for test lines in 3D. J Microsc 219: 18–28.
Cruz-Orive LM (2008). Comparative precision of the pivotal estimators of particle size. Image Anal Stereol 27: 17–22.
Cruz-Orive LM (2011). Flowers and wedges for the stereology of particles. J Microsc 243: 86–102.
Cruz-Orive LM (2024). Stereology: Theory and Applications. Interdisciplinary Applied Mathematics 59. Cham: Springer Nature Switzerland AG.
Cruz-Orive LM, Gual-Arnau X (2015). The invariator design: an update. Image Anal Stereol 34: 147–59.
Dvořák J, Jensen EVB (2013). On semiautomatic estimation of surface area. J Microsc 250: 142–157.
Gual-Arnau X (2023). Geometric integral formulas of cylinders within slabs. Diff Geom Appl 91: 1–10.
Gual-Arnau X, Cruz-Orive LM (2009). A new expression for the density of totally geodesic submanifolds in space forms, with stereological applications. Diff Geom Appl 27: 124–28.
Gual-Arnau X, Cruz-Orive LM (2016). New rotational integrals in space forms, with an application to surface area estimation. Appl Math 61: 489–501.
Gual-Arnau X, Cruz-Orive LM, Nuño-Ballesteros JJ (2010). A new rotational integral formula for intrinsic volumes in space forms. Adv Appl Math 44: 298–308.
Jensen EVB, Kiderlen M (eds.) (2017). Tensor Valuations and their Applications in Stochastic Geometry and Imaging, Chapter 7. Berlin: Springer.
Jensen EV, Møller J (1986). Stereological versions of integral geometric formulae for n-dimensional ellipsoids. J Appl Prob 23: 1031–1037.
Legendre AM (1811). Calcul Intégral sur Divers Ordres de Transcendantes et sur les Quadratures. Paris: Mme. V. Courcier, Imprimeur-Libraire pour les Mathématiques.
Moran PAP (1982). The surface area of an ellipsoid. In: Kallianpur G, Krishnaiah PR, Ghosh JK, eds. Statistics and Probability: Essays in Honour of C.R. Rao, 511–518. Amsterdam: North-Holland.
Rey-Pastor J (1967). Elementos de la Teoría de Funciones. 5th ed. Madrid: Biblioteca Matemática S.L.
Rivin I (2007). Surface area and other measures of ellipsoids. Adv Appl Math 39: 409–427.
Thórisdóttir O, Kiderlen M (2014). The invariator principle in convex geometry. Adv Appl Math 58: 63–87.
Thórisdóttir O, Rafati AH, Kiderlen M (2014). Estimating the surface area of non convex particles from central planar sections. J Microsc 255: 49–64.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Luis Manuel Cruz-Orive

This work is licensed under a Creative Commons Attribution 4.0 International License.
